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1. Introduction

The study of surface heterogeneity effects on atmo-
spheric boundary layer (ABL) dynamics requires detailed
knowledge of the turbulence at a wide range of spatial
and temporal scales. Large-eddy simulation (LES) can
provide this kind of information. LES consists of explicitly
solving the unsteady three-dimensional equations gov-
erning turbulent transport for all scales larger than the grid
size ∆LES while the effect of the sub-grid scales (smaller
than ∆LES) on the resolved scales is parameterized. The
separation of scales is achieved by spatially filtering the
governing equations for momentum and scalar transport
at a scale ∆ ≥ ∆LES. The sub-grid scale (SGS) quanti-
ties that must be modeled in LES are the SGS stresses
τij and SGS fluxes qi, defined as

τij = ũiuj − ũiũj and (1)

qi = ũiθ − ũiθ̃, (2)

respectively. The (˜ ) represents the LES filtering opera-
tion, ui is the velocity in the i-direction and θ is a generic
scalar quantity.

The SGS stresses and SGS fluxes must be param-
eterized using information available in the resolved (fil-
tered) velocity and scalar fields. This is one of the ma-
jor challenges in LES due to the sensitivity of simula-
tion results to both the model formulation and the way in
which the model coefficient(s) are specified (Meneveau
and Katz, 2000). In heterogeneous flows, the model co-
efficients are expected to depend on local flow character-
istics (e.g. local shear stress and atmospheric stability).
This dependence needs to be accounted for in order to
improve the accuracy of LES in simulations of heteroge-
neous ABLs. In this paper, we develop and implement
a new SGS model that does not require any parameter
specification or tuning since the model coefficient is com-
puted dynamically at every position in the flow and time
step based on the resolved field. The model is based
on using the Lagrangian averaging technique introduced
by Meneveau et al (1996) in the framework of the scale-
dependent dynamic model developed by Porté-Agel et al
(2000) for the SGS stresses and Porté-Agel (2004) for the
SGS scalar fluxes. This modification is essential in simu-
lations of ABLs over heterogeneous surfaces, where the
flow is not homogeneous over horizontal planes (as typi-
cally assumed in dynamic models). The model is tested
in simulations of both homogeneous and heterogeneous
ABLs.
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2. Model Formulation

The proposed scale-dependent Lagrangian dynamic
model uses the Lagrangian averaging technique devel-
oped by Meneveau et al (1996) to allow a consistent ap-
plication of the scale-dependent dynamic model, intro-
duced by Porté-Agel et al (2000) for the SGS stresses
and Porté-Agel (2004) for the SGS fluxes, to heteroge-
neous flows. The base models are an eddy-viscosity
model for the deviatoric part of τij and an eddy-diffusion
model for qi:

τij −
1

3
δijτkk = −2(∆Cs)

2|S̃|S̃ij (3)

qi = −∆2C2
s Sc−1|S̃|

∂θ̃

∂xi
. (4)

In Eqs. 3 and 4, S̃ij = 1/2(∂ũi/∂xj + ∂ũj/∂xi) is
the resolved strain rate tensor with magnitude |S̃| =
2(S̃ij S̃ij)

1/2, Cs is the Smagorinsky coefficient, and
C2

s Sc−1 is a lumped coefficient that comprises Cs and
the SGS Schmidt/Prandtl number (Sc).

Next, a brief description of the scale-dependent dy-
namic procedure applied to the calculation of Cs is given.
More details can be found in Porté-Agel et al (2000) for
the SGS stresses and Porté-Agel (2004) for the SGS
fluxes. The model is based on the Germano identity (Ger-
mano et al, 1991)

Lij = ũiũj − ¯̃ui
¯̃uj = Tij − τ̄ij , (5)

where Lij is a resolved stress tensor and Tij is the SGS
stress at the test-filter scale ∆̄(= 2∆ here). Tij can be
computed using the eddy-viscosity model as

Tij −
1

3
δijTkk = −2[2∆Cs(2∆)]2| ¯̃S| ¯̃Sij . (6)

Substituting Eq. 6 and Eq. 3 into Eq. 5 results in the fol-
lowing system of equations:

Lij = C2
s (∆)Mij , (7)

where
Mij = 2∆2

(
|S̃|S̃ij − 4β| ¯̃S| ¯̃Sij

)
. (8)

Minimizing the error in Eq. 7 and averaging over direc-
tions of statistical homogeneity (Ghosal et al, 1995) or
fluid pathlines (Meneveau et al, 1996) gives

