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1. INTRODUCTION* 
 

In our experience of tower flux measurements, it 
is very common to see ramp patterns (i.e., patterns 
that resemble the teeth of a saw) in time records of 
scalars (e.g., CO2, temperature). Through a good deal 
of field and wind tunnel studies, we learned that ramp 
patterns are traces of organized turbulence structures 
which have passed the tower during the recording time, 
and that a large fraction of the fluxes is driven by such 
organized structures (for review, see, e.g., Finnigan 
2000; Gao et al., 1989; Collineau and Brunet, 1993b; 
Bergström and Högström, 1989). Therefore, 
understanding the structure and mechanism of the 
organized turbulence that causes the ramp patterns is 
necessary not only for the correct interpretation of 
measured turbulence data but also for the proper 
modeling of turbulent transport between plant 
canopies and the atmosphere. 

As discussed by Raupach et al. (1996), canopy 
flow is distinguished from the surface layer flow by the 
existence of an elevated (i.e., near the canopy top) 
inflection point in the vertical profile of the streamwise 
velocity. The resulting instability mechanism plays a 
key role in producing active canopy-scale eddies that 
are supposed to be the main agent for the transport of 
momentum and scalars across the canopy top. This 
mixing-layer analogy for canopy turbulence well 
explains many features of observed statistical flow 
properties (e.g., large velocity skewnesses; major role 
of the transport term in TKE budgets; enhanced 
turbulence diffusivities). Marshall et al. (2002) 
demonstrated, using wind-tunnel data, that the vertical 
profiles of mean velocity and velocity variances near 
forest canopies of different density collapse to a single 
universal profile when scaled by the basic length scale 
of the mixing-layer analogy. Katul et al. (1998) argued 
that active eddy motion, which is shown by the 
mixing-layer analogy to be the main energy contributor 
to vertical velocity spectral energy, is also the main 
contributor to the scalar flux, showing that wavelet 
cospectra of vertical scalar fluxes peak at a 
wavenumber that agrees with the prediction by the 
analogy. These results all indicate importance of the 
mixing-layer mechanism.  

However, actual plant canopies are always under 
the atmospheric boundary layer in which eddy motions 
of larger (compared to the canopy height) spatial 
scales dominate. Since the local wind shear across the 
canopy top is largely affected by eddy motions in the 
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lower boundary layer, the morphology of canopy 
turbulence may not be independent of them. Indeed, 
Katul et al. (1998) found that fluctuations in 
streamwise velocity and scalar measured over forests 
include a large contribution made by inactive eddy 
motions, which are larger-scale eddies not involved 
directly in the vertical transport across the canopy top. 
McNaughton and Brunet (2002) suggested, by 
reviewing previous field measurements, that the 
inactive and active eddy motions interact with each 
other. Therefore, in order to reach a complete 
understanding of turbulence that develops near the 
canopy – atmosphere interface, we must know the 
relationship between the canopy-scale eddies 
produced through the mixing-layer mechanism and the 
larger-scale eddies originated in the boundary layer.  

Many authors indicated the existence of streak 
structures in the near-surface region of the neutral 
atmospheric boundary layer, based on numerical 
simulations (e.g., Deardorff, 1972; Mason and 
Thomson, 1987; Moeng and Sullivan, 1994; Lin et al., 
1996), field measurements (e.g., Wilczak and Tillman, 
1980; Drobinski et al., 2004) and theoretical 
considerations (e.g., Foster, 1997; Drobinski and 
Foster, 2003). The streaks are elongated regions of 
low- and high-speed streamwise velocity, which are 
aligned with the mean wind direction near the surface. 
The structure of the streaks in the atmospheric 
boundary layers and the flow patterns associated with 
them are similar to those of the near-wall streak, which 
is commonly observed in near-wall shear layers of low 
Reynolds-number flow (e.g. Robinson, 1991; Panton, 
1997). The both streaks develop under the influence of 
strong shear. The horizontal scale of the atmospheric 
streaks is typically several hundreds of meters, much 
larger than the scale of canopies. The flows in these 
streaks are, therefore, essentially horizontal at the 
height of canopy tops. In this sense, the effect of 
streaks may be merely to provide an external condition 
for the dynamics of canopy turbulence (i.e., gradual 
variations of mean wind speed). However, the 
near-surface wind shear which would be enhanced in 
a region of high-speed streak may give rise to smaller 
(but still larger than the canopy-scale) eddies above 
the canopy. These smaller eddies, if they exist, can 
interact with canopy-scale eddies. From similarity, 
these eddies may also take a streaky form.  

