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1. Objectives 

We intend to show that measured and modeled 
averages of latent heat flux over large areas can be 
scaled, if we know how the ensemble spatial variance of 
the independent variables depend on the1 spatial 
resolution.  The question arises that one often has mean 
fields of temperature, water vapor concentration, and 
net radiation, which may or may not produce the correct 
ensemble average latent heat flux.  The spatial 
ensemble average of a product may be expressed as: 
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where r is the correlation coefficient, and σ is the spatial 
standard deviation.  The above relationship may be 
applied to the independent variables of the Penman-
Monteith equation. 

As our starting point, we take the geophysical 
tutorial Daisyworld (Watson and Lovelock 1983), 
modified for moist, dark and dry, bright daisies, or 
fictional plant functional types.  We then move on to a 
spatially explicit form of Daisyworld with real plant 
functional types, and examine its spatial scaling.  This 
paper adds a new element to Daisyworld: land-surface 
biophysics in the radiative energy balance – we 
consider the additional effects of surface and 
aerodynamic resistance on the surface energy balance. 

 
2. Methods 

The composition of grid cells is determined by 
who lives in the cell, the options being a plant type or 
bare ground.  In the one-dimensional Daisyworld with 
moist and dry daisies, the surface energy balance is 
coupled to an equilibrium planetary boundary layer 
(PBL), which in turn feeds back to the surface energy 
balance.  Stomatal resistance is prescribed.  The 
equilibrium boundary layer is modeled according to: 
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where Zi is the PBL depth, Hv is a virtual surface heat 
flux (a linear combination of the latent and sensible heat 
fluxes), ρ is the density of air, cp is the heat capacity of 
air, and γ is the psychometric constant. 
 Competition between daisies in the one-
dimensional Daisyworld is modeled using Watson and 
Lovelock’s (1983) original coupled differential equations: 
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where ndark and nbare are the total area of dark daisies 
and bare ground, respectively, β is the areal growth rate 
of daisies, and Pdeath is the probability of mortality.  

Spatial competition between plant functional 
types is modeled using a cellular automaton, which is 
discretized in time, space and state (van Bloh et al. 
1999).  The scheme is based on an eight-cell Queen’s 
neighborhood (as opposed to a four-cell Rook’s 
neighborhood).  Given bare ground, the probability of 
colonization in a uniform neighborhood is: 
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where ptype refers to the probability of colonization by a 
functional type, n refers to the number of neighbors, and 
β refers to the area growth rate.  Among unlike 
neighbors, the general probability P is composed as: 
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 An essential part of Daisyworld is the parabolic 
response of photosynthesis to temperature. 
 
3.  Results and Discussion 

The zero-dimensional mean-field model, 
coupled to an equilibrium PBL, yielded trade-offs of 
colonized ecosystem area with respect to stomatal 
resistance (Figure 1).  This result shows that plants 
which “live fast and die young” with respect to stomatal 
resistance win competitively against their more 
conservative neighbors.  This is exactly the situation at 
a Fluxnet site in the Mediterranean ecosystem of Ione, 
California (38:25:54 North,120:57:58 West), where 
spendthrift Quercus douglassi outcompete their 
evergreen neighbors.  Deciduous oaks at Ione have 
pronounced seasonality in photosynthetic capacity, 
which correlates with stomatal conductance. 
 The spatially explicit model demonstrates what 
occurs when an explicit feedforward effect is 
programmed into the life-cycle of plants.  In an 
instructive accident, the first author temporarily dealt 
with the uncertainty in the plant death rate by linking it to 
the plant growth rate, resulting in equilibrium between 
the growth rate and the death rate.  This resulted in a 
feedforward effect in which the excessive death rate 
randomized the spatial distribution of plants (Figure 2).  
The results are less clumped than one would expect 
from this model, and do not compare well with reality. 

 



 
Figure 1.  Trade-offs in colonized areal extent between 
moist dark, and dry bright plant functional types. 
 
 

 
 
Figure 2.  Occupancy of deciduous (white) and 
evergreen (black), with equilibrium between the growth 
rate and the death rate. 
 
The fact that the climatological forcing in this version of 
the model lacked stochasticity also worked to determine 
the patterns of spatial organization (Fernandez-Illescas 
and Rodrigues-Iturbe 2004). 

To assess how well our results correspond to 
reality, we plotted the common log of the spatial 
variance against the common log of the spatial 
resolution.  The result is similar to a power spectrum.  
However, the total variance has individual components 
which beg to be understood: 
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where z(i) is the state variable as a function of location, 
f(i) is a secular trend in space, s(i) is the contribution of 
local spatial autocorrelation, and ε is the contribution of 
aleatory uncertainty.  From this perspective, the slopes 

in Figure 3 may represent the contributions of longwave 
stochasticity.  Stochasticity does not only occur at local 
spatial scales; it also occurs at large spatial scales. 
 Our results show more longwave variance than 
a Poisson distribution.  Our results also show “windows” 
of scaling for which multiple slopes are indicated.  In 
comparison, the regression between the variance and 
the resolution of NDVI for the oak savanna field site 
yielded exponents of ~ -0.4.  
 

 
 Figure 3.  Spatial scaling of Daisyworld. 
 
 In future work, stochasticity in climatological 
forcing will influence the spatial scaling of oak-savanna 
ecosystems (Fernandez-Illescas and Rodrigues-Iturbe 
2004).  Drought-induced mortality will be modeled after 
Martinez-Vilalta et al. (2002).  The surface energy 
balance  and photosynthetic temperature response 
functions will both be corrected for nonlinearities in 
surface temperature. 
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