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We present a non-local second moment closure model for modeling turbulent mixing in the oceanic mixed layer and the 
atmospheric PBL. The model uses a prognostic equation for the turbulence length scale and incorporates counter-gradient terms 
for scalar fluxes to better simulate mixing under convective conditions. The results are tested against LES data on convective 
mixing. We conclude that while the presence of counter-gradient terms in scalar fluxes is a highly desirable feature, it is 
necessary to reexamine the modeling of third moments. 

 
1. Introduction 
 

Second moment closure is being increasingly invoked 
to model turbulent mixing. The most common form is a 
two-equation turbulence model where prognostic 
equations are solved for the turbulence kinetic energy as 
well as a quantity involving the length scale, while 
algebraic relations are written down for second 
moments. Examples are the Mellor-Yamada type q2-q2l 
models (Mellor and Yamada 1982, Kantha and Clayson 
1994) in geophysical applications to model turbulent 
mixing in the atmospheric boundary layer and the 
oceanic mixed layer, and k-ε models in engineering 
(Rodi 1989). For an excellent review of recent 
developments in oceanic mixed layer modeling (up to 
2001), see Burchard (2002). 

However, a perceived shortcoming of these models is 
the down-the-gradient approximation for turbulent 
mixing that is not accurate when applied to convective 
boundary layers. For example, the heat flux (kinematic) 
is modeled in Mellor and Yamada (1982, MY 
henceforth) and Kantha and Clayson (1994, KC 
henceforth) models as: 

Hw q S
z

θ ∂Θ
= −

∂
l  (1) 

where q is the turbulence velocity, l is the turbulence 
length scale and SH  is the stability function and Θ is the 
temperature. There is ample evidence to suggest that 
under convective conditions, this equation should be 
modified by a counter-gradient term (Deardorff 1972, 
Large et al. 1994, see also Cheng et al. 2002): 
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Closure at the second moment level consists of writing 
conservation equations for second moments of 
turbulence quantities and modeling the higher order 
terms in these equations (for details see Mellor and 
Yamada 1982, Cheng et al. 2002). The full set consisting 
of differential equations for six Reynolds stresses 

i ju uρ− , three turbulent scalar fluxes p ic uρ θ− and scalar 

variance 2θ is nearly impractical for inclusion in large 
three-dimensional models. Consequently, Mellor and 
Yamada (1974) employed simple perturbation expansion 
scheme to derive a hierarchy of increasingly simple 
closure models. The first one is the Level 3 model, in 
which the turbulent stresses and scalar fluxes are 
approximated by algebraic equations obtained by 
neglecting the material derivative and diffusion terms. 
This model consists of algebraic equations for 
turbulence quantities i ju u  and iuθ  and differential 

equations for q2 and 2θ .  Mellor and Yamada (1974) 
also obtained a Level 21/2 model in which an algebraic 
equation is derived instead for 2θ  by arbitrarily 
neglecting the material derivative and diffusion terms in 
the differential equation for 2θ .  

A great advantage of the Mellor and Yamada (1982) 
Level 21/2 model and its variants (see Galperin et al. 
1988, Kantha and Clayson 1994, Kantha 2003, see also 
Cheng et al. 2002) is the ready applicability to the ocean 
and the atmosphere, where the density of the fluid parcel 
is determined by more than one property (temperature 
and salinity in the ocean; temperature, water vapor and 
liquid water in the atmosphere). The Level 3 model 
requires that differential equations be written for the 
variances of these quantities as well as the cross 
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correlations between them. Level 21/2 avoids this 
complication and hence has been quite popular in 
geophysical applications. 

However, while neglecting the material derivative and 
diffusion terms in the scalar variance equations is 
tolerable for stably stratified flows, the approximation 
becomes less accurate under unstable stratification with 
the largest error occurring at the free convection limit. 
The atmospheric boundary layer is mostly convection-
driven and under certain conditions such as during 
nocturnal and winter cooling, convection dominates in 
the ocean also. In free convection, there is a significant 
counter-gradient scalar flux. The Level 21/2 model treats 
turbulent mixing as entirely a down-the-gradient 
process. This has been regarded as its major flaw and 
has led some researchers to construct simple nonlocal 
models (Large et al. 1994 for example) to account for 
the counter-gradient scalar fluxes under convective 
conditions.  

Nakanishi (2001) and Cheng et al. (2002) point out 
that the Level 3 model in the Mellor-Yamada hierarchy 
carries the advantage that it has the capability to produce 
counter-gradient scalar fluxes. This is definitely a 
desirable property for application to the convective PBL. 
While the Level 21/2 model reproduces the convective 
PBL depth reasonably well (it does underestimate it 
somewhat), it does not do a good job in reproducing the 
distribution of turbulence quantities in the convectively-
mixed layer. Nakanishi (2001) developed and compared 
a Level 3 model for the PBL with LES simulations, and 
Nakanishi and Niino (2004) have applied it to the PBL 
with radiation fog. However, both these studies use a 
diagnostic equation for the turbulence length scale, as is 
the usual practice in the atmospheric PBL community. In 
this paper, we develop a Level 3, non-local model with a 
prognostic equation for the length scale for applications 
primarily to the oceanic mixed layer, but potentially to 
the atmospheric PBL as well. 