The main goal of the present study is to elucidate 
the connection between the flux-transporting events 
(i.e., ramp patterns) and the larger-scale eddy motions 
produced above the canopy, using large eddy 
simulations of the neutrally stratified flow within and 
above an ideally homogeneous plant canopy. The 
organized turbulence structures that cause ramp 
patterns in the simulated scalar time traces is captured  



Table 1. Setup of the LES runs. Sampling intervals are for the 2D data collections. 
 

Run I II III 
Nx × Ny × Nz  192 × 192 × 81 384 × 384 ×161 192 × 192 × 81 
Flow type  Shear-driven 

(Plane Couette flow)
Shear-driven 
(Plane Couette flow)

Pressure-driven 
(Plane channel flow) 

Top boundary No-slip rigid lid No-slip rigid lid Free slip rigid lid 
Sampling interval (h/Uh) 0.1 0.07 0.1 
Sampling period (h/Uh) 500 350 500 

 
 
 
by the conditional sampling technique, and a 
mechanism behind the structures is investigated.  
 
2. METHOD 
 
2.1 Model equations 
 

The basic equations used in the LES are the 
filtered Navier-Stokes equations under the Boussinesq 
approximation, the equation of continuity, and the 
conservation equation for a passive scalar. The effect 
of buoyancy is neglected to mimic a neutrally stratified 
flow.  
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where the angle brackets denote filtered variables; ui 
is the velocity in the xi-direction; p is the pressure; ρ is 
the air density; χ is the scalar concentration; τij and τχj 
are the SGS (sub-grid scale or sub-filter scale) fluxes 
of momentum and the scalar, respectively; cd and cχ 
are the leaf drag coefficient and the scalar exchange 
coefficient for a leaf, respectively; a is the leaf area 
density; U is the instantaneous local wind speed 
[=(<ui><ui>)0.5], and χc is the scalar concentration at a 
leaf surface. The final terms in Eqs. (1) and (3) 
represent the sink or source of momentum and the 
scalar due to canopy elements, respectively.  

The SGS fluxes in Eqs. (1)–(3) are parameterized 
using resolved-scale variables and the SGS kinetic 
energy as:  
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where e is the SGS kinetic energy; Km and Kχ are the 
SGS eddy diffusivities for momentum and the scalar, 
respectively; ck is a model constant (=0.07); δij is the 
Kronecker delta; L is the SGS length scale; and Sc is 
the SGS Schmidt number (=1/3). As in previous LES 
studies (e.g., Moeng, 1984; Shaw and Schumann, 
1992; Kanda and Hino, 1994; Su et al., 1998; Patton et 
al., 1998), the SGS kinetic energy is predicted by the 
following equation:  
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where cε is a model constant (=0.93) for viscous 
dissipation. For the evaluation of model constants, see 
Watanabe (2004). 
 
2.2 Simulation setup 
 

Three LES runs were conducted with different 
configurations of the basic flow. Run I and Run II were 
shear-driven flows in small and large domains, 
respectively; while Run III was a pressure-driven flow 
in a small domain. The numbers of grid points in the 
streamwise (Nx), spanwise (Ny) and vertical (Nz) 
directions used in each run are given in Table 1. For all 
runs, the grid interval was uniformly set at 0.1h in all 
directions, with h being the canopy height. The lateral 
boundaries were periodic. At the bottom boundary, the 
SGS fluxes were evaluated from resolved variables at 
the lowest level, with the prescribed roughness lengths 
for momentum and the scalar assuming instantaneous 
logarithmic profiles near the ground surface. A 
constant longitudinal wind velocity was imposed at the 
top boundary for Runs I and II, while an external 
longitudinal pressure-gradient was given independent 
of time and space in Run III. The SGS fluxes at the top 
boundary were evaluated in the same manner as at 
the interior grid points for Runs I and II, but were set at 
zero (free-slip) for Run III. In all three runs, a constant 
scalar concentration χtop was imposed at the top 
boundary, and a different constant value χc was 
assumed for the scalar concentration at all leaf and 



