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1.    INTRODUCTION 

 
Freezing rain is a major hazard which affects 

many parts of Canada; however, it is especially 
common in a corridor from Ontario to Newfoundland 
(Regan 1998; Stuart and Isaac 1999).  In Ontario, 
freezing rain is most common in the Ottawa River 
Valley when "warm" precipitation falls into a shallow 
sub-freezing layer trapped within the valley basin.  On 
average (for the period 1953/54 - 2000/01), Ottawa 
International Airport reported freezing rain 10 days a 
year, for a total of 38 h yr-1.  Of course, there are 
years when freezing rain is much more common; for 
example, during the winter of 1997/98, Ottawa 
received a total of 95 h of freezing rain.  Sixty-five of 
these hours were recorded during the Ice Storm of 
January 5-9 1998.  During this extreme ice storm, 
freezing rain accumulations of close to 70 mm water 
equivalent were recorded in Ottawa (Milton and 
Bourque 1999).  Regan (1998) reported that the ice 
storm was responsible for 25 fatalities, left some 1 
million householders without power, caused nearly 
US$3 billion in damages, and resulted in another 
US$3 billion in short-term lost economic output and 
insurance claims across Quebec and Ontario. 
 Ice Storm ’98 was a reminder of just how 
vulnerable our society has become to severe freezing 
rain storms. As populations continue to increase and 
societies become even more urbanized, both the size 
and number of targets impacted by these severe 
winter storms will increase. Added to this vulnerability 
will be a continued dependence on electronics and an 
uninterrupted supply of electricity along with the 
dependence of businesses and industries on “just-in-
time” delivery. As a result of these shifts, society has 
collectively become extremely vulnerable to the power 
of severe ice storms to interrupt supplies and 
distribution of electricity, water supplies, and 
communications and to delay ground and air-based 
transportation. In order to be better prepared for future 
severe ice storms, communities need to know current 
and future risks from severe ice storms of magnitudes 
approaching those of Ice Storm ’98. Improved severe 
ice storm risk information and predictions will allow 
better emergency planning in regions or communities 
identified  
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as more at risk from this hazard. This study will 
describe a synoptic map typing procedure that has 

potential to provide a tool to distinguish the more 
severe ice storms from less destructive freezing rain 
events, to serve as a prediction tool for operational 
meteorologists, to be used to diagnose and attribute 
synoptic contributions to severe ice storms and for 
study of trends in the synoptic components of these 
storms.  

Over the past decade, automated synoptic typing 
approaches have become popular for an evaluation of 
the impact of climate on environmental issues, 
particularly since these methodologies characterize 
similarities in active meteorological elements within a 
holistic framework (Kalkstein et al. 1987).  
Environmental issues treated using these 
methodologies include air quality (Kalkstein and 
Corrigan 1986; Eder et al. 1994; McGregor and 
Bamzelis 1995; Lam and Cheng 1998; Cheng and 
Lam 2000), human health (Kalkstein 1991; Cheng 
1991; Kalkstein et al. 1997; McGregor et al. 1999) and 
climate research (Kalkstein et al. 1990; Cheng and 
Kalkstein 1993, 1997).  To date, the automated 
synoptic typing approach has shown considerable 
world-wide success for the prediction of air pollution 
concentrations and heat-related mortalities.  However, 
it appears that this strictly automatic approach has not 
been applied to the assessment and prediction of 
freezing rain events.  The objective of this study, 
therefore, was to develop a new method - a 
quantitative, automated synoptic typing - to assess 
and predict air masses or weather types most highly 
associated with historical freezing rain events.  Within-
synoptic-type logistic regression analysis was applied 
to predict the likelihood of freezing rain occurrence for 
the study area. 
 
2.  DATA SOURCES AND TREATMENT 
 

Hourly surface meteorological data for Ottawa 
International Airport were retrieved from Environment 
Canada’s Digital Archive of Canadian Climatological 
Data for the winter months (Nov.-Apr.) of 1958/59-
2000/01.  The meteorological data used in this study 
included hourly weather station observations of air 
temperature (oC), dew point temperature (oC), sea-
level air pressure (hPa), total cloud cover (tenths of 
sky cover), wind speed (m s-1), wind direction 
(degrees), and occurrence of freezing rain (1 for yes 
or 0 for no).  A sine-cosine transformation was used to 
convert wind speed and direction into southerly and 
westerly scalar velocities.  With the exception of 
freezing rain occurrence, missing data were 
interpolated using a temporal linear method when the 
data were missing for 3 consecutive hours or less; 
otherwise, days with data missing for 4 or more 



consecutive hours were excluded from the analysis.  
For Ottawa, only 0.04% of the total hours required 
missing data interpolation; after interpolation, the 
dataset was 100% complete. 

