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1. INTRODUCTION 
 

The Visibility Improvement State and Tribal 
Association of the Southeast (VISTAS) 
(http://www.vistas-sesarm.org/) is responsible for 
technical analyses and planning activities associated 
with the management of visibility and other regional 
air quality issues in the southeastern U.S.  VISTAS 
analyses will support the states in their responsibility 
to develop, adopt, and implement their individual state 
air quality implementation plans for regional haze.   
 

The objective of VISTAS atmospheric modeling 
is to evaluate emissions contributions to fine 
particulate pollution (PM2.5 ) and visibility in the 
southeastern U.S. and to project how PM2.5 and 
visibility will change in response to emissions 
changes.  VISTAS has designed an extensive “one-
atmosphere” modeling exercise which contains 3 
main components: 1) meteorological modeling with 
MM5, 2) emissions modeling with SMOKE, and 3) 
chemical transport modeling with CMAQ.  The 
meteorological modeling component is the primary 
focus of this paper.   

 
Only a fraction of the comprehensive model 

evaluation is presented in the paper.  Readers are 
strongly urged to visit the project web site for more 
complete analyses of the model performance and 
additional documentation at:  
(http://www.baronams.com/projects/VISTAS/) 
 
2. APPROACH 

 
In order to consider numerous areas in the 

southeastern U.S. simultaneously, a representative 
year is simulated.  VISTAS chose to model the 
calendar year of 2002 using a 36-km grid for the 
national domain and a 12-km grid for the eastern U.S 
as shown in Figure 1.   Prior to the annual simulation, 
a series of sensitivity tests were conducted to identify  
the optimal configuration for the southeastern U.S.  
Those findings are summarized in Olerud, (2004).  
This testing established the model configuration for 
the annual simulation. 
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 The meteorological model used in this study is 
the PSU/NCAR Mesoscale Model (MM5 version 
3.6.1+, Grell et al., 1994, MPP version), the same 
version of the code that was used in the sensitivity 
modeling.  At the time the annual modeling began, the 
latest released version of the MM5 code was 3.6.2. 
Most of the v3.6.2 changes are included in the 
v3.6.1+ version of the code.  The only modification not 
included involves the treatment of sea ice, a change 
likely to have negligible effect over the southeastern 
US.  The v3.6.1+ code also includes an adapted 
version of EPA’s MPP P-X code, an essential feature 
that does not readily port into later MM5 versions.  
The latest v3.6.2 MM5 preprocessors were employed.   

 
The model configuration established through 

the aforementioned series of sensitivity tests was 
implemented for the annual run with the following 
physics options: 
 
Soil:  Pleim-Xiu land surface model 
PBL:  Asymmetric Convective Mixing 
Radiation:  Rapid Radiative Transfer Model  
Cloud:  Kain-Fritsch 2 cumulus parameterization 
Microphysics:  Reisner 1 (mixed phase) 
Analysis nudging aloft:  
   36km:  t  (2.5E-4/s), q (1.0E-5/s), u and v (2.5E-4/s) 
   12km:  t  (1.0E-4/s), q (1.0E-5/s), u and v (1.0E-4/s) 
Analysis nudging surface: 
    36km: u and v (2.5E-4/s), T and q not nudged 
    12km: u and v (1.0E-4/s), T and q not nudged 
Observational nudging: Not used 
Snow effects:  Turned on via IFSNOW = 1 
SST:  EDAS 24-hr averaged skin temperatures 
Vertical structure:  34 layers 
 
Details on the various physics options listed above 
include Xiu and Pleim, (2001), Kain and Fritsch, 
(1993), Kain, (2002), Reisner et al, (1998), Mlawer et 
al, (1997). 
 
