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 1. INTRODUCTION 
AERMOD urban (EPA, Cimorelli et al., 2004)   
      Dispersion models are often evaluated by 

comparison with field data.  The Hanna et al. (1993) 
BOOT model evaluation software is widely used to 
evaluate the performance of individual models.  The 
software also allows the differences in the statistical 
performance measures between two models to be 
assessed to determine whether there are significant 
differences at some confidence level (usually 95 %).  
The methodology is demonstrated using six urban 
dispersion models applied to the Salt Lake City Urban 
2000 field data (Allwine et al, 2002).  As a preliminary 
exercise, the comparisons focus on the maximum 
predicted and observed concentrations on the seven 
monitoring arcs during each of the 18 field 
experiments.   

Barrio Logan Model (BLM) developed by Venkatram 
et al. (2004) 
 
Simple Urban Dispersion Correlation (SUDC) 
developed by Neophytou and Britter (2004) 
 
2. STATISTICAL METHODS 
 
     The following equations define the statistical 
performance measures that are most often used in the 
BOOT evaluation software (Hanna et al., 1993, Chang 
and Hanna, 2004).  These performance measures 
include the fractional bias (FB), the geometric mean 
bias (MG), the normalized mean square error (NMSE), 
the geometric variance (VG), and the fraction of 
predictions within a factor of two of observations 
(FAC2): 

  
     A statistical test such as that in BOOT is needed to 
compare the performance measures for two models 
because of the possibility that the two models’ 
predictions may be correlated.  For example, if the 
concentrations predicted by model B are always 
exactly two times the concentrations predicted by 
model A, then there will always be a significant 
difference between the performance measures 
calculated for the two models.  Otherwise, it would be 
possible to look solely at whether the 95 % confidence 
ranges on the performance measures for Models A 
and B overlap. 
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o pVG exp lnC lnC    (4)      The urban dispersion models included so far are: 
  Urban Hazard Prediction Assessment Capability 
(HPAC) (with Urban Dispersion Model, UDM) (DTRA, 
2001 and 2004) 

FAC2 = Fraction of predictions that are 
within a factor of two of observations (5) 

          where Urban baseline dispersion model (Hanna et al., 2003)  Cp: model predictions of concentration,   Co: observations of concentration, UDM (Hall et al, 2002) 
              overbar (C):  average over the dataset, and  
 σC: standard deviation over the dataset.  
  
     A perfect model would have MG, VG, and FAC2 = 
1.0; and FB and NMSE = 0.0.  Of course, because of 
the influence of random atmospheric processes, there 
is no such thing as a perfect model in air quality 
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modeling. In addition to the standard performance 
measures defined above, which use data from a large 
number of experimental trials, the simple ratio of the 
overall maximum observed concentration to the overall 
maximum predicted concentration on each arc can be 
listed.  These two maxima may occur during different 
experiment trials. 
      
     Typical magnitudes of the above performance 
measures and estimates of model acceptance criteria 
have been summarized by Chang and Hanna (2004) 
based on extensive experience with evaluating many 
models with many field data sets.  It was concluded 
that, for comparisons of maxima concentrations on 
arcs, and for research-grade field experiments, 
“acceptable” performing models have the following 
typical performance measures. The fraction of 
predictions within a factor of two of observations is 
about 50% or greater (i.e., FAC2 > 0.5). The mean 
bias is within ± 30% of the mean (i.e., –0.3 < FB < 0.3 
or 0.7 < MG < 1.3). The random scatter is about a 
factor of two of the mean (i.e., NMSE < 4 or VG < 1.6). 
However, these are not firm guidelines and it is 
necessary to consider all performance measures in 
making a decision concerning model acceptance.  
Since most of these criteria are based on research 
grade field experiments, model performance would be 
expected to deteriorate as the quality of the inputs 
decreases. 
 