The 6-hourly upper-air reanalysis weather data 
were retrieved from the National Centers for 
Environmental Prediction (NCEP) website.  The 
reanalysis data (Kalnay et al. 1996; Kistler et al. 2001) 
were available daily for 0600, 1200, 1800, and next 
day 0000 UTC for the period 1958-2001 and included 
a variety of meteorological variables on a 2.5o x 2.5o 
latitude-longitude grid at 17 standard upper-air 
pressure levels, including air temperature (oC), 
relative humidity (%), geopotential height (m), vertical 
velocity (Ω, Pa s-1), west-east and south-north wind 
velocities (m s-1).  Data from only 6 pressure levels: 
1000, 925, 850, 700, 600 and 500 hPa were used in 
this study since the atmospheric parameters needed 
to determine both production and type of precipitation 
are primarily confined to levels below 500 hPa.  
Although the reanalysis data were available for the 
entire 54 year period 1948-2001, only the data for the 
period 1958-2001 were used in this study.  Prior to 
1958, the reanalysis data were based on observations 
taken 3 h later than the current synoptic time (e.g., 
0300, 0900, 1500, and 2100 UTC) (Kistler et al. 
2001).  This is not consistent with the reanalysis data 
after 1958 which are valid for the same hours that 
observations were taken (e.g. 0000, 0600, 1200 and 
1800 UTC). 

For this study, the NCEP-NCAR reanalysis 
relative humidity data field was converted into dew 
point temperature based on Tetens’ equation (Berry et 
al. 1945).  Dew point temperature was preferred over 
relative humidity since it is highly conservative on a 
diurnal level and moderately conservative among 
various micro-environments (Kalkstein and Corrigan 
1986).  In order to combine the gridded reanalysis 
data with the surface weather data, the reanalysis 
data were interpolated for the Ottawa International 
Airport site using the inverse-distance method.   

In order to create two independent datasets, the 
surface and upper-air reanalysis weather data were 
divided into two parts: a developmental dataset 
(1958/59-1990/91) used for construction of the model 
and a validation dataset (1991/92-2000/01) used to 
test the model. 

 
3.  ANALYSIS TECHNIQUES 
3.1  Automated Synoptic Typing 
  

An automated synoptic typing procedure, based 
primarily on air mass differentiation, was used to 
assign every day of the developmental dataset to a 
distinctive weather type.  The surface weather data 
used in the study included the following variables: 
hourly surface weather observations of air 
temperature, dew point temperature, sea-level air 
pressure, total cloud cover, south-north and west-east 
scalar wind velocities.  The 24 different times and 6 
different weather elements produced 144 surface 
weather variables.  The upper-air reanalysis data 

used in the study included the weather variables of air 
temperature, dew point temperature and south-north 
and west-east scalar wind velocities at 6-hour 
intervals and 6 atmospheric levels, which produced 96 
upper-air weather variables.  The entire suite of 240 
surface and upper-air weather variables was used in 
the synoptic typing procedure. 

This synoptic typing procedure produces a 
temporal synoptic index using principal components 
analysis (PCA) (Jolliffe 1986) and a hierarchical 
agglomerative clustering procedure.  Since the 
number of weather types is not predetermined, a 
hierarchical agglomerative clustering procedure is 
suitable for this study (Kalkstein et al. 1996a, 1996b; 
Cheng and Kalkstein 1997; Cheng and Lam 2000).  

 
3.2 Identification of the Weather Types Most 

Highly Associated with Freezing Rain Events 
  

The occurrence of freezing rain was used in the 
identification of the synoptic types which are most 
highly associated with those events.  The occurrence 
frequency of freezing rain for each type was then 
determined to ascertain whether the frequency of 
freezing rain within a particular type was distinctively 
high or low.  In addition, a ratio of the type’s 
association with freezing rain events (actual 
frequency) to the occurrence of the type in the entire 
record (expected frequency) was utilized to determine 
whether any of the categories were over-represented 
for freezing rain events.  Types with ratios significantly 
greater than 1.0 had a greater proportion of days with 
freezing rain events than would be expected based on 
the frequency of the weather type.  The statistical χ2-
test was employed to determine whether or not the 
theoretical frequency among the freezing rain events 
was significantly higher than the expected frequency.  
This method was then applied to specific hourly 
categories, such as ≥1, ≥4 and ≥6 h, representing 
the number of hours when freezing rain was observed 
during a day (0:00 – 23:00 LST). 