 The decision to use sea surface temperatures 
(SST’s) derived from the EDAS skin temperatures 
was not an arbitrary one.  At the time our modeling 
began, most of the other Regional Planning 
Organizations (RPO’s) have decided to use NCEP 
SST’s to avoid problems that might arise from 
applying skin temperatures as SST’s.  The 1996 
annual modeling effort conducted by Olerud et al 
(2000) suffered from very high inland lake 



temperatures as the MM5 system erroneously applied 
land skin temperatures to areas such as the Great 
Salt Lake. Fortunately the 3.6.2 version of the MM5 
preprocessor INTERPF treats skin temperatures in a 
more appropriate manner, forcing a 24-hour average 
of skin temperatures if they are being used as a 
surrogate for SST’s.  The downside of using the 
NCEP SST fields is that they have a very coarse 
resolution of 2.5 x 2.5 degrees (~270 x 270 km). 
Alternatively the EDAS fields are available at 40-km 
resolution.  Limited test runs were made using the 
each of the SST initialization options.  Differences 
between the two approaches were clearly seen in the 
Gulf of Mexico.  Overall, the results of the EDAS skin 
temperature test appeared to be the most reasonable. 
 
Additional information on model set-up and execution 
can be found in the VISTAS Meteorological modeling 
protocol Olerud, (2004) at: 
http://www.baronams.com/projects/VISTAS/reports/VISTAS_
TASK3a_draft.pdf 
 
3. EVALUATION 
 
 The amount of data produced in this annual 
MM5 simulation is foreboding. One needs to consider 
a variety of primary and secondary meteorological 
variables, and often these variables need to be 
examined spatially, vertically, and temporally. 
Obviously we need to find a way to summarize the 
results, while concurrently allowing sufficient detail so 
that possibly important hourly/diurnal variations are 
not glossed out.  To accomplish this we have divided 
the analyses into two main categories:  Segment 
analyses, and monthly analyses. 
 
3.1 Segment Analyses 
 
 The segment analyses examine the useable 
portion of each 5.5-day segment in considerable 
detail, focusing on surface data, aloft data, and 
statistical data. We examine surface data in 6-hourly 
spatial animations, with observations overlaid when 
applicable. This allows us to determine qualitatively if 
the model is replicating the observed spatial pattern, 
and also if model performance has a noticeable 
diurnal variation. These animations are available for 
every Regional Planning Organization (RPO) region 
(and sometimes sub-RPO region) as appropriate. 
Figure 2 shows the observing stations color-coded by 
RPO; the rectangular region plotted for each RPO 
includes all of its observing sites. The variables 
plotted as spatial animations include temperature, 
mixing ratio, wind vectors, cloud fraction, alternative 
cloud fraction, relative humidity, precipitation, and 
planetary boundary layer (PBL) height. 
 
 Time series of key meteorological variables at 
over 30 sites of interest, mostly in the VISTAS region 
are generated.  We produce time series plots at both 
36-km and 12-km (when applicable) resolutions, as 
well as figures with both resolutions plotted against 

the observations to allow for easy intrascale 
comparisons.  

 
 The final surface data product type is a 
“combination” plot, which is simply a spatial model 
field juxtaposed with the most appropriate 
observational image.  These combination plots are 
produced once a day for visible satellite 
imagery/model clouds (18Z) and 24-h CPC 
accumulated precipitation/model precipitation (12Z), 
and twice a day (00Z, 12Z) for surface analysis/model 
pressure-winds-precipitation and infrared satellite 
imagery/model clouds. 
 
          The second segment analyses type is aloft 
products.  These products include spatial analyses, 
sounding plots, and profiler plots.  It is impractical to 
examine every one of the 34 model layers in detail, so 
we have decided to focus on three levels aloft for our 
spatial analyses.  The three sigma-layers are layer 9 
(~500m), layer 17 (~1600m), and later 22 (~3400m). 
This allows us to visualize model performance 1) in 
the PBL, 2) near the top of/just above the PBL, and 3) 
in the free troposphere.  These aloft spatial plots are 
very similar in nature to the corresponding plots 
produced at the surface, though plots for only 
temperature, mixing ratio, and winds are produced at 
a 12-hr temporal resolution. 

 Upper air soundings were produced to 
examine the ability of the model to capture vertical 
variations. These plots are made for every 
rawinsonde site in the VISTAS region, plus a 
sampling of sites across the country.  Full surface-to-
100 mb soundings were produced, along with plots 
examining only the lower portions of the atmosphere 
(surface-to-500 mb). 