     Depending on scenario, agency, and questions 
asked of models, there is a variety of additional 
performance measures that are considered.  For 
example, the EPA is interested in maximum C at any 
time or place on the domain.  Therefore they use 
Quantile-Quantile (Q-Q) plots where only the 
separately ranked observed and predicted C’s are 
plotted.  For emergency response, DHS, DOD and 
others are interested in predicting area coverage 
properly for hazard impact, thus using Figure of Merit 
and other measures of predicted area coverage.  
Different weights can be given to false positives and 
false negatives. 
 
     The statistical comparison method can be used for 
ANY performance measure, as long as it can be 
expressed quantitatively. BOOT is general and can be 
used for types of models other than atmospheric 
transport and dispersion models.  Alternate 
performance measures can easily be added.  The 
general statistical comparison procedure is 
independent of the performance measure. 
 
     To estimate confidence limits on differences in a 
performance measure (PM) between two or more 
models, start with a master table containing sets of 
observations and predictions by the models.  Use 
bootstrap or jackknife resampling to resample from 
the master table N times.  There are M rows with one 
observation and L model predictions.  In each 
resample, M of the rows are randomly chosen (with 
replacement) and the PM is then recalculated for each 

model. For each resample, the difference in PM 
between two models (i and j) is calculated, ∆PM(i,j) . 
The N values of ∆PM(i,j) can be ranked and used to 
define 95 % confidence limits.  If the 95 % confidence 
limits on ∆PM(i,j) overlap 0.0, then it can be 
concluded, with 95 % confidence, that the difference 
in PM between the two models is not significantly 
different from 0.0. 
 
3. OVERVIEW OF SLC URBAN 2000 STUDY 
 
     This preliminary demonstration of the comparison 
methodology focuses on the maximum hourly-
averaged concentrations on seven arcs for the 18 
Urban 2000 trials in Salt Lake City.  The Urban 2000 
experiment is described in great detail by Allwine et al. 
(2002) and a general analysis of the concentration 
data and the meteorological data is given by Hanna et 
al. (2003).  The observed concentrations used in this 
demonstration are listed in Table 1.  The numbers are 
the maximum hourly-averaged concentrations, C, 
divided by the source term, Q, observed during each 
experiment trial on each monitoring arc.  Figures 1 
and 2 contain maps where the locations of the 66 
individual concentration monitors are indicated and 
the seven monitoring arcs can be seen.  Figure 1 
shows the outer three arcs, at distances of about 2, 4, 
and 6 km from the source.   Figure 2 shows the four 
inner arcs, at distances of 156, 394, 675, and 928 m 
from the source.    The SF6 source location is shown 
as a star on the figures, and was at a height of 1.5 m 
near a large downtown building.   During each of the 
six nights of the experiment, tracer gas was released 
continuously in three one-hour periods, separated by 
one-hour period where no gas was released. 
 
     Figure 1 also contains the locations of the 
meteorological sites.  Observed winds were relatively 
light, averaging about 1.5 m/s.  Even though all 
experiments were at night, nearly-neutral conditions 
prevailed in the built-up downtown area due to 
mechanical mixing around the buildings and due to 
heat inputs from man’s activities.  Several of the 
urban dispersion models (e.g., Venkatram et al., 
2004, Hanna et al., 2003, and Cimorelli et al., 2004) 
assume that stabilities over built-up urban areas are 
always nearly-neutral or convective. 
 
     As seen in Figure 2, the closest monitoring arc to 
the source was at a distance of about 156 m, or about 
one block from the source.  Consequently, the 
concentration observations are at locations where the 
plume has grown to an extent that the turbulence and 
dispersion is due to the combined influence of many 
buildings.  All six models are intended to be applicable 
to this scenario (i.e., downwind distances beyond a 
“few” buildings) and are not applicable to distances 
where the tracer plume would be strongly influenced 
by a single building or a single street canyon.   
 