 
3.3  Development of Freezing Rain Prediction 

Model 
  

Although the weather conditions for each day 
within a weather type are most similar to each other, 
there still exists some degree of within-category 
variance.  Furthermore, not all days within an 
identified freezing rain type possess freezing rain 
events.  Therefore, the day-to-day variation of weather 
conditions within an identified category could be 
important to the occurrence or non-occurrence of 
freezing rain.  A stepwise logistic regression 
procedure was performed on all days within the 
identified weather types most highly associated with 
freezing rain to determine which meteorological 
factors were the most significant in contributing to 
freezing rain events.  The logistic regression 
procedure was the preferred prediction model for this 
study since the measurement data represented a 



The logistic regression methodology used a 
model that followed the method of maximum 
likelihood, which is a popular and widely used method 
of estimation for a variety of statistical models (Allison 
1999).  Accordingly, the dependent variable was set to 
1 when freezing rain occurred on at least 1 hourly 
observation during a day; otherwise, it was set to 0.  
The stepwise logistic regression was then employed 
for all days within the identified weather types most 
highly associated with freezing rain events.  For k 
explanatory variables and i = 1, …, n individual cases, 
the logistic equation for predicting the likelihood of 
freezing rain events was given by 

dichotomous variable (taking the value of either 1 or 0 
for occurrence or non-occurrence of freezing rain) 
(Chap 1998; Allison 1999).  As well, the output from 
this regression procedure, in the form of probability of 
freezing rain occurrence, was easy to interpret. 

Predictors used in the regression procedure were 
derived from hourly surface observations and 6-hourly 
upper-air reanalysis data.  In order to avoid 
multicollinearity, the hourly surface temperatures 
alone were not used as predictors since they were 
used to derive other variables.  The predictors were 
straightforward, with the exception of some of the 
derived predictors that are described in the following 
sections.  A wind direction index (WDI) was used in 
the regression analysis since the wind direction angle 
is discontinuous at 360o.  The WDI is defined 
differently for the surface and upper-air winds since 
predominant wind directions tend to be different 
between the surface and upper level under freezing 
rain conditions.  The surface WDI was defined as 
follows:  
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where pi is the probability of freezing rain occurrence; 
x is a predictor; а and β are parameters of the model.  
 
3.4 Validation of the Model 

 )sin(1 θ+=WDI ,  
The developed model was verified for the 

independent or validation dataset during the winter 
seasons (Nov.-Apr.) from 1991/92 to 2000/01.  The 
evaluation was divided into two steps: (1) weather 
type verification and (2) logistic regression model 
verification.  For weather type verification, component 
scores for each day of the validation dataset were 
determined by multiplying the post-eigenvector matrix 
(using data from 1958-1991) by validation data matrix.  
The new component scores were used to compare 
with the original scores since both used the same 
eigenvector matrix.  Based on the new component 
scores, discriminant function analysis was used to 
assign each of all days within the validation dataset 
into one of the predetermined weather types using the 
centroids of the weather types as seeds.  Since the 
weather types and their respective characteristics 
have already been predetermined, discriminant 
analysis is an appropriate tool to assign each day of 
the validation dataset into one of the predetermined 
weather types (Klecka 1980, Lam and Cheng 1998). 

where θ is the wind direction expressed in radians.  
This index ensured that the WDI attains its maximum 
value of 2 when the surface wind is from the east and 
its minimum value of 0 when the surface wind is from 
the west.  These values corresponded to the 
maximum and minimum occurrence frequency of 
freezing rain events in Ottawa, respectively.  For 
upper-air winds, the WDI was modified as follows: 

)
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In this case, the WDI reached its maximum value 
when the upper winds were from the southwest and its 
minimum value when the upper winds were from the 
northeast, coinciding with the maximum and minimum 
occurrence frequency of freezing rain events in 
Ottawa. 