Figure 3 shows an example of the final aloft 
evaluation product, the profiler plot. These plots 
compare model predicted winds with profiler-derived 
winds over the lowest 2500 meters of the 
atmosphere. Profilers yield results at a much finer 
vertical and temporal resolution than do standard 
rawinsondes. The profiler data are not used to nudge 
MM5, and in fact cannot effectively be used in that 
capacity without additional quality control to 
remove/correct erroneous data. 

 Each modeling segment also contains a variety 
of statistical products.  Table 1 shows an example of 
a surface summary statistical table (all hours) for the 
12-km VISTAS region for a modeling segment.  Most 
of the variable names, while cryptic, are unambiguous 
and require no further explanation.  We should note 
that CLD refers to the MCIP2.1 variable “CFRAC”, 
while CLD2 refers to the maximum of MCIP2.1 
variables “CFRACH”, “CFRACM”, and “CFRACL”.  
The latter variable precisely matches the manner in 
which the observational cloud coverage is calculated, 
and is generally preferred for the purpose of 



meteorological analysis.  We should also note that 
“bias” for wind direction should be ignored in favor of 
“dbias”, the appropriate bias calculation for a non-
continuous function line wind direction. Also, “jtot” 
simply represents the number of model/obs pairs that 
go into the statistical calculations.  While the sample 
table includes all valid hours within the modeling 
segment, we also produce tables that include only the 
00-11Z hours (to highlight nighttime performance) and 
12-23Z hours (to highlight daytime performance).  
These statistical tables are available for all applicable 
RPO’s and RPO aggregates (i.e. US, Full).  Each 
modeling segment also contains a full suite of 
statistical time series plots, both at the surface and 
aloft. 

3.2      Monthly Analyses 

 Data was aggregated into monthly periods to 
assess model performance in a more complete 
manner.  However, a couple of points about our 
statistical processing methodology should be made.  
The first involves the manner in which elevation 
discrepancies between the observations and the 
model are treated.  We have rather arbitrarily decided 
that if the elevation of an observational site is more 
than 500 meters different than the model elevation, 
then that observing site is deemed unrepresentative 
and is not included in the statistical analyses.  Mount 
Washington, NH (KMWN) is such a station.  Even 
with automated quality control of the observational 
data, KMWN still occasionally stands out as an 
unrepresentative site in the Mid-Atlantic NorthEast-
Visibility Union (MANE-VU) spatial analyses plots of 
temperature and especially winds.  If the elevation of 
a site is within 500 m of the model elevation, we 
include it in our processing, but not without attempting 
to account for biases that surely arise solely due to 
the elevation difference.  There is no easy way to deal 
with these elevation differences, but to ignore their 
effect is probably worse than crudely accounting for 
them.  Our methodology is to apply a standard 
atmosphere adjustment (6.5C/km) to the elevation 
differences.  Figure 4 shows the magnitude of these 
adjustments that were subtracted from the model 
temperatures before comparing with the observations.  
Note that for much of the western U.S., except along 
the coastline, the majority of sites are adjusted by a 
factor larger than the “benchmark” standard for 
temperature bias.  This elevation effect is rather small 
for most of the rest of the country.  

 Another factor to consider in statistically 
evaluating model performance is the presence of 
observed calm winds.  A calm wind report does not 
mean that the wind speed is identically 0.0 kts; rather, 
it means that the true wind speed is less than the 
instrument threshold.  The lowest non-zero wind 
speed reported is 3 kts.  The actual wind speed could 
thus be 0, 1, or 2 kts.  Since the model will never 
completely “calm out”, this instrument threshold issue 

introduces a positive wind speed bias to a perfect 
model simulation.  This can play a significant role in 
the southeastern US, especially at night and in the 
summer, when stagnant high-pressure systems 
routinely cause numerous calms to be reported.  In an 
attempt to quantify the magnitude of this effect, we 
have introduced two additional wind speed metrics to 
our summary table.  The variable “WSPD-no_calms” 
quantifies wind speed statistics when all calm reports 
are thrown out.  This approach, however, introduces a 
negative speed bias, since the < 3 kt winds are 
removed only in the observations.  Probably a less 
biased approach is to simply assign a 1.5 kt wind 
speed to all calm reports.  The variable “WSPD-
min_calm” quantifies the result when that approach is 
applied. 