 
 



4. OVERVIEW OF SIX MODELS 
 
     As stated earlier, since this is a demonstration 
exercise, no attempt was made to cover the complete 
spectrum of urban dispersion models that are 
currently in use.  The six models that are included 
represent the authors’ own models plus the HPAC-
Urban model, which has been the subject of 
evaluations by Chang et al. (2004).  The sole criterion 
for being an author and for having one’s model 
included was that one could provide predictions in the 
desired format by the time deadline for this 
manuscript.  It is important to note that all six models 
are intended for distances beyond a few building 
heights.  The models are not intended for application 
to flow and dispersion around the “first” building 
encountered.  A brief overview of the models is given 
below: 
 
     AERMOD (Cimorelli et al., 2004) is the U.S. EPA’s 
updated Gaussian-type plume model for application to 
industrial sources and other local sources at 
downwind distances less than about 10 or 20 km.   It 
automatically handles urban areas through inputs of 
surface roughness length and building geometries.  It 
assumes nearly-neutral or convective conditions in 
urban areas.   For this application, it was run using 
observed average wind speeds in the urban area and 
a southeasterly wind direction.  Geometry information 
was input only for the buildings near the source.  We 
had many discussions with the developers about the 
current runs, since the model is usually applied to 
stack sources and not to sources near street level in 
an urban canopy.  Clearly more sensitivity runs are 
needed for this type of application. 
 
     Baseline Urban Dispersion Model (Hanna et al., 
2003) is also a Gaussian-type model, using observed 
average wind speeds in the urban area and assuming 
nearly-neutral to convective stabilities at all times.  
Turbulence is parameterized using urban boundary 
layer relations developed by the authors.  A key 
assumption is that, even at low wind speeds, the 
lateral turbulent velocity does not drop below 0.5 m/s.  
The latter assumption results in wide plume spread 
during light winds. 
 
     BLM (Barrio Logan Model) (Venkatram et al., 
2004) is a Gaussian-type model based on simple 
parameterizations of the urban boundary layer and 
dispersion in the urban area.  It assumes an initial 
size to the plume due to mixing behind buildings near 
the source.  It assumes that observed wind speeds 
and turbulence are available from some height above 
the average building height.  For the current exercise, 
BLM uses winds from the M08 anemometer (see 
Figure 1), at a height of 23 m on top of a warehouse 
building. 
 
     HPAC (Hazard Prediction Assessment 
Capability) (DTRA, 2001, 2004) is a multipurpose 
code that could be described as a Gaussian puff 

model.  It is widely used in U.S. Department of 
Defense (DOD) applications and has been previously 
evaluated for several non-urban field experiments 
(Chang and Hanna, 2004).  Two of the authors 
(Hanna and Chang) were involved in an extensive 
evaluation of HPAC with the Urban 2000 data base 
(Chang et al., 2004).  At that time, the urban HPAC 
that was evaluated was not officially released.  
However, the latest Version 4.04.011 (DTRA, 2004) 
automatically includes the urban algorithms.  HPAC 
incorporates UDM (Hall et al. 2002) for x < 2 km in 
Salt Lake City, after which it switches to its standard 
puff dispersion algorithm (SCIPUFF).  For the current 
exercise, the wind inputs are from the Raging Waters 
(RGW) site, denoted as N01 in Figure 1.  This option, 
which uses winds from a site about 5 km upwind of 
the urban area, was shown by Chang et al., 2004) to 
produce optimum performance. 
 
     SUDC (Simple Urban Dispersion Correlation) 
(Neophytou and Britter, 2004) is a one-line urban 
model formulation developed by the authors using 
observations from several urban field and laboratory 
experiments.  The relation, which states that C/Q is 
proportional to x-2, has been developed for the range 
x/Hb less than about 60, where Hb is average building 
height.  For Urban 2000, where Hb is about 15 m 
(Hanna et al., 2003), this would imply that SUDC is 
recommended only for the closest four monitoring 
arcs, at x less than about 1000 m.  Nevertheless, for 
the statistical demonstration exercise in this paper, we 
also include the SUDC predictions at arcs 5 through 7 
(x = 2, 4, and 6 km).  Future studies should focus only 
on the nearest four arcs. 
 