 
2.  Level 3 Non-local Model and Counter-gradient 
Terms 

 
Nakanishi (2001) and Nakanishi and Niino (2004) 

derive the Level 3 model following the original Mellor 
and Yamada (1974) expansion scheme. Here we follow 
a similar approach but for the case of a quasi-
equilibrium model, which employs a slightly modified 
expansion scheme and has better numerical stability 
(Galperin et al. 1988, Kantha and Clayson 1994, Kantha 
2003). The notation is however that of Cheng et al. 
(2002). 

Without loss of generality, one can orient the x-axis in 
the direction of the mean flow so that the algebraic 
relations for the Reynolds stresses and the turbulent heat 
fluxes (because of the neglect of tendency and diffusion 
terms) become: 
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where τ = B1 l /q is the turbulence time scale; B1 and λi (i 
= 0, 1, … 8) are closure constants. U is the mean 
velocity and Θ is the mean temperature. α is the 
expansion coefficient and g is the gravitational 
acceleration. We ignore salinity (water vapor and liquid 
water in the atmosphere) for the time being.  

Note the appearance of 2θ  in the last equation of the 
set, which in a Level 3 model, is governed by the 
differential equation: 
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2 2 2
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w w

zt z θ
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∂Θ= − −
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where τθ = B2 l /q is another turbulence time scale. Note 
that in Level 21/2 model of the Mellor-Yamada 
hierarchy, the advection and diffusion terms on the LHS 
of Eq. (4) are neglected without any rigorous 
justification so that an algebraic equation can also be 
written for 2θ . This enables 2θ  in the last equation of 
the set (3) to be replaced by wθ . However, this also 
means that counter-gradient terms have to be omitted 
from the expression for the scalar fluxes so that, the 
kinematic heat flux wθ  is represented by Eq. (1) and not 
Eq. (2). If we now write: 

2 2

;   
2 2MC HC
q U quw S w S

z z
τ θ τ∂ ∂Θ

= − = −
∂ ∂

 (6) 

where SMC  and SHC  are stability functions.  Subscript C 
denotes quantities as defined by Cheng et al. (2002). 

If we put MC MC MS S S C′ ′′= +  and  HC HC HCS S S′ ′′= + , where 
primes denote the Level 2.5 model, and double primes 
the counter-gradient terms, it can be shown that  
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where 
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and   
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The overbarred quantities , 1,5id i =  can be obtained from 
Eq. (9) by putting λ8 = 0 in the corresponding 
expressions for di.. 
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Note that the first three equations in set (3) differ from 
those of Cheng et al. (2002): 
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The corresponding values for the non-equilibrium Level 
2.5 model can be found in Cheng et al. (2002, see also 
Kantha 2003) except 
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The Level 3 equivalent of the KC model (in their 

notation) can be found by putting (see Kantha 2003) λ0 = 
(1-C3), ( 24 / 3

1 11 4 24 / )1B A Bλ −= + , λ2 = λ3 = λ4 = 3A1/B1, λ5 = 
B1/(3A2), λ6 = λ7 = (1-C2) and λ8 = B2 (1-C3)/B1. This 
yields: 
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Note that the expressions for ,M HS S′ ′  are the same as 
those for the Level 2 1/2 model (Kantha and Clayson 
1994, Kantha 2003).  The values of the closure constants 
are (Kantha 2003): A1 = 0.58, B1 = 16.6, C1 = 0.0384, A2 
= 0.62, B2 =12.04, C2 = 0.429 and C3 = 0.2. 

Note also that Eq. (2) implies: H
c

H
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θγ
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′ z
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3.  Application to Oceanic Mixing 

 
In applications to oceanic (atmospheric) mixing, we 

must include salinity (water vapor and liquid water).  
The equation set (3) becomes (in KC notation): 
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Additional differential equations must also be written 
down for the temperature and salinity variances, and the 
correlation between temperature and salinity: 
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It is reasonable to assume s sS S Sθ θ= =  and 

2 /S B qθτ τ= = l  since these are all scalars. In addition, 
just as is done in second moment closure for the cross 
correlations of velocity and temperature (Mellor and 
Yamada 1982), it is reasonable to assume that the 
dissipation rate of the cross correlation between 
temperature and salinity is zero. If we neglect the 
material derivative and the diffusion terms also, then the 
production term must also vanish and one gets 0.sθ =  
This is a significant simplification in the analysis.  

In addition differential equations for q2 (twice the 
turbulence kinetic energy) and for a quantity containing 
the length scale (q2 l  in the MY type models) are 
needed:  
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⎟ is the wall function needed to keep the 

turbulence diffusivity coefficient  positive definite in 
the logarithmic region of a turbulent boundary layer; 

is the distance from the wall and  is the von 
Karman constant. 