ground surfaces. The leaf area density (a) was 
homogeneously distributed within the canopy layer. 
These specifications realized ideal simulations with 
complete homogeneity except for the contrast 
between the canopy layer and the atmospheric layer 
above it. All equations were then non-dimensionalized 
using Uh, (χtop–χc) and h, where Uh is the mean wind 
speed at the canopy top.  

A pseudo-spectral method was used to evaluate 
the horizontal derivatives, and a fourth-order compact 
finite-differencing scheme (Lele, 1992) was used to 
approximate the vertical derivatives. The time 
integration was performed using a third-order Runge– 
Kutta method (Williamson, 1980). The instantaneous 
pressure field was evaluated from a Poisson equation 
in spectral space. To eliminate aliasing errors, the 
Fourier modes of the top one third of the admissible 
wavenumbers were truncated at every time step 
(Orszag, 1971). Thus, the effective grid spacing was 
1.5 times larger than the original grid interval in the 
physical domain. The SGS length scale was estimated 
as:  

( ) 315.15.1 zyxL ∆⋅∆⋅∆= .  (9) 
The resolved variables were initialized with 
horizontally homogeneous vertical profiles as: 
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For the velocity field alone, a small degree of random 
noise was superimposed on this uniform profile to 
initiate three-dimensional motion. To ensure stable 
computations, a short time step was used for the initial 
20,000 steps, and afterward it was increased as much 
as possible under the constraint of numerical stability 
(but kept constant throughout each run). In all runs, 
spin-up runs were initially performed until the 
turbulence statistics indicated a quasi-steady state; 
thereafter, the data collection runs were started.  

During the data collection runs, 100 sets of 
three-dimensional outputs were stored at even time 
intervals. Two-dimensional data on horizontal (x–y) 
and vertical (x–z and y–z) slices of the domain were 
sampled 5,000 times during the same period. The 
sampling interval and the sampling period for each run 
are shown in Table 1. In what follows, a horizontal 
mean value is denoted with brackets [ ] and a 
departure from the horizontal mean is shown with 
double primes (″). Similarly, an overbar (¯) and a 
single prime (′) denote time-averaged values and 
fluctuations, respectively. All variables will be shown 
normalized using Uh, (χh–χc) and h unless otherwise 
mentioned, where χh denotes the mean scalar 
concentration calculated at the canopy height.  
 
2.3 Conditional sampling 
 

Following the approach of Collineau and Brunet 
(1993a,b) and Lu and Fitzjarrald (1994), a wavelet 
analysis of the scalar time traces was used to detect 

the ramp signals. The wavelet transform of a time 
trace χ(t) can be written as: 
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where g represents a wavelet function, aw is the time 
scale of the wavelet, bw is the center of the wavelet, 
and T is the recording time. The wavelet variance (Vw) 
is defined as: 
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A Haar function was adopted as the wavelet function:  
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Since the wavelet transform using a Haar function 
takes a large positive (negative) value when a sudden 
drop (jump) is observed in the original time trace, it 
provides a good indicator of ramp patterns.  

To enable an ‘average’ spatial structure to be 
captured, the conditional sampling of ramp patterns 
was performed at numerous grid points located just 
above the canopy, and instantaneous turbulence 
variables in the space around the detected positions 
were gathered to make composite figures. The 
detailed procedures were as follows:  
1. Performing the wavelet transform at various time 

scales for the scalar time-traces recorded at all 
grid points on a cross-stream transect line just 
above the canopy; 

2. Determining the representative time scale a0 as 
the peak of the wavelet variance averaged over 
the transect line; 

3. Performing the wavelet transform at the scale a0 
for the scalar-time traces recorded at all grid 
points in the two horizontal transect lines 
(streamwise and cross-stream) that cross the 
center of the horizontal surface just above the 
canopy; 

4. Detecting as the ramp events the time when the 
wavelet transform took local minima smaller than 
a given threshold value; 

5. Compositing the spatial distributions of all 
instantaneous variables around the detected 
points.  

 
3. RESULTS 
 

Unless otherwise mentioned, the results 
presented in the following sections are generally from 
Run I, while some results from other runs are shown 
for comparison. 
 