 Monthly summary statistical tables were 
produced for all applicable RPO’s and for both grids.  
Since the precipitation statistics are commiserate with 
only two grid/scale combinations – 12-km Full and 36-
km US – those are the only tables that include said 
information. An example statistical overview table is 
shown in Table 2.  This table includes January 2002 
12-km full domain statistics.  Recall the 
meteorological statistical benchmarks reported by 
Emery (2001): 
 
Wind speed:  RSME ≤ 2 m/s, Bias ≤ +/- 0.5 m/s,  
 IA ≥ 0.6 
 
Wind direction: Gross Error ≤ 30 deg,  

           Bias ≤ +/- 10 deg. 
 
Temperature: Gross Error ≤ 2 K, Bias ≤ +/- 0.5 K, 

         IA ≥ 0.8 
 
Humidity:  Gross Error ≤ 2 g/kg, Bias ≤ +/- 1 g/kg, 
      IA ≥ 0.6 
 
 Note that the benchmarks were developed not 
to provide a pass/fail standard to which all modeling 
results should be held, but rather to put the results 
into an historical context.  We also note that only a 
few of the numerous statistical measures that we 
show are actually included in the above benchmarks. 
If a particular relevant metric fails to fall within the 
benchmarks, that metric will be colored red for easy 
identification (as is the case for 1.5 m temperature 
bias and error in Table 2).  Additionally, layer 1 
temperature and wind speed are included in the 
tables, but only to put the more relevant 1.5-m 
temperature and 10-m wind speed statistics in 
context.  Therefore, those metrics will not be 
compared to the benchmarks via color-coding. 
 
4. RESULTS 
 
 Now that we have a general overview of the 
suite of model evaluation products available, let’s turn 
our attention to how specific statistical quantities vary 
throughout the year and from grid to grid, examining  



the possible causes of model performance 
weaknesses.  To do this we will focus on the VISTAS 
region, cleanly comparing results at 36-km and 12-km 
resolutions.  Figure 5 shows how monthly 
temperature biases vary throughout 2002.  Note that 
the biases are generally small, never exceeding +/- 
0.8C. Nonetheless the model shows a clear 
predilection towards being too cold in the winter 
months, and the problem is exacerbated at 12-km.  
Presumably the increased temperature nudging 
strength aloft (2.5 E-4/s vs. 1.0 E-4/s) enables the 
coarser 36-km grid to be slightly less biased.  Model 
biases for the May-August period are practically 0.0 at 
both resolutions. 
 
 To examine the temperature biases in greater 
detail, consider the day (12Z-23Z) and night (00Z-
11Z) bias traces for the 12-km grid in Figure 6.  
Clearly model performance for the daytime period is 
the primary reason for the wintertime cold bias.  The 
daytime cold bias is persistent from month to month, 
but in the summer the model is only relatively weakly 
biased. The nighttime trace reveals that over the 
entire year the model is unbiased, being slightly low 
biased in the winter and slightly warm biased in the 
summer.  There could be at least four physical 
mechanisms that could lead to a daytime cold bias: 1) 
Too cold soil initial conditions, 2) Too moist soil initial 
conditions, 3) Too many daytime clouds, and 4) Poor 
treatment of snow related processes.  In general, the 
model temperature performance appears to be line 
with what we expect given the state of the art in MM5 
applications. 
 
 To complete our statistical analyses of 
temperature, we have included “Bakergrams” in 
Figures 7 and 8 for the 12-km VISTAS region.  Figure 
7 shows the temperature bias in the Annual 
Bakergram.  These images place daily statistics into a 
tile plot in a calendar-like layout.  In this way we can 
effectively summarize performance for the entire year 
in one plot.  Note how small the biases are in the 
summer, while the wintertime cold biases are easily 
seen.      Figure 8 shows the temperature bias for 
January in a Monthly Bakergram.  These plots display 
hourly biases in a tile plot format, with the day of the 
month increasing from left to right, and the UTC hour 
of the day increasing from top to bottom.  Again note 
the cold bias is generally during the daylight hours. 
 