     UDM (Urban Dispersion Model) (Hall et al., 
2002) is a widely-used model developed by the UK 
Defence Science and Technology Laboratory (DSTL) 
based on assumptions of a Gaussian shape and 
assumptions concerning empirical parameterizations 
developed from special field and laboratory 
experiments involving obstacle arrays.  UDM is also 
included in the Urban HPAC model discussed earlier.  
However, it was also tested as a “stand-alone” model 
using its original software and applied to all seven 
monitoring arcs.  These UDM runs were made by 
David Brook and originally included several options for 
wind inputs.  The UDM outputs evaluated here are 
using the so-called “all winds” option, where all wind 
monitoring sites in Figure 1 are included.  UDM 
predictions varied somewhat depending on which 
wind option was used, as expected.  
 
5. RESULTS 
 
     As recommended by Hanna et al. (1993), it is 
useful to first “look” at the data before applying the 
statistical performance measures.  Figure 3 contains 
scatter plots of the observed versus model-predicted 
C/Q values for each of the six models.  The points 
represent maximum hourly-averaged C/Q for each of 
the 18 trials and seven monitoring arcs.  Because 



higher concentrations occur on the closest arcs, the 
points in the upper right corner of each plot represent 
the closest arcs.  Points below the line of perfect 
agreement represent underpredictions.  It is seen in 
Figure 3  that the six models do a fairly good job of 
matching the observed C/Q values, although there are 
some indications of slight underpredictions or 
overpredictions for some models and some arc 
distances.  Also, the amount of scatter is similar in the 
six plots.   Some of the biases seen on the plots are:  
The Baseline model underpredicts at the higher 
values; HPAC slightly overpredicts at most distances; 
SUDC has little bias except at the lower values (i.e., 
the most distant arcs), where it is stated to not be 
applicable; UDM does better at the higher values (i.e., 
the closest arcs) and underpredicts at the lower 
values; AERMOD tends to underpredict by a factor 
averaging 2 or 3 at all values; and BLM has little bias. 
 
     Continuing with the first step where the results are 
“looked at”, Figure 4 contains Quantile-Quantile plots 
in the same format as Figure 3.  The difference is that, 
in Figure 4, the observations and predictions are 
separately ordered from lowest to highest C/Q, and 
then the points that are plotted represent the Nth rank 
of the observations and predictions.  Again, the 
models seem to have approximately equivalent 
performance, although the BLM model may be closest 
to the “perfect agreement” line.  The general tendency 
towards slight underpredictions of UDM and AERMOD 
can be clearly seen, as well as the slight 
overprediction tendency of HPAC.   
 
     The quantitative performance measures defined in 
Section 2 are listed in Table 2 for the six urban 
dispersion models.  It is seen that there is a variation 
in which models perform better for certain 
performance measures.  Also, in many cases, the 
performance measures for two or more models 
appear to be close (e.g., VG is 1.55 for Baseline and 
1.70 for BLM).  The main purpose of the current paper 
is to determine whether these values are not 
significantly different from zero. 
 
     Figure 5 is a plot of MG versus VG for the 
individual models.  This plot is suggested by Chang 
and Hanna (2004) as a way to quickly compare model 
performance with a single diagram.  MG is a measure 
of the relative mean bias and VG is a measure of the 
relative scatter.  A perfect model has MG = VG = 1.0.  
Therefore, the closer a model is to the bottom and 
middle of the plot, the better its performance.  Figure 
5 suggests that the BLM and Baseline models are 
closest to the point of optimum performance.  
However, since MG and VG are based on logarithms 
of Co/Cp, equal weighting is given to high and low 
concentrations.  Therefore the underprediction by the 
Baseline model at high C/Q does not receive any 
different weight than an equal underprediction at very 
low concentrations.   
 