3.1 Spectra and turbulence length scales 
 

Streamwise one-dimensional spectra were 
obtained by firstly performing a two-dimensional 
Fourier transform in the horizontal plane, and by 
secondly integrating with respect to cross-stream 
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Figure 1. Normalized energy spectra obtained at the height of the canopy top, plotted as functions of 
the normalized streamwise wavenumber: (a) u; (b) w. 

 
 
wavenumbers. The spectra were finally averaged over 
time. Figures 1a and 1b show the one-dimensional 
energy spectra for streamwise and vertical velocities 
at the height of canopy top, respectively. These 
spectra are plotted normalized with respect to their 
own values at a streamwise wavenumber of kx = 2π/h 
in the inertial subrange. Spectra are almost 
independent of the flow type and the domain size. 
Spectral peaks are found at around kxh/2π = 0.1 and 
0.3 for streamwise and vertical velocities, respectively.  

As shown by Raupach et al. (1996), the 
streamwise spacing (Λx) between dominant canopy 
eddies observed in fields and wind-tunnels is well 
represented by a linear relationship: Λx = 8.1Ls, where 
Ls is a length scale of the wind shear across the 
canopy top, defined as Ls = Uh/(dU/dz)z=h. This 
relationship can be used to test the realism of 
simulated turbulence field. Since the shear length 
scale in the simulated flows was approximately the 
same for all of the present runs as Ls = 0.41h, the 
mixing-layer analogy predicts that the eddy spacing 
should be Λx = 3.32h in all runs.  

To compare with this prediction, the spectral 
length scale (Λp) is estimated from the peak 

wavenumbers (kp) of the energy spectra of vertical 
velocity. As shown above, the peak wavenumber was 
kx = 0.3×2π/h; hence Λp = 2π/kp ~ 3.3h. Another 
length scale can be derived from the two-point 
correlation function between vertical velocities at two 
different points separated in the streamwise direction 
at the canopy top, i.e., 
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∞

=Λ
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where Λc is the two-point length scale and rww is the 
horizontal two-point correlation function of vertical 
velocity, defined as:  
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where rx and ry are horizontal distances in the 
streamwise and spanwise directions, respectively, and 
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Figure 2. Wavelet variance scalogram calculated from
the turbulence time traces simulated just above the
canopy.  

 
Table 2. Normalized time scale of the peak of 
wavelet variance (= a0 Uh/h) 

 
Run I II III 
Streamwise velocity 4.6 5.3 4.5 
Vertical velocity 1.6 1.7 1.6 
Scalar concentration 3.2 3.2 3.1 
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Figure 3. A sample of ramp detections (cross plots)
using the wavelet transform (red line) of the original
scalar time trace (black line). The horizontal solid line
indicates the threshold of detection.  



σw is the standard deviation of the vertical velocity. The 
resulting length scales are Λc = 3.46h, 3.64h and 
3.20h for Runs I, II and III, respectively.  

Thus, by the reasonable consistency found 
between these predicted and calculated length scales, 
it is evident that the present simulations produced 
quite realistic turbulence fields, where variations in the 
vertical velocity near the canopy top are caused by a 
mechanism analogous to the mixing-layer turbulence, 
associated with the inflected wind profile. 
 