Warm- and cold-layer variables were also used in 
the stepwise logistic regression and measured in 
temperature-height coordinates over the depth of the 
layer.  A variable termed the warm area was defined 
as the area between the 0oC axis and the portion of 
the temperature profile that is greater than 0oC aloft 
and measured in m oC.  Similarly the cold area was 
defined as the area between the 0oC axis and the 
temperature profile that is less than 0oC near the 
surface.  The heights of the warm and cold layer tops 
are measured in m above ground level.  When 
required, a linear interpolation with respect to height 
was used to determine the warm and cold layer 
variables.  The dew point temperature areas and 
heights were derived using a similar method.  Another 
set of the variables represented the difference 
between the maximum temperature at the 6 upper 
levels and the surface temperature in oC.  All of these 
warm- and cold-layer variables were only calculated 
when the warm and cold layers were present (i.e., the 
temperature profile must possess a value >0oC aloft 
and ≤0oC near the surface); otherwise, they were set 
to zero.   

Following determination of the weather type for 
each day of the validation dataset, a within-category 
logistic regression algorithm from the developed 
model was used to predict the probability of freezing 
rain occurrence within the weather types that were 
most highly associated with freezing rain.  These 
results were then compared with actual freezing rain 
observations within the validation dataset to assess 
the validity of the prediction model. 

 
4.  RESULTS AND DISCUSSIONS 
4.1 Developmental Dataset: Identification of 

Synoptic Types Associated with Freezing 
Rain 

 
The PCA was applied to the 240 weather 

variables for all days within the winter season from 
1958/59 to 1990/91, producing an 18-component 
solution that explained 92% of the total variance within 



the developmental dataset.  The remainder of the 
components with resulting eigenvalues less than one 
were discarded.  The thermodynamic variables (air 
temperature and dewpoint) were found to be the main 
contributors to component 1, explaining over 36% of 
the total variance.  Sea-level pressure, total cloud 
cover, and south-north wind velocity aloft also 
contributed to component 1.   The loadings for 
component 2, explaining an additional 17% of the total 
variance, were dominated by west-east wind velocity 
and sea-level pressure.  Component 3, explaining 
over 10% of the variance, was largely dominated by 
south-north surface wind velocity and winds aloft.  
Component 4, explaining nearly 10% of the variance, 
was largely determined by sea-level pressure and 
total cloud cover.  The remaining components 5-18 
explained nearly 20% of the total variance and were 
largely comprised of terms that describe the diurnal 
changes of the variables.  

The average linkage clustering procedure was 
employed to derive clusters possessing similar large-
scale synoptic characteristics in terms of the daily 18-
component scores. Determination of the cluster 
number to retain was achieved through a variety of 
statistical tests which included: the semipartial R2, 
pseudo-F, pseudo-t2, and explained variance R2.  The 
semipartial R2 is the ratio of the increased within-
cluster variance after joining two clusters to the 
variance for the entire dataset.  The pseudo-F is the 
ratio of between-cluster to within-cluster variances.  
The pseudo-t2 is the ratio of the increased within-
category variance after joining two clusters to the 
variance within each of two clusters (SAS Institute Inc. 
1999; Eder et al. 1994).  The number of weather types 
for retention in the model is determined by observing 
the largest decrease in R2, the largest increase in 
both the semipartial R2 and pseudo-t2, after joining 
two clusters, and a local maximum in the pseudo-F. 

Using the above procedures, 13 major synoptic 
weather types were identified for Ottawa for all days 
within the winter season of 1958/59-90/91 based on 
differences in their meteorological characteristics.  
These 13 major synoptic weather types represented 
85% of the total number of days during the period.  
The smaller synoptic weather types, which comprised 
the remaining 15% of the days, were removed from 
the analysis.  These smaller types were largely made 
up of days which either had no freezing rain 
occurrence or freezing rain events involving 1 h during 
a day.   

To identify the synoptic types most highly 
associated with freezing rain events, a category 
frequency ratio was calculated.  This ratio compares 
the percentage frequency of days with freezing rain 
events (actual frequency) to the percentage frequency 
of the weather type within the entire record (expected 
frequency).  If a weather type possessed a reasonable 
number of freezing rain cases (i.e. greater than the 
number of the cases within each of the remaining non-
freezing rain weather types) and the frequency ratio 
was >1.0, it was selected as a freezing rain-related 
weather type.  Based on these two criteria, four 

synoptic types were identified over the 33 year period 
as the primary freezing rain weather types.  These 
weather types accounted for 81%, 90% and 97% of 
the freezing rain events lasting greater than or equal 
to 1, 4 and 6 h during a day, respectively, at Ottawa 
International Airport.   