     Tables 3 and 4 contain the result of the main focus 
of this paper.   An “X” is entered if the values of MG 
(in Table 3) or VG (in Table 4) for the first model are 
significantly different from the values for the second 
model, at the 95% confidence level.  Most of the 
model pairs do show a significant difference in the 
tables.  The model pairs that do not show a significant 
difference could be guessed by looking at Table 2 and 
Figure 5.   For MG, only UDM (with MG = 3.15) and 
AERMOD (with MG = 3.25) do not show a significant 
difference.  For VG, there are three pairs of models 
that do not show a significant difference – UDM (17.6) 
and AERMOD (9.73), HPAC (2.94) and SUDC (2.40), 
and Baseline (1.55) and BLM (1.70). 
 
     With M = 18 trials times 7 arcs per trial = 126 
values of pairs of predicted and observed max C/Q, M 
is large enough that the differences between models 
are usually significant at the 95 % confidence level for 
the performance measures MG and VG.  It is easier to 
show significant differences if the numbers of data 
points are large (i.e., the central limit theorem 
approximately applies). 
 
6. CONCLUSIONS 
 
     This paper has outlined an approach for 
determining whether there are significant differences 
in the performance of urban dispersion models.  Six 
models have been included in the demonstration 
exercise, which has made use of tracer data from the 
Salt Lake City Urban 2000 field study.  It is shown 
how the methodology can identify pairs of models 
whose quantitative performance measures are or are 
not significantly different from 0.0 at the 95 % 
confidence level. 
 
     In the future, there are plans to include additional 
urban dispersion models, additional outputs such as 
all data paired in time and space, additional 
performance measures (e.g., MG expressed as 
separate false negative and false positive 
components), and additional urban field data sets.  
The methodology can also be applied to CFD models 
being used to predict flow and dispersion around 
individual buildings and street canyons.  
 
    Finally, it is clear from this preliminary model 
evaluation exercise that all six urban dispersion 
models used somewhat different options for wind 
inputs, and that all these wind inputs can be 
considered “on-site” data for the Urban 2000 field 
data.  As a result, it is important to better understand 
the sensitivity of these urban models to different wind 
inputs, and for model developers to provide clear 
recommendations of appropriate wind inputs. 
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Figure 1.  Map of the Salt Lake City Urban 2000 domain, showing the release location (star),  terrain 
elevations (m), and locations of tracer samplers (small dots) and meteorological measurement sites 
(triangles indicate surface sites; and squares indicate vertical profile sites, where D11 and N02 are sodar 
sites, N03 is a profiler site, and SLC is a radiosonde site).Map of Salt Lake City Urban 2000 domain.  The 
monitoring arcs at distances of 2, 4, and 6 km can be clearly seen to the northwest of the release location. 



A
rc 4 

A
rc 3 

A
rc 2 

Arc 1 

Arc 2 

Arc 3 

Arc 4 

Figure 2.  Map of downtown region of Salt Lake City Urban 2000 domain.  The four inner monitoring “arcs” 
can be seen. 



Figure 3.  Scatter plots of predicted versus observed maximum hourly-averaged C/Q for each 
trial and monitoring arc.  In general, the largest C/Q values are on the closest arcs. 



Figure 4.  Quantile-Quantile plots of predicted and observed maximum hourly-averaged C/Q 
for the 18 trials and seven monitoring arcs.  In general, the largest C/Q values are on the 
closest arcs.
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Figure 5.  Plot of the performance measures MG versus VG, using the results in Table 2.  MG is a 
measure of the relative bias and VG is a measure of the relative scatter.  A perfect model would have 
MG = VG = 1.0.  Lateral lines indicate 95% confidence intervals on MG.  The parabola indicates the 
minimum VG for a value of MG.   Dashed lines indicate factor-of-2 bias. 



Table 1.  Listing of observed C/Q (10-6 s/m3) for each of the 18 trials and seven monitoring arcs.  These are the data 
used in the evaluations of the six models’ predictions of C/Q. 
 