C2
s (∆) =

〈LijMij〉

〈MijMij〉
(9)

where 〈 〉 denotes an averaging operator and
Mij contains the scale-dependent parameter
β = C2

s (2∆)/C2
s (∆). In order to dynamically calcu-

late β, the same dynamic procedure is used with a
second test filter ( ̂ ) applied at another test-filter scale



∆̂ = 4∆ in the Germano identity (Eq. 5). This results in a
second equation for C2

s (∆)

C2
s (∆) =

〈
L′

ijM
′
ij

〉
〈
M ′

ijM
′
ij

〉 (10)

where

L′
ij = ̂̃uiũj − ˆ̃ui

ˆ̃uj and (11)

M ′
ij = 2∆2

( ̂|S̃|S̃ij − 42β2| ˆ̃S| ˆ̃Sij

)
. (12)

In Eq. 12 the assumption is made that C2
s (2∆)/C2

s (∆) =
C2

s (4∆)/C2
s (2∆) and therefore C2

s (4∆)/C2
s (∆) = β2. By

combining Eqs. 9 and 10 one obtains an equation from
which the single unknown parameter β can be computed,

〈LijMij〉
〈
M ′

ijM
′
ij

〉
−
〈
L′

ijM
′
ij

〉
〈MijMij〉 = 0. (13)

The value of β from Eq. 13 is then used in Eq. 9 to find
the Smagorinsky coefficient Cs.

In previous studies, the scale-dependent dynamic
model (Porté-Agel et al, 2000; Porté-Agel, 2004), was ap-
plied in horizontally homogeneous ABL flows. Therefore,
averaging over horizontal planes was used as the natu-
ral choice in Eqs. 9 and 13. Here, in order to use the
dynamic model over heterogeneous surfaces, we apply
instead the Lagrangian averaging procedure developed
by Meneveau et al (1996). This procedure involves solv-
ing a relaxation transport equation for each term (LijMij ,
MijMij , L′

ijM
′
ij and M ′

ijM
′
ij) along fluid pathlines. With

the assumption of an exponential relaxation function and
a first order discretization in time, the Lagrangian aver-
ages for LijMij and MijMij are:

∮ n+1

LM
(x) = H{ε [LijMij ]

n+1 + (1 − ε)
∮ n

LM
(x − u

n∆t)}
(14)

and

∮ n+1

MM
(x) = ε [MijMij ]

n+1 + (1 − ε)
∮ n

MM
(x − u

n∆t) ,
(15)

where

ε ≡
∆t/T n

2∆

1 + ∆t/T n
2∆

, with T n
2∆ = 1.5∆

(∮ n

LM

∮ n

MM

)−1/8
.

(16)
In Eq. 14 H{x} is a ramp function [H{x} = x, x ≥
0; H{x} = 0, x < 0] and the position x − u

n∆t
at the previous time step is calculated using multilin-
ear interpolation. The Lagrangian averages for L′

ijM
′
ij

and M ′
ijM

′
ij are found in an equivalent manner to Eqs.

14 and 15, respectively, with the appropriate timescale

T n
4∆ = 1.5∆

(∮ n

L′M′

∮ n

M′M′

)−1/8
. The Lagrangian aver-

aged model coefficient C2
s (x, t) and scale-dependent pa-

rameter β(x, t) at each time step and every position in
the flow, are now found from

C2
s (x, t) =

∮
LM∮
MM

, and (17)

∮
LM

∮
M′M′

−
∮

L′M′

∮
MM

= 0. (18)

The Lagrangian averaged lumped coefficient
C2

s Sc−1(x, t) and scale-dependence parameter

βθ(x, t) = C2
s Sc−1(2∆)/C2

s Sc−1(∆) for the eddy-
diffusion model (Eq. 4) are computed in the same
manner as for the eddy-viscosity model, i.e.,

C2
s Sc−1(x, t) =

∮
KX∮
XX

(19)

∮
KX

∮
X′X′

−
∮

K′X′

∮
XX

= 0. (20)

In Eqs. 19 and 20, the Lagrangian averages are the
equivalent forms of Eqs. 14 and 15 with, for example, Ki

replacing Lij and Xi replacing Mij , where

Ki = ũiθ̃ − ¯̃ui
¯̃
θ (21)

Xi = ∆2

(
|S̃|

∂θ̃

∂xi
− 4βθ

∣∣∣ ¯̃S
∣∣∣ ∂

¯̃
θ

∂xi

)
. (22)

In Eq. 22, the assumption is also
made that C2

s Sc−1(2∆)/C2
s Sc−1(∆) =

C2
s Sc−1(4∆)/C2

s Sc−1(2∆) = βθ. Also note
that the dimensionally appropriate relaxation time
scale for eddy-diffusion (for the first test filter) is
T n

2∆ = 1.5σθ∆(
∮

KX

∮
XX

)−1/4, where σθ is the standard
deviation of the resolved scalar concentration.