 
4.2. Developmental Dataset: Results from 

Stepwise Logistic Regression 
  

A stepwise logistic regression procedure was 
performed on all days within the 4 freezing rain 
weather types.  The data sample used in the 
regression consisted of 1280 days, of which 266 days 
experienced freezing rain events occurring 1 h or 
more during a day.  The freezing rain predictors which 
were identified in the stepwise logistic regression 
model with an entry and retention significance level of 
0.05.  The regression results are summarized as 
follows: 
1. There is a significant correlation between the 

occurrence of freezing rain events and the model 
predictions, with a concordance of 91.5%.  
Concordance is a measure of the model 
performance and is commonly used for logistic 
regression (The model R2, judging the overall fit of 
a multiple regression model, is not suitable for 
binary data analysis (Chap 1998; Chatterjee et al. 
2000)).   

2. The logistic regression model identified freezing 
rain predictors at Ottawa that included wind 
direction indices, temperature differences between 
the upper air and surface, 6 h temperature 
changes, and warm air advection.  These 
predictors are consistent with the physical 
processes typically associated with freezing rain 
events.  Based on the logistic regression model 
results, we can define the weather conditions 
associated with a high probability of freezing rain 
occurrence at Ottawa International Airport.  These 
include: easterly-northeasterly surface winds and 
southwesterly winds at mid-atmospheric levels, the 
presence of a temperature inversion in the low-mid 
atmospheric levels with an associated air 
temperature >0oC aloft and ≤0oC at the surface, 
falling sea-level air pressure, high total cloud 
cover, increasing air temperatures aloft (i.e. warm 
air advection at mid-atmospheric levels), surface 
temperatures decreasing in the past 6 h, and dew 
point depression decreasing in the past 6 h (i.e. 
increasing moisture), both at the surface and mid-
atmospheric levels.  These results are 
corroborated in previous studies (Bocchieri 1980; 
Huffman and Norman 1988; Rauber et al. 2000). 
When attempting to use multiple regression to 

develop a model, it is important to consider 
multicollinearity among the explanatory variables.  
Variance inflation factors (VIFs) can be used to 
identify multicollinearity.  High VIFs indicate that two 
or more collinear independent variables are included 
in the model (Draper and Smith 1998).  Chatterjee et 
al. (2000) suggested that a VIF in excess of 10 is an 



indication that multicollinearity may be causing 
problems in estimation.  No strong collinear 
relationships existed within the explanatory predictors 
in this model since the VIF value of each predictor 
was less than 2 (Draper and Smith 1998; Lawrence 
and Arthur 1990; SAS Institute Inc. 1999).  The 
largest VIF value of any of the predictors used in the 
model was 1.72, indicating that the largest multiple 
coefficient of determination (R2) was 0.42 among the 
model explanatory predictors (VIF = (1 – R2)-1). 

Using the probability of 0.6 as a threshold, the 
model was able to correctly identify 154 freezing rain 
cases lasting ≥1 h during a day, while yielding only 28 
false alarms, resulting in a post agreement of 85% 
and a false alarm rate (FAR) of 15% for freezing rain 
events.  The corresponding post agreement and FAR 
associated with a cut-off probability of 0.8 were 96% 
and 4%, respectively.  Post agreement represents the 
number of correct predictions divided by the total 
number of predictions for freezing rain events, with a 
perfect post agreement equal to 1 (or 100%).  The 
FAR is defined as (1 - post agreement) (Stanski et al. 
1989).  Of the 28 false alarms, snowfall/rainfall and 
freezing drizzle were observed on 19 and 6 days, 
respectively.  Of the 369 days with no observed 
precipitation used in logistic regression analysis, only 
3 days were incorrectly identified as freezing rain 
events with logistic probability ≥0.6. 

It is noteworthy that this model may be 
particularly well suited for prediction of the occurrence 
of freezing rain events lasting several hours in 
duration.  For example, the probability of detection 
(POD) resulting from the model was 58% for freezing 
rain events lasting ≥1 h during a day, but 89% for 
freezing rain events lasting ≥8 h during a day.  POD is 
defined as the number of correct forecasts divided by 
the total number of observed in that category, with a 
perfect POD equal to1 (or 100%) (Stanski et al. 1989).   