3.2 Ramp detection 
 

Wavelet transform of the scalar time trace was 
first performed at all grid points in a cross-stream 
transect. The resulting wavelet variances were then 

normalized by the time variances at each point and 
averaged along the transect line. Figure 2 shows the 
resulting scalogram for the wavelet variance of u, w 
and χ. The normalized time scales of the scalogram 
peak are a0Uh/h = 4.6, 1.6 and 3.2 for u, w and χ, 
respectively, and those from other runs are listed in 
Table 2. For all of the present runs, the peak time 
scales are longest for u, shortest for w and 
intermediate for χ, the order being consistent with field 
observations in a pine forest (Collineau and Brunet, 
1993b). These values are used as the representative 
time scale in the detection of ramp patterns. Setting 
the threshold value at –0.4 times the standard 
deviation of each time trace, as was done by Lu and 
Fitzjarrald (1994), allows the wavelet transform to 
provide a reasonably good detection of ramps, as 

 

 

 

 

Figure 4. Contours of instantaneous flow variables in the x–z plane in the middle of the computational domain:
(a) u/Uh; (b) w/Uh; (c) p/Uh

2; (d) (χ–χc)/(χh–χc). The contour intervals are (a) 0.25, (b) 0.2, (c) 0.2 and (d) 0.05.
Red (blue) color indicates lager (smaller) values for (a) and (d), and positive (negative) values for (b) and (c). 



shown in Figure 3.  
 
3.3 Instantaneous spatial patterns 
 

Figures 4a–d are examples of instantaneous 
spatial distributions of turbulence variables in a 
streamwise–vertical slice of the lower half of the 
computational domain. It is clear from the first two 
figures that the areas of large streamwise velocity 
(Figure 4a) correspond to downdraft areas (Figure 4b). 
Several microfrontal structures are seen in the 

distribution of the scalar concentration in Figure 4d. 
The largest microfront, associated with the most 
coherent downdraft area (x/h = 5–7), extends from 
near the bottom of the canopy to three times the 
canopy height. All the microfronts tilt downstream. The 
distribution pattern of kinematic pressure (Figure 4c) is 
much smoother than that of the other variables, 
provably because of its non-local characteristics. 
Generally, an intensively low pressure in a flow is 
known to indicate existence of vortices (e.g., Lin et al., 
1996). Indeed, in Figure 4c, pressure minima are 

Figure 5. Contours of instantaneous flow variables in the x–y plane just above the canopy: (a) u"/Uh; (b)
w"/Uh; (c) p"/Uh

2; (d) χ"/(χh–χc). The contour intervals are (a) 0.25, (b) 0.2, (c) 0.2 and (d) 0.1. Red and blue
colors indicate positive and negative values, respectively.  



found coinciding with both the large vertical shears of 
streamwise velocity in Figure 4a and paired 
downstream downdrafts and upstream updrafts in 
Figure 4b. These vortex signatures are seen between 
the scalar microfronts. The locations of high-pressure 
areas, on the other hand, are identical to those of the 
scalar microfronts.  

Figure 5 shows the instantaneous horizontal 
distributions just above the canopy at the same 
moment as the images in Figure 4. The correlation 
between large streamwise velocities (Figure 5a) and 
negative vertical velocities (Figure 5b) is obvious once 
again. This correlation is also seen between the 
positive perturbations of the scalar concentration 
(Figure 5d) and the negative vertical velocities. 
However, the streamwise velocity exhibits more 
elongated patterns than the scalar. Elongated regions 
of low-speed and high-speed velocities alternate with 
one another in the lateral and/or streamwise directions. 
An animation of these results showed that these 
elongated patterns never disappeared in the 
simulation period although they meandered and 
moved with time. Since elongated structures of similar 
lateral spacing were also observed in Runs II and III 
(not shown), these elongated structures are not 
artifacts due to the limitation of domain size or an 
influence of the imposed top-boundary velocity.  

The contours of vertical velocity include finer 
structures (Figure 5b). Roughly speaking, the 
horizontal scales of intensive negative spots (dark blue 
area) are less than 1h in width and less than 3h in 
length. However, as we saw in Figure 4b, downdrafts 
generally have substantial horizontal scales well 
above the canopy. Hence, these fine-grained 
structures are produced near the canopy top, probably 
by the inflection instability mechanism discussed 
previously. This issue will be revisited later. The more 
important point that should now be noted in Figure 5b 
is that these individual downdraft spots do not directly 
correspond to the scalar microfronts in Figure 5d, but 
the front lines of the downdraft envelopes, which 
include several intensive downdraft spots therein, do 
correspond.  