In the next section, the scale-dependent Lagrangian
dynamic models for the SGS stress and the SGS flux are
implemented in LES of the ABL over both homogeneous
and heterogeneous surface conditions.

3. Numerical Simulations

The scale-dependent Lagrangian dynamic model is im-
plemented in a modified version of the LES code de-
scribed by Porté-Agel et al (2000) and Porté-Agel (2004).
The size of the simulation domain is Lx x Ly x Lz, where
Lz = H = 1000 m (H is the boundary layer height) and
Lx = Ly = 2πLz. The domain is divided into 54 x 54
x 54 grid points for the homogeneous case and 80 x 80
x 80 grid points for the heterogeneous case. Boundary
conditions in the horizontal directions are periodic. The
top boundary condition is a zero-flux condition and the
bottom (surface) boundary condition is given by Monin-
Obukhov similarity.

3.1 Homogeneous Case: Model Verification

First, we present results from a homogeneous neutral (no
buoyancy effects) ABL with a constant surface flux of a
passive scalar. These results are compared with similar-
ity theory for the mean profiles of the vertical streamwise
velocity gradient and vertical scalar gradient. Stream-
wise velocity spectra are also presented and compared
with the well-known spectral scaling for a neutral, high-
Reynolds-number boundary layer.

Figure 1 shows the averaged non-dimensional
streamwise velocity gradient Φ = κzu−1

∗ dU/dz (κ = 0.4
is the von Kármán constant and u∗ is the friction veloc-
ity) obtained with simulations using the scale-dependent
Lagrangian dynamic model over a homogeneous surface
under neutral conditions. Φ is plotted versus the nor-
malized height z/H. Similarity theory predicts that Φ will
have a constant value of one in the surface layer (approx-
imately the lower 10% of the boundary layer) (Businger
et al, 1971) and a slightly larger value in the wake layer
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FIG. 1: Non-dimensional vertical gradient of the mean
streamwise velocity Φ = κz

u∗

dU
dz

from a simulation of a neutral
ABL. The dashed line corresponds to the classical log-law (ex-
pected to hold throughout the surface layer - approximately the
lower 10% of the ABL) with κ = 0.4.

above. As seen in figure 1 the model reproduces this be-
havior for Φ in the lower part of the boundary layer.

The non-dimensional vertical scalar concentration
gradient Φθ = κz

θ∗

d〈θ̃〉
dz

is shown in figure 2 as a func-
tion of z/H. Here, θ∗ = qwu−1

∗ , where qw is the scalar
surface flux. For the passive scalar concentration, Φθ is
expected to have a constant value of 0.74 in the surface
layer (Businger et al, 1971). The non-dimensional gradi-
ent in figure 2 is fairly constant and close to the empirical
value in the surface layer. As expected, its value is larger
in the wake region.
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FIG. 2: Non-dimensional vertical gradient of the mean scalar

concentration Φθ = κz
θ∗

d〈θ̃〉
dz

from a simulation of a neutral ABL
with a constant passive scalar surface flux. The dashed line cor-
responds to the classical log-law (expected to hold throughout
the surface layer) with κ = 0.4.

Next, we explore how the model reproduces the dis-
tribution of the simulated kinetic energy as a function of
scale by analyzing the streamwise velocity spectra com-
puted at different heights in the boundary layer. In a
neutrally stable ABL, properly normalized (as in figure
3) streamwise velocity spectra are expected to collapse
and scale as k

−5/3
1 in the inertial subrange (wavenumbers

k1 ≥ z−1, where k1 is streamwise wavenumber and z is
height). For smaller wavenumbers (H−1 ≤ k1 ≤ z−1),
corresponding to the production subrange, spectra are
expected to scale as k−1

1 , with a change from k−1
1 to

k
−5/3
1 scaling taking place near k1z = 1 (Perry et al,

1986). This scaling behavior is well reproduced by the
spectra shown in figure 3.
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FIG. 3: Normalized streamwise velocity spectra at different
heights from homogeneous neutral simulations with the scale-
dependent Lagrangian dynamic model.