There are three factors which may have 
contributed to the shortfall in identifying some shorter 
duration freezing rain events.  One factor is based on 
the limited temporal resolution of the NCEP-NCAR 
reanalysis data (every 6 h), which may contribute to 
difficulties in predicting events shorter than the 
temporal resolution of the data.  The other two factors 
are related to limitations in the spatial and vertical 
resolution of the NCEP-NCAR reanalysis data.  These 
resolution limitations likely contributed to short 
duration freezing rain events sometimes being 
observed when reanalysis data identified a minimal 
warm layer aloft.  A warm layer aloft is defined in this 
study as a layer warmer than 0oC extending above a 
surface-based layer of air colder than 0oC.  In most of 
the short duration events, a mix of precipitation types 
was reported (i.e. snow, ice pellets, freezing drizzle), 
indicating the presence of a vertical temperature 
profile with either a minimal or non-existent warm 
layer aloft.  For example, there were a total of 53 days 
with a 1-hour occurrence of freezing rain for the period 
1958/59-1990/91; 31 of these events were essentially 
missed by the model where the predicted probability 
was <0.6.  Examining the NCEP-NCAR daily vertical 

pressure level temperature profiles for 4 times daily 
on each of these 31 days, it was determined that 17 
days or 55% had no warm layer aloft during any of the 
4 re-analysis hours.  Of the remaining 22 days with a 
1 h occurrence of freezing rain specified with a high 
probability (≥0.6), only 4 days or 18% were identified 
without a warm layer on any of the 4 hours.  In fact, 
about 31% of freezing rain days in the developmental 
dataset had no warm layer, as determined from the 
NCEP-NCAR profiles, and only about 13% of these 
events can be identified by the model with the 
probability ≥0.6. 

 
4.3  Validation of the Model 

  
In order to validate the model, discriminant 

function analysis was used to assign each day of the 
validation dataset (1991/92-2000/01) into one of the 
weather types predetermined from the developmental 
dataset (1958/59-1990/91).  This validation dataset 
yielded similar meteorological characteristics within 
synoptic types to those constructed from the 
developmental dataset.  The within-category 
frequency of freezing rain events for the validation 
dataset was also used to validate the weather typing 
procedure.  The results showed that within-type 
percentage frequencies of freezing rain events for 
both the developmental and validation datasets were 
similar.  These results implied that the discriminant 
function analysis performed well in identifying or 
predicting the weather types most highly associated 
with freezing rain events.  

Following the determination of the weather type 
for each day within the validation dataset, the logistic 
regression algorithm was used to calculate the 
probability of freezing rain occurrence for each of the 
days within weather types 1-4 for the period 1991/92-
2000/01.  As was the case for the developmental 
dataset, a probability of 0.6 was selected as the cut-
off threshold for prediction of freezing rain.  Of the 46 
days in the validation dataset forecast to have a 
probability ≥0.6, freezing rain was observed on 35 
days, or a post agreement of 76% with the remaining 
11 days or 24% representing false alarms.  Of the 35 
freezing rain days correctly forecast by the model, 16 
days received freezing rain events lasting between 2 
to 5 hours, while 17 of the days experienced events of 
duration ≥6 hours.  For the 11 false alarm events, 
freezing drizzle or snow/rain were observed for 5 and 
2 days, respectively.  Of the total 85 days in which 
precipitation was not observed, only 4 days were 
incorrectly identified as freezing rain events by the 
model when using a prediction probability ≥0.6).  For 
freezing rain events lasting 8 h or more during a day, 
the model predicted 91% (POD) of the total freezing 
rain cases from the validation dataset.  In general, 
these percentages were better than the results from 
the developmental dataset for longer duration freezing 
rain events. 

Although major freezing rain events are relatively 
rare, we used the opportunity to test the model on 
data observed during a particularly severe ice storm 



that affected the northeastern U.S. and eastern 
Canada, including the Ottawa area, during the period 
January 5-9, 1998.  Within this 5-day period, the 
model correctly predicted the occurrence of freezing 
rain on all 5 days, with a very high probability >0.995 
for the first 4 days, dropping to 0.68 for the final day.  
Interestingly enough, the weather types differed for 
the 5 days with the first 4 days classified as type 2, 
and the final day classified as type 3.  This change in 
classification and lowering in probability on the final 
day likely can be related to a transition in weather 
patterns during the day.  By 0000 UTC on January 10, 
the 500 hPa wind flow over Ottawa began to shift from 
a southwesterly to a more westerly direction 
(Environment Canada, 1998), a less favorable 
direction for a flow of warm moist air and the 
occurrence of freezing rain. 
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