 Figure 9 shows the mixing ratio bias trace for 
2002 for both model resolutions for the VISTAS 
region. The model exhibits a slight positive bias in 
January, especially at 36-km resolution.  Considering 
that the average observed mixing ratio in January is 
on the order of 4 g/kg, this bias is more significant 
than an equivalent bias in July, when average 
observed mixing ratios are on the order of 15 g/kg.  
Might this positive moisture bias be the root cause of 
the temperature cold bias?  Probably not, since the 
cold bias was larger in the 12-km grid, not the 36-km 
grid where the moisture bias is more significant.  

 Another striking observation about the mixing 
ratio bias traces is the low biases noted in the fall 
months, shown well in the seasonal plots in Figure 10.  
These values easily fall within the benchmark 
expectation of +/- 1.0 g/kg, but it is curious that the 
model shows that signature.  Figure 11 shows the 
model is systemically dry-biased during the afternoon 
for non-winter months.  Usually one associates such a 
feature with too much mixing (or too efficient mixing) 
in the model, thus bringing dry air from aloft to the 
surface.  For most of the year the model is slightly 
moist biased at night, but in the fall the night shows a 
slight dry bias.  The combination leads to the overall 
dry bias noted for that season.  Figure 12 displays the 
site-specific moisture biases for September over the 
12-km grid.  Virginia and western North Carolina show 
the largest dry bias, while many areas (eastern NC, 
northern FL, MI) show a moist bias.  Such spatial 
discrepancies in model performance over small areas 
suggest that either the model is failing to capture 
smaller-scale variations properly, or that the model is 
introducing smaller-scale variations where none exist.  
One of the striking differences between eastern North 
Carolina (moist bias) and western North Carolina (dry 
bias) is the soil types prevalent in those areas.   
Perhaps there are issues with the soil 
moisture/temperature initializations that lead to the 
performance differences over small areas?  Figure 13 
shows the September “Bakergram” for moisture bias 
over the 12-km VISTAS region.  Recall that the model 
is run in 5-day segments such that every fifth day at 
13Z results from a new segment are introduced.  The 
first new segment in September starts on the 3rd.  
Moisture biases tend to be significantly worse at the 
beginning of a segment than they are at the end of a 
segment, indicating that there does indeed seem to 
be soil initialization issues that are affecting the 
model. 
 
 Wind speed performance was analyzed, 
starting with the standard “include-all-calms-as-zero” 
approach. Figure 14 shows that the model is 
positively biased with regard to wind speed for all 
months and for both grids.  The bias is especially 
acute at 12-km resolution, presumably due to the 
weaker nudging applied to the winds at that scale.  
The greatest bias occurs in November, while the 
smallest bias occurs in March.  Both are surprising 
results considering that summer and winter are the 
meteorological extremes.  When we consider only 
non-zero wind speed observations, as shown in 
Figure 15, the resultant biases are practically non-
existent at 12-km, while a slight low bias is evidenced 
at 36-km.   
 
 Let us now consider wind direction 
performance. Figure 16 shows the monthly wind 
direction errors over the VISTAS region for both 
model domains.  The performance of the two grids is 
very similar, and surprisingly enough the 12-km grid 
has a slightly lower error.  The increased nudging 
strength at 36-km might have been expected to yield 



a lower direction error.  We know that all wind 
direction errors do not have the same effect of air 
quality modeling.  A 90 degree direction error at light 
winds speeds might have a less deleterious effect 
than a 40 degree error at moderate wind speeds.  A 
better way of treating wind direction discrepancies 
between the model and the observations is to 
calculate the magnitude of the error wind vector.  This 
approach properly treats winds as vectors and allows 
us to quantify the combined effect of speed and 
direction errors. Figure 17 shows the resultant plot. As 
a rule the two grids track very similarly, with the 36-
km domain yielding slightly superior results, 
undoubtedly due to the presence of stronger nudging.  
Also note how the result for November does not stick 
out as an outlier, even though wind speed 
performance exhibited its highest bias during that 
month. 
 