In contrast with the spot-like distribution of 
downdrafts, updrafts occupy wider areas with fewer 
broad peaks. The combination of strong and narrow 
downdrafts with weak and broad updrafts explains the 
observations of negative skewness of the vertical 
velocity within plant canopies (e.g., Raupach et al., 
1996). Small-scale structures in the pressure pattern 
(Figure 5c) are concentrated in the regions of 
high-speed streamwise velocity. High-pressure areas 
coincide with the scalar microfronts, while intense 
low-pressure spots lie inside the paired updrafts and 
downdrafts, indicating the existence of vortices.  
 
3.4 Averaged eddy structure 
 

In the followings, results are shown for averaged 
spatial structures of organized turbulence that cause 
significant ramp patterns in the scalar time traces. The 
structures will be presented as deviations from the 

horizontal mean values at each height, being 
normalized with respect to Uh and (χh–χc).  
 
3.4.1 Vertical–streamwise cross-sections 
 

The x–z cross-sections of averaged fields of 
streamwise and vertical velocities, kinematic pressure, 
and scalar concentration (Figures 6a–d) clearly 
illustrate that the scalar ramps observed just above the 
canopy are the signatures of the passage of the scalar 
microfront, which is associated with an ejection–sweep 
structure in the streamwise and vertical velocities and 
a positive pressure perturbation. The averaged scalar 
microfront extends from near the ground to up to twice 
the canopy height, with the largest horizontal gradient 
just above the canopy. The velocity front is almost 
coincident with the scalar microfront, but the gradient 
across the front is more gradual (Compare the 
horizontal distances between the positive and negative 
peaks). In contrast with the inclined structures in the 
streamwise velocity and the scalar, the vertical velocity 
and pressure exhibit vertically coherent structures.  

Gao et al. (1989), who analyzed time–height 
cross-sections of the ramp events above a deciduous 
forest, abstracted these author’s results as: Near the 
top of the forest they are composed of a weak ejecting 
motion transporting warm and/or moist air out of the 
forest followed by strong sweeps of cool and/or dry air 
penetrating into the canopy. The sweep is separated 
from the ejecting air by a sharp scalar microfront. At 
approximately twice the height of the forest, ejections 
and sweeps are of about equal strength. These 
descriptions surprisingly fit to the present results.  

Large pressure gradients, seen on the both sides 
of the vertically coherent pressure ridge (Figure 6c), 
tend to reduce the streamwise gradient of the 
streamwise velocity across the microfront. Similarly, 
the lifted updraft region corresponds to the region of a 
vertical pressure gradient above the pressure 
maximum. Figure 6c also shows that a region of 
negative pressure is formed in the upstream of the 
pressure ridge, indicating that vortex motions are more 
likely to exist in the upstream of the microfront than in 
its downstream.  
 
3.4.2 Cross-stream vertical cross-sections 
 

Figure 7 illustrates the spanwise symmetry in the 
y–z slice of the averaged structures. This does not 
indicate that individual eddy motions are symmetric. 
Rather, it resulted from the ensemble averaging along 
the homogeneous direction. On average, however, the 
scalar ramp at the height of canopy top is associated 
with a spanwise divergent flow, a weak downdraft, a 
broad positive pressure peak, and a sharp vertical 
gradient in the scalar. There are no significant 
structures in the negative pressure region, indicating 
that streamwise vortices, which might induce the 
spanwise flow pattern shown here, are unlikely. 
Instead, the spanwise divergent flow coincides with 
the region of the spanwise pressure gradient. The flow 



patterns in both the x–z and the y–z cross-sections 
suggest that the positive pressure ridge is due to the 
streamwise (quasi-) stagnation that forms at the 
downstream end of high-speed downdrafts (sweeps).  

Overall, the vertical structures presented in 
Figures 6 and 7 are quite similar to the characteristic 
eddy presented by Finnigan and Shaw (2000). These 
authors depicted the flow pattern in the characteristic 
eddy as follows: (1) an ejection is followed by a sweep, 
with maximum velocities observed slightly above the 
canopy; (2) the sweep is more streamwise localized 
beneath the canopy than just above the canopy; (3) 
the sweep is followed by a region of non-coherent 
flow; and (4) the downsweep is confined to a 
spanwise-narrow region and penetrates only the upper 
third of the canopy before spreading sideways. All 

these depictions also apply to the present averaged 
results.  
 