3.2 Heterogeneous Test Case

To demonstrate the ability of the new SGS models to
capture the spatial distribution of the dynamically com-
puted coefficients and scale-dependent parameters, a
simulation was run over a surface with a simple hetero-
geneous distribution of both passive scalar flux qw and
aerodynamic surface roughness zo. Half of the domain
(0 < x/H < π) consists of a relatively ‘rough’ (zo = 0.25
m) surface with positive scalar flux (qR

w ). The other half
(π < x/H < 2π) is a relatively ‘smooth’ (zo = 0.025 m)
surface with negative scalar flux (qS

w = −qR
w ). The tran-

sition between the two surface types is abrupt and the
pattern is periodic due to the horizontal periodic bound-
ary conditions used.
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FIG. 4: Normalized deviation from the plane averaged value
(〈Cs〉|(x,z) − 〈Cs〉|(z))/〈Cs〉|(z) of Cs for flow over a heteroge-
neous surface (roughness and scalar flux change at x/H = π).

The spatial distribution of the eddy-viscosity co-
efficient Cs and the lumped eddy-diffusion coefficient
C2

s Sc−1, obtained with the scale-dependent Lagrangian
dynamic models over the heterogeneous surface, are
presented in figures 4 and 5, respectively. Both coef-
ficients show a strong decrease right after the smooth-
to-rough transition. This adjustment is consistent with
the increase in mean shear created by the sudden in-
crease in surface roughness. Note that in Eqs. 3 and 4
the model coefficients act to modulate the characteristic



turbulence length scale in the eddy-viscosity and eddy-
diffusion models. Therefore, the coefficients must de-
crease to account for the reduction in characteristic length
scales associated with an increase in the mean shear.
The opposite effect is observed after the rough-to-smooth
transition at x/H = π. In this case, the mean shear de-
creases, allowing for the length scales of the flow to in-
crease at a given height near the surface. This effect
translates into a larger value of both coefficients. It is
important to notice that the heterogeneity in the spatial
distribution of C2

s Sc−1 is relatively stronger and extends
higher up in the ABL compared with Cs. This effect could
not be captured by assuming a constant value of Sc.
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FIG. 5: Normalized deviation from the plane averaged value
(〈C2

s Sc−1〉|(x,z)−〈C2
s Sc−1〉|(z))/〈C

2
s Sc−1〉|(z) of C2

s Sc−1 for
flow over a heterogeneous surface (roughness and scalar flux
change at x/H = π).

The spatial distribution of the scale-dependence pa-
rameter β is shown in figure 6 at different streamwise po-
sitions in the flow versus the normalized height z/H. β
decreases as the flow transitions from smooth to rough
and has the opposite trend after the transition from rough
to smooth. These results can be understood consider-
ing that β is directly related to the level of anisotropy of
the flow at the smallest resolved scales (Porté-Agel et
al, 2000; Porté-Agel, 2004). β is expected to be much
smaller than one when/where the flow becomes more
anisotropic (e.g., near the surface). This is consistent
with the trends observed over the heterogeneous sur-
face and shown in figure 6. Notice that the parameter
is smallest right after the smooth-to-rough transition be-
cause of the increased anisotropy associated with larger
mean shear associated with the roughness change in that
region. Near the center and the downwind side of both
patches β approaches a similar value near the surface.

4. Summary

Scale-dependent Lagrangian dynamic models for the
SGS stress and SGS flux are developed and imple-
mented in LES of both homogeneous and heterogeneous
boundary layers. These models allow for parameter-free
simulations as they use information in the resolved flow
to provide a consistent, dynamic calculation of the model
coefficients and scale-dependence parameters at every
position in the flow and at each time step. In simulations
of a neutral homogeneous boundary layer with a constant
and uniform surface flux of a passive scalar, the models
are able to give good predictions for the expected mean
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FIG. 6: Scale-dependence parameter for the eddy-viscosity
model at selected streamwise positions. The height z is normal-
ized by the boundary layer height H.

profiles of streamwise velocity and scalar concentration
(in agreement with similarity theory) as well as proper
scaling of turbulent spectra. When applied to a hetero-
geneous boundary layer the coefficients are able to ad-
just in a self-consistent way to the local changes in the
mean flow conditions. Future work will focus on the per-
formance of the models under a variety of surface het-
erogeneity conditions (including local gradients of tem-
perature). Furthermore, LESs with the new SGS models
will be used to study the effect of different surface hetero-
geneity patterns on regional-scale fluxes with the ultimate
goal of improving parameterizations of subgrid-scale het-
erogeneity in weather models.
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