 The alternative cloud fraction variable defined 
in this exercise “CLD2” is deemed more 
meteorologically consistent with the cloud 
observations than is the MCIP-derived variable “CLD”.  
We will focus our attention there.  Figure 18 shows a 
strong seasonal variation to cloud bias.  For most of 
the year clouds are relatively unbiased.  However, 
through the summer months a noticeable positive bias 
appears, especially at 12-km.  Figure 19 shows most 
of the bias occurs at night.  It is difficult to know if this 
nighttime bias is indeed real, since cloud observations 
at night might not be as accurate as they are during 
the daytime.  An analysis of the average observed 
cloud coverage reveal a distinct diurnal variation in 
that cloud coverage is greatest in the afternoon and 
smallest in the late overnight periods.  Another 
evident cycle occurs at the synoptic scale and can be 
seen on an approximately 10-day time scale.  The 
model does a nice job replicating the synoptic scale 
variations, but the diurnal variations are completely 
out of phase.  Since the nocturnal bias is more 
significant at 12-km than it is at 36-km, one must 
consider the possibility that the internal cloud 
parameterizations need to be adjusted to run as 
successfully at finer scale resolutions. 
 
 During the summary analysis of precipitation, 
monthly observation/model accumulated precipitation 
plots for the 12-km and 36-km grids were considered.  
For most of the year the model does a nice job in 
replicating the observed precipitation field.  However, 
the model appears to noticeably overestimate the 
amount of precipitation in the summer months, 
especially July (Figure 20).  Nonetheless, in the fall, 
the model underestimates precipitation amounts, 
coinciding with the dry bias noted in the mixing ratio 
statistics.   
 
 In examining the notable summertime 
precipitation accumulation bias, two scenarios were 
considered.  One is the model generating spurious 
convection (raining too frequently).  The second is the 
model generating too much rainfall (overestimating 

intensity) while correctly predicting the frequency.  
The first scenario is of most concern from an air 
quality modeling perspective, since the 
presence/absence of rain affects pollution 
concentrations more than predicting 2 inches of rain 
when only 1 inch actually occurred.  An analysis of 
precipitation statistics for different threshold amounts 
was completed.  Precipitation bias scores at the 0.01 
and 0.05 inch thresholds are near 1.0 (i.e. unbiased), 
while bias scores at the 0.25 and 0.50 inch thresholds 
are significantly higher.  These statistics indicate that 
the model suffers from the more benign weakness 
mentioned above, namely overestimating the 
predicted amount of precipitation when it actually 
occurs. 
 
5. DISCUSSION 

 
 Model performance for the 12-month 

simulation in the southeastern U.S. is deemed 
adequate for visibility modeling.  By and large, 
performance traits evident in the sensitivity modeling 
are seen in the annual simulation as well.  Some 
general conclusions include: 

 
1. Synoptic features were routinely accurately 

predicted, and the model showed considerable 
skill in replicating the state variables. Most of 
the time the model statistics easily fell within 
the expected “benchmarks”.  

 
2. The model shows evidence of being adversely 

affected by poor soil initialization at times. This 
is particularly evident for September and 
November, and it might cause the autumnal 
dry bias evidenced both in the mixing ratio 
statistics and also in the precipitation statistics. 
At the time of our modeling, the P-X LSM only 
allowed three soil initialization options: 1) Table 
look-up, 2) EDAS, and 3) interppx. Sensitivity 
testing showed that interppx can produce more 
severe cold biases, so we chose the EDAS 
option. Unfortunately that option initializes soil 
moisture from a layer 100-200 cm deep, 
whereas the P-X LSM extends downward only 
100 cm. In the future improved model 
performance might be attained by more wisely 
initializing soil moisture. 

 
3. The model is noticeably cold biased in the 

winter months. This was expected based on 
our sensitivity modeling, and it appears to be 
related to the manner in which soil 
temperatures are initialized.  

 
4. The summertime diurnal cloud cycle appears 

to be out of phase with the observed cycle. The 
model maximizes cloud coverage at night and 
minimizes cloud coverage in the afternoon, 
while the observations indicate that the exact 
opposite should occur.  

 



5. The model noticeably overestimates the 
amount of summertime precipitation, but not 
the spatial coverage of measurable 
precipitation.  