3.7.3 Horizontal cross-sections 
 

Figures 8a to 8e show the horizontal slices at the 
canopy height of the averaged structures. These 
figures indicate that a distinct scalar ramp generally 
occurs at a point where an elongated region of 
high-speed streamwise velocity overtakes another 
elongated region of low-speed velocity. Both the 
spanwise divergent flow and the spanwise coherent 
positive-pressure region formed at the ramp location 
suggest a streamwise stagnation due to the impact of 
the high-speed and low-speed regions. A region of 
spanwise convergent flow, which is also elongated, 

 

 

 

 

Figure 6. Contours of flow variables in the x–z slice of the ensemble-averaged eddy structure: (a) u"/Uh; (b)
w"/Uh; (c) p"/Uh

2; (d) χ"/(χh–χc), with contour intervals of (a) 0.05, (b) 0.025, (c) 0.05 and (d) 0.025. Red and
blue colors indicate positive and negative values, respectively. rx denotes the streamwise distances from the
ramp-detection location. 



appears downstream of the ramp. Such elongation is 
not observed in the distribution of vertical velocity at 
the canopy top. However, as we saw in Figure 6b, the 
downdraft of this averaged structure is more extended 
in the streamwise direction at higher levels than that at 
the canopy top.  
 
4. DISCUSSION 
 
4.1 Comparison with mixing-layer analogy 
 

As shown earlier, the mixing-layer analogy 
predicts the streamwise spacing of dominant canopy 
eddies as Λx = 3.32h for the present simulations. 
However, the horizontal scale of the updraft–downdraft 
pair in the averaged structure is more than six times 

the canopy height (Figure 6b). Since the size of eddies 
should be smaller than the spacing between them, the 
horizontal scale of the averaged structure is much 
larger than that of canopy eddies expected from the 
mixing-layer analogy. The structures obtained for the 
vertical velocity and pressure are also much taller than 
the shear length scale of 0.41h (Figures 6b, 6c, 7b and 
7c). Moreover, the horizontal patterns for the 
streamwise velocity of the averaged structure are 
elongated in the streamwise direction, total length 
being more than 10h. Therefore, the averaged 
structure is not attributable to an eddy motion arising 
from the canopy-top inflection instability.  

 

 

 

 

 

Figure 7. Contours of flow variables in the y–z slice of the ensemble-averaged eddy structure: (a) v"/Uh; (b)
w"/Uh; (c) p"/Uh

2; (d) χ"/(χh–χc), with contour intervals of (a) 0.025, (b) 0.025, (c) 0.05 and (d) 0.025. Red and
blue colors indicate positive and negative values, respectively. ry denotes the cross-stream distances from the
ramp-detection location. 



      

      

    

Figure 8. Contours of flow variables in the x–y
slice of the ensemble-averaged eddy structure:
(a) u"/Uh; (b) v"/Uh; (c) w"/Uh; (d) p"/Uh

2; (e)
χ"/(χh–χc), with contour intervals of (a) 0.05, (b)
0.025, (c) 0.025, (d) 0.05 and (e) 0.025.  



 

Figure 9. Time sequence of the instantaneous scalar contours in the x–z plane. The time interval between 
panels is 0.8 h/Uh. The broken lines and arrows drawn between the panels indicate the movement of a 
coherent downdraft. Three K–H patterns appear across the canopy top in 11 < x/h < 15 in the bottom panel. 

 
 
 
Although not shown here, the averaged structures 
obtained from Runs II and III were essentially similar to 
that obtained from Run I. The spatial scales of the 
vertical patterns in these runs were far larger than the 
shear length scale. The horizontal structures in the 
streamwise velocity were elongated also in Runs II 
and III; and the spanwise width of the structures was 
comparable to that shown in Figure 8a. Thus, the 
obtained structures should not be considered to be 
false images projected by the computational 
configurations. There must be a common inherent 
mechanism for creating these large structures. Since 
the most remarkable feature appearing in common in 
all runs was the strongly-sheared wind profile just 
above the canopy, this may be involved in the 
mechanism. This raises an analogy to the streak 
structures (or the streak-induced eddies), which were 
discussed in Introduction.  
 