Sl

wl κ

MY and KC chose  51 3 21.8, 1, 1.33.E E E E= = = =

3 5.0E =  under stable stratification to limit the length 
scale. 5 4.8E = to simulate surface wave breaking effects 
more accurately (Kantha and Clayson 2004).  
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This then constitutes a four-equation second moment 
closure-based nonlocal model of turbulence. The four 
equations to be solved are for 4 quantities:  q2, q2 l (Eq. 
18) and 2 2,sθ (Eq. 17). Thus we have added 2 additional 
equations to include counter-gradient terms absent in the 
Level 2 1/2 model. We will evaluate the performance of 
this model by comparison with LES data on laboratory 
convection experiments. Note that the counter-gradient 
terms are assumed to be zero when the stratification is 
stable. 
 
4. Application to Laboratory Experiments on 
Convection 

 
Willis and Deardorff (1974) and Kantha (1980) 

performed experiments on the deepening of convective 
mixed layers. Kantha (1980) used a two-layer stably 
stratified fluid with salt flux at the top to drive 
convection and measured the deepening rate of the 
mixed layer. He observed that the ratio of the buoyancy 
flux at the entraining buoyancy interface to the imposed 
buoyancy flux Qb/Q0 clusters around –0.2, but can vary 
within the range 0 to 1, depending on the stability of the 
entraining interface as indicated by a bulk Richardson 
number. The advantage of this setup is that the 
entrainment rate remains constant as long as the 
buoyancy flux is kept constant. However, these 
experiments are harder to simulate numerically. 

Willis and Deardorff (1974) measured the deepening 
rate of a convective mixed layer in an initially linearly 
stratified fluid heated from the bottom. In this case, the 
entrainment rate decreases as time goes on and the 
buoyancy interface grows progressively stronger. The 

mixed layer depth is observed to follow ( )1/ 2
0

0
m N

B t
D c= , 

where B0 is the imposed buoyancy flux and N0 is the 
buoyancy frequency of the initial stratification. Mironov 
et al. (2000) have simulated this experiment numerically 
by using LES. Their results will be compared with the 
current model. 

Following Burchard (2001), the numerical simulation 
starts with an initial  linear stable stratification of 1 oC 
m-1 (corresponding to N0 of 2.56 x 10-4 s) with a surface 
temperature of 22 oC. A heat loss of 100 W m-2 is 
imposed at the top of the water column corresponding to 
an imposed buoyancy flux of 0.52 x 10-7 m3 s-2. the 
salinity is kept constant at 35 psu.  The model is 
integrated for 3 days. At the end of 3 days the mixed 
layer is roughly 12 m deep, a result that almost all 
models reproduce reasonably well. The nonpenetrative 
(zero entrainment at the buoyancy interface) value (c ~ 
1.41) for Dm is 11.6 m. So the convective turbulence 
produces a difference of only about 4%, and this is why 
it is hard to distinguish between the performances of 
different models. However, the profiles of temperature 

and various turbulence parameters obtained from LES 
simulation are more critical discriminators. The data are 
normalized by the length scale Dm, the Deardorff 
convective velocity scale and the 

convective temperature scale 

( )1/ 3
* 0 mw B D=

( )* 0
/w wθ θ= * . We will 

present the results of Level 21/2 and Level 3 models 
compared to LES simulations of Mironov et al. (2000). 

 Mailhot and Benoit (1982) and Large et al. (1994) 
have used the following expression for the counter-

gradient term: 
( )

0
0

*
c H

m

w
c K

w D
θ

θ
γ =   (19) 

where c0 ~ 5.  This value can be compared with that 
produced by the Level 3 model. Large et al. (1994) 
tuned their model to produce Qb/Q0 = -0.2 and obtained 
a mixed layer depth of 13 m at the end of 3 days. 
Because of the quasi-slab nature of their mixed layer, 
they obtained a near-uniform temperature in the mixed 
layer except at the surface and the buoyancy interface. 
 
5. Concluding Remarks 
 

At a first glance, the non-local Level 3 model with 
counter-gradient terms should be expected to perform 
better than the local 2 1/2 model. However, while the 
presence of the counter-gradient terms is certainly 
desirable under convective conditions, the modeling of 
the turbulent diffusion terms needs to be refined. This 
means essentially that the third order moments must be 
looked at more carefully, as Cheng and Canuto (1994) 
and Canuto et al. (2001a,b, 2002) have suggested. 
Canuto et al. (1994) obtained very good agreement with 
LES data, but their model involved differential equations 
for 2w , 2u , wθ , 2θ and ε (and a quasi-normal-closure-
based algebraic relationships for third moments). The 
question is: Can a much simpler model such as the one 
presented here be made to perform satisfactorily for 
convective boundary layers? 
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