 
6. While no modeling is perfect, the results of this 

effort should produce credible inputs for 
subsequent air quality modeling. 
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Figure 1. VISTAS 36-km/12-km MM5 modeling domains are shown. 

 
 

 
Figure 2. Surface observing network color-coded to represent Regional Planning Organization areas. Dark 
blue diamonds are in the VISTAS RPO, green diamonds are in the MANE-VU RPO, light blue diamonds are 
in the MIDWEST RPO, yellow diamonds are in the CENRAP RPO, and red diamonds are in the WRAP 
RPO. Gray diamonds represent sites out of the US portion of the modeling domain. 
 
 
 



 
Figure 3. The Raleigh, NC (RALNC) profiler winds (white) are co-plotted with the 12-km MM5 winds (green) 
for 12-23 UTC on March 15, 2002. 
 

 
Total_stats obsmean modmean bias abserr r2 ia rmse nbias jtot  

TMP-1.5m_(K) 289.46 289.10 -0.36 1.87 0.859 0.951 2.37394 0.00116 30729 

QV_(g/kg) 9.57 10.05 0.47 1.06 0.775 0.927 1.40093 -0.07477 30247 

RH_(%) 80.80 86.26 5.46 9.42 0.530 0.813 12.98462 -0.09797 30246 

WSPD-10m_(m/s) 2.93 3.23 0.29 1.29 0.410 0.767 1.62495 -99.00000 29488 

SPD-lyr1_(m/s) 2.93 3.83 0.90 1.51 0.380 0.735 1.89940 -99.00000 29488 

CLD_(%) 53.95 54.00 0.05 26.82 0.330 0.764 36.76081 -99.00000 29792 

CLD2_(%) 53.95 58.22 4.28 26.36 0.307 0.760 39.19626 -99.00000 29792 

TMP-lyr1_(K) 289.46 289.22 -0.24 1.87 0.854 0.949 2.39892 0.00074 30729 

 
Wdir_stats obsmean modmean bias abserr ubias vbias uerr verr newtot dbias 

WDIR_(deg) 190.87 183.85 -7.02 25.40 -0.089 0.314 1.15182 1.26613 29488 2.879
Table 1. Surface summary statistics are shown for the March 12-17, 2002 modeling segment for the 12-km VISTAS 
region. 

 



 
Figure 4. Model/obs elevation differences are converted to temperatures and plotted for the US portion of 
the 36-km grid. The temperatures are calculated assuming a standard atmosphere lapse rate of 6.5C/km, 
and practically indicate the temperature biases that might result solely by ignoring elevation-induced 
temperature effects. All of the observing sites are shown, including those sites that we ignore when 
calculating statistics due to their elevations being more than 500m different than the corresponding model 
elevations. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Total_stats obsmean modmean bias abserr r2 ia rmse nbias jtot  

TMP-1.5m_(K) 277.89 276.87 -1.03 2.05 0.910 0.973 2.70059 0.00364 480126  

QV_(g/kg) 4.46 4.63 0.17 0.58 0.936 0.983 0.83009 -0.06401 472271  

RH_(%) 72.10 77.66 5.56 12.25 0.470 0.812 15.92663 -0.11393 472217  

WSPD-regular_(m/s) 3.51 3.76 0.25 1.31 0.496 0.808 1.67567 -99.00000 466042  

WSPD-nocalms_(m/s) 4.14 4.04 -0.10 1.14 0.444 0.805 1.50113 -0.08546 395406  

WSPD-mincalm_(m/s) 3.63 3.76 0.13 1.19 0.502 0.823 1.54222 -0.35402 466042  

SPD-lyr1_(m/s) 3.63 4.47 0.84 1.43 0.485 0.793 1.80626 -0.64790 466042  

CLD_(%) 43.14 37.00 -6.14 24.52 0.414 0.792 35.41226 -99.00000 466016  

CLD2_(%) 43.14 40.98 -2.15 23.30 0.411 0.805 35.95408 -99.00000 466016  

TMP-lyr1_(K) 277.89 277.39 -0.50 1.97 0.906 0.974 2.58621 0.00173 480126  

 
Wdir_stats obsmean modmean bias abserr ubias vbias uerr verr newtot dbias 

WDIR_(deg) 255.83 254.29 -1.54 19.51 0.039 0.048 1.14482 1.21661 466042 1.667 
 
Pcp threshold 

(in) ACC BIAS THREAT ETS FAR HK HSS POD HITS ZEROES MISSES FALSES  

0.01 0.8665 1.0776 0.6672 0.5387 0.2285 0.7145 0.7002 0.8314 151526 338883 30719 44870  