 

 Sampling Arc and Distance (m) From Source 
IOP Trial u Arc 1 Arc 2 Arc 3 Arc 4 Arc 5 Arc 6 Arc 7 

  (m/s) 156 394 675 928 1974 3907 5998 

2 1 0.81 317.7 79.6 14.2 3.58 3.91 1.97 0.47 
2 2 0.61 421.2 103.7 2.85 n/a n/a n/a n/a 
2 3 0.5 366.1 86.8 7.26 1.39 n/a n/a n/a 
4 1 1.13 606.3 120.1 35.4 16.2 5.67 2.81 1.48 
4 2 0.94 836.1 154.7 29.5 12.7 4.39 0.94 0.95 
4 3 0.76 573.1 186.7 60.6 21.1 11.3 2.53 2.28 
5 1 0.64 149.6 77.3 22.2 13.8 3.87 1.19 2.98 
5 2 0.91 249.4 80.5 19.3 13.6 4.09 1.35 1.32 
5 3 1.06 402.2 118.3 20.1 12.8 8.09 1.5 1.25 
7 1 1.01 520 187.7 32.4 17.9 6.08 1.98 n/a 
7 2 1.04 200.6 25.8 28.9 9.16 10.3 2.47 2.59 
7 3 1.21 207.6 75.8 41.8 36.4 10.5 3.13 1.85 
9 1 2.69 129.3 49.6 44.9 4.77 n/a 0.63 0.49 
9 2 2.47 243.7 56.8 32.5 n/a n/a 1.06 1.01 
9 3 3.23 115.3 37.3 11 7.56 2.63 1.5 N/a 

10 1 1.51 158 33 10.6 4.05 2.03 1.19 n/a 
10 2 2.16 153.4 31.9 9.84 8.1 3.45 1.87 n/a 
10 3 2.31 72.9 22.7 4.22 1.78 1.48 0.58 n/a 

Averaged over all 
IOPs and trials 1.39 317.9 84.9 23.8 11.6 5.56 1.67 1.52 

 
 
 



 
Table 2.  Listing of statistical performance measures  (defined in equations 1 through 5) for the six urban dispersion 
models.  The focus is on maximum hourly-averaged C/Q observed and predicted on each monitoring arc for each of 
the 18 trials. 

0.7100.5420.2340.3460.4770.720n/aFAC2

1.702.409.7317.62.941.55n/aVG

0.931.463.253.150.541.22n/aMG

2.501.484.871.761.321.90n/aNMSE

-0.054-0.0900.6840.414-0.2260.373n/aFB

6466743055084102996062nd Highest
(10-6 s/m3)

1134822684557418299836Highest
(10-6 s/m3)

BLMSUDCAERMODUDMHPACBaselineObs.

0.7100.5420.2340.3460.4770.720n/aFAC2

1.702.409.7317.62.941.55n/aVG

0.931.463.253.150.541.22n/aMG

2.501.484.871.761.321.90n/aNMSE

-0.054-0.0900.6840.414-0.2260.373n/aFB

6466743055084102996062nd Highest
(10-6 s/m3)

1134822684557418299836Highest
(10-6 s/m3)

BLMSUDCAERMODUDMHPACBaselineObs.



 
 
Table 3.  Results of significance tests for the relative mean bias, MG.  An “X” means that there is 95% confidence that 
the values of MG calculated for the two models are significantly different from 0.0.  

×SUDC

××AERMOD

××UDM

××××HPAC

×××××Baseline

BLMSUDCAERMODUDMHPACBaselineMG

×SUDC

××AERMOD

××UDM

××××HPAC

×××××Baseline

BLMSUDCAERMODUDMHPACBaselineMG



 
Table 4.  Results of significance tests for the relative variance, VG.  An “X” means that there is 95% confidence that 
the values of VG calculated for the two models are significantly different from 0.0. 
 
 

×SUDC

××AERMOD

××UDM

×××HPAC

××××Baseline

BLMSUDCAERMODUDMHPACBaselineVG

×SUDC

××AERMOD

××UDM

×××HPAC

××××Baseline

BLMSUDCAERMODUDMHPACBaselineVG