4.2 Mechanism of scalar microfronts 
 

From these results, it can be inferred that a 

distinct scalar microfront develops where a coherent 
downdraft associated with a high-speed streak 
penetrates into a low-speed area associated with 
updrafts. The flow stagnation formed at the leading 
head of the high-speed downdraft builds up a 
vertically-coherent high-pressure region at the same 
position. The pressure gradients around this 
high-pressure region tend to reduce the streamwise 
gradients of streamwise velocity and to enhance 
spanwise divergent flows and lifted updrafts 
downstream from the microfront, thereby satisfying the 
constraint of continuity.  

The analysis of turbulence length scales 
presented in section 3.1 indicates that variations in the 
vertical velocity near the canopy top are primarily due 
to canopy-scale eddies produced by the inflection 
instability. However, since the spatial scales of the 
averaged structures are much larger than the shear 
length scale, the canopy-scale eddies may not be the 
main causal mechanism for the microfronts or ramp 
patterns of significant strength. Rather, the 
canopy-scale eddies are produced most often when 



the coherent high-speed downdraft impinges on the 
canopy, with the leading head of the downdraft 
producing the microfront.  

To confirm this view, one such realization is 
demonstrated in Figure 9, which shows a time 
sequence of the distribution of the scalar concentration 
in a vertical–streamwise slice, subsequent to the 
snapshot shown in Figure 4d. The broken lines and 
arrows drawn between panels indicate the movement 
of a large-scale mother downdraft. As time advanced, 
the downstream-tilted microfront seen in the top panel 
became more and more parallel to the canopy surface, 
implying an enhancement of the shear instability 
across the canopy top. Thereafter, small-scale Kelvin– 
Helmholtz patterns started to develop near the canopy 
top, and three well-developed patterns appeared in the 
region of the mother downdraft, as shown in the 
bottom panel. This view is consistent with Finnigan’s 
(1979) field observation that honami or canopy-scale 
sweeps tend to arrive over wheat canopies in trains of 
3 or 4 over a well-defined period. However, the present 
result implies that each sweep may not necessarily be 
associated with a scalar ramp of significant strength.  
 
5. CONCLUSIONS 
 

Turbulence characteristics produced by the 
present LES were fairly consistent with the well- 
accepted previous observations on the nature of 
canopy turbulence. Among others, the turbulent length 
scales defined for the vertical velocity, one derived 
from the peak wavenumber of the energy spectrum 
and the other from the spatial correlation function, both 
agreed with the prediction by the mixing-layer analogy 
of Raupach et al. (1996).  

The conditional sampling triggered by wavelet- 
based ramp detections permitted an inspection of the 
‘average’ eddy structure that causes the scalar ramp 
signals. The vertical slices of the averaged structure 
indicated that the scalar ramps are caused by the 
passage of the scalar microfrons, which are 
associated with the ejection–sweep structure of the 
streamwise and vertical velocities, the spanwise 
divergent flow near the canopy top, and a vertically- 
coherent, positive pressure perturbation. These 
characteristics are also consistent with the results of 
previous measurements in fields and wind tunnels.  

However, the horizontal slice of the averaged 
structure revealed that this structure represents the 
moment when a streamwise-elongated region of 
high-speed streamwise velocity overtakes another 
elongated region of low-speed velocity. These 
elongated regions, which resemble the streak 
structures commonly observed in near-wall shear 
layers, are of much larger scale than the canopy 
height and are presumably developed under the 
influence of a strong shear formed above the canopy. 
As predicted by the mixing-layer analogy, the 
canopy-scale eddies indeed dominate the variation in 
the vertical velocity near the canopy top. But 
canopy-scale eddies are not directly involved in the 
formation of the scalar microfront. Rather, these 

eddies are most often observed in the elongated 
high-speed region, of which downstream end create 
the microfront.  

The next step of this study would be to investigate 
whether the streaky structures really exist in the actual 
canopy flows and, if they do, to clarify the mechanism 
of such structures. 
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