0.05 0.9187 1.0396 0.6962 0.6238 0.1948 0.7792 0.7684 0.8371 105380 414627 20501 25490  

0.10 0.9342 1.0168 0.6881 0.6330 0.1915 0.7804 0.7753 0.8221 82119 446660 17770 19449  

0.25 0.9555 0.9315 0.6602 0.6266 0.1754 0.7474 0.7705 0.7681 48901 491933 14764 10400  

0.50 0.9665 0.9319 0.5626 0.5412 0.2536 0.6800 0.7023 0.6956 24395 522640 10676 8287  

1.00 0.9851 0.8378 0.4887 0.4804 0.2799 0.5976 0.6490 0.6033 8042 549542 5288 3126  
 
Table 2. January 2002 statistical table for the 12-km Full region is shown. 
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Figure 5. VISTAS region monthly temperature biases are plotted for both 12-km and 36-km resolutions. 
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Figure 6. Monthly temperature biases for the 12-km VISTAS region are plotted. The “day” period is defined 
to be 12Z-23Z, while “night” is defined to be 00Z-11Z. 
 
 
 
 
 

 
Figure 7. The 2002 12-km VISTAS “Annual Bakergram” for temperature biases are plotted. The data are 
shown in a calendar-like layout so that the upper left cell represents the bias on the first day of January. 
 
 
 
 
 



 
Figure 8. The January 2002 12-km VISTAS “Monthly Bakergram” for temperature biases are plotted.  The 
hourly biases are shown in a calendar-like layout so that the upper left cell represents the 00Z bias on the 
first day of the month. 
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Figure 9. VISTAS region monthly mixing ratio biases are plotted for both 12-km and 36-km resolutions. 
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Figure 10. Seasonally aggregated VISTAS region mixing ratio biases are shown for both the 36-km and 12-km grids. 
*All months are in 2002, so the winter (djf) bar graph represents a discontinuous time period. 
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Figure 11. Monthly mixing ratio biases for the 12-km VISTAS region are plotted. The “day” period is defined to be 
12Z-23Z, while “night” is defined to be 00Z-11Z. 
 
 
 
 
 
 
 
 



 
Figure 12. Site-specific mixing ratio biases (g/kg) for September 2002 are displayed for each site in the 12-km grid.  
Note that the PAVE date label (January 1, 0) is nonsensical and should be ignored since it is only a placeholder. 
 
 

 
Figure 13. The September 2002 12-km VISTAS “Bakergram” for mixing ratio biases (g/kg) is plotted. The hourly 
biases are shown in a calendar-like layout so that the upper left cell represents the 00Z bias on the first day of the 
month. 
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Figure 14. VISTAS region wind speed (regular) biases (m/s) are plotted for both 12-km and 36-km resolutions. 
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 Figure 15. VISTAS region wind speed (no calms) biases (m/s) are plotted for both 12-km and 36-km resolutions. 
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Figure 16. VISTAS region wind direction errors are plotted for both 12-km and 36-km resolutions. 
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Figure 17. The magnitude of the error wind vector for the VISTAS region is plotted for both 12-km and 36-km 
resolutions. 
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Figure 18.  VISTAS region alternative cloud biases are plotted for both 12-km and 36-km resolutions. 
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Figure 19.  Monthly alternative cloud biases for the 12-km VISTAS region are plotted. The “day” period is defined to 
be 12Z-23Z, while “night” is defined to be 00Z-11Z. 
 
 
 
 
 



 
 
Figure 20.  The July 2002 12-km accumulated precipitation from the Climate Prediction Center is juxtaposed with the 
MM5 accumulated precipitation. 


