
 

1. INTRODUCTION

 

In 2001, we (Lappen and Randall, 2001a-c; hereafter, 
LR-a,b,c), presented a “higher-order mass-flux model” called 
ADHOC, which represents the PBL’s large eddies in terms of 
an assumed joint distribution of the vertical velocity and scalars 
such as potential temperature or water vapor mixing ratio. AD-
HOC uses the equations of higher-order closure to predict se-
lected moments of the assumed distribution, and diagnoses the 
parameters of the distribution from the predicted moments. 
Once the parameters of the distribution are known, all moments 
of interest can be computed. This version of ADHOC was in-
complete, in that the horizontal velocity components and the 
“pressure terms” involving covariances between pressure and 
other variables were not incorporated into the “assumed dis-
tribution” framework. Instead, the vertical flux of horizontal 
momentum and the pressure terms were parameterized using 
standard methods.

This talk will describe an updated version of AD-
HOC (ADHOC2) that includes consistent representations of 
the momentum fluxes and pressure terms. We assume idealized 
geometries for the PBL’s coherent structures,, consistent with 
the mass-flux framework. This means that we move beyond as-
sumed 

 

probability

 

 distributions, and towards assumed 

 

spatial

 

 
distributions. In particular, we consider idealized versions of 
two commonly occurring coherent structures, namely un-
sheared plumes (cylindrical geometry with the cylinder’s axis 
perpendicular to the ground; Fig. 1) and sheared rolls (homo-
geneity in one horizontal direction; Fig. 4). We use the assumed 
geometries to derive velocity fields. Covariances such as mo-
mentum fluxes are then constructed directly, by spatial inte-
gration. The expressions that we obtain for these higher 
moments contain unknown parameters related to the geometry 
of the circulations. These include the radii of the updraft and 
downdraft for the unsheared plume case, and the tilt, orienta-
tion angle, and cross-roll width of the roll circulation. We pro-
vide a method for diagnosing these parameters using quantities 
that are available in ADHOC2. To our knowledge, this is the 
first time that a PBL parameterization has been used to diag-
nose such parameters. Tests of the new parameterization show 
encouraging agreement with statistics computed from large-
eddy simulations.

 

2. MOMENTUM FLUXES

 

The mass-flux approach has been used to parameter-
ize momentum transports by deep cumulus convection (e.g., 
Wu and Yanai, 1994), but with little in the way of supporting 
tests. To our knowledge, the only study that had investigated the 
use of standard mass-flux formulae to represent momentum 

fluxes in a PBL model is that of Brown (1999). In his shallow-
cumulus study, he found that the representation of momen-
tum fluxes with an assumed-joint distribution was poor com-
pared with using the same approach for scalar fluxes. Here,
we have better luck using an assumed 

 

spatial

 

 distribution as
discussed below.

 

2.1  Axisymmetric free convection

 

Consider an ensemble of axisymmetric convective 
plumes in the absence of a mean flow. Obviously in this case 
there is no vertical flux of horizontal momentum. Plumes in 
free convective PBLs have been extensively investigated using 
both observations (e.g., Willis and Deardorff, 1974) and LES 
(e.g., Schumann and Moeng, 1991). 

To analyze the circulation associated with a plume, 
we adopt cylindrical coordinates, with radial coordinate . In , 
the inner cylinder of radius  (the subscript stands for 
“inner”) represents a convective “draft

 

1

 

” across which the ver-
tical velocity is horizontally uniform, while the annulus be-
tween the inner and outer cylinders represents the 
compensating draft of the opposite sign. The radius of the outer 
cylinder, i.e., the total diameter of the plume, is denoted by , 
where the subscript stands for “outer”. This is depicted in Fig. 
(1). In this case, we will define the inner (outer) draft to be the 
updraft (downdraft). The fractional area occupied by the up-
draft (inner draft) is 

. (1)

We assume that the vertical velocity and thermody-
namic variables are horizontally uniform within the inner cyl-
inder and the surrounding annulus, but in general they are 
discontinuous across . The radial velocity and pres-
sure must vary radially, as discussed below.

We also assume that  is independent of height and 
time, and that the plumes are “closely packed.” We use the 
mass-flux quantities of vertical velocity, along with the conti-
nuity equation to work out the radial dependence of the radial 
velocity component. We assume that there is no velocity com-
ponent in the azimuthal direction. We also derive the boundary 
conditions that apply across . Once we determine 
the radial velocities, we work out expressions for the momen-
tum fluxes. In addition, we propose a method to determine the 
height-independent radius of the plume, .

Over the updraft, we can use  and radially 
integrate the anaelastic continuity equation, 

 

1. Here “draft” can refer to either an updraft or a 
downdraft.
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, (2)

to get an expression for the radially velocity as a function of
. This gives

 for

 

 .

 

(3)

We can do the same thing over the downdraft (using
) and get

 for . (4)

Here we have used the boundary conditions

 and . (5)

Suppose that , , , and  were 
known. Then, as outlined above,  could be determined 
from the continuity equation. The perturbation pressure field 
could then be determined, using methods described in the next 
Section. ADHOC gives us values of , , and the up-
draft area fraction, . If we know either  or , we 
can determine the other using Eq. 1. The problem is that both 

 and  are actually unknown. Next, we present a meth-
od to determine , 

 

keeping in mind that it must be indepen-
dent of height

 

.

Our approach starts from the observation that the 
large-eddy kinetic energy per unit mass in the horizontal part of 
the motion, , will tend to increase as  increases. 
This ideas suggests that we can determine  from . We 
write

. (6)

Substituting the solution for  derived above, and using
(1), we find that

. (7)

ADHOC2 determines  using the methods of 
LR, and it also determines , which is the vertical average 
of  through the depth of the PBL. Using the (height-inde-
pendent) value of , we can diagnose the (height-inde-
pendent) diameter of the plumes, . We can then use 1 to 
diagnose . We can then solve for the two-dimensional 
distribution of the radial velocity using Eqs. 3-4. The kinematic 
structure of the plume is thus fully determined. 

Using the LES model of Khairoutdinov and Randall 
(2003), we performed a simulation of Wangara day 33, which 
was a clear-convective day. To test the parameterized expres-
sions for , we vertically integrate Eq. 7 and use the LES 
results to diagnose , , , and  to obtain  and 
a height-independent value of  as described above. This 
method yields  m. 

We used our numerical results in Eqs. 3-4, with 
 m, to determine the distribution of the radial ve-

locity. The resulting radial and vertical velocities are denoted 
by the arrows plotted in Fig. (2). The longest arrows in the plot 
represent a particle speed of approximately 2 m s
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. The dashed 
lines in the figure represent the height-dependent updraft-
downdraft boundaries. The diagnosed radial velocity field 
shows convergence down low and divergence up high. Due to 
the fact that  is a function of , we see an expected jump 
across the updraft-downdraft edge.

The results of the simulation were then used to test 
our formula for  (Eq. 7), to see how sensitive it is to . We 
use the LES value of  in Eq. 1, to determine  for dif-
ferent values of . We then use the LES values for , and 

 in Eq. 7 and calculate . In Fig. (3), the results are 
compared with the profile of  as diagnosed from the LES re-
sults. The best overall agreement near the surface and the top of 
the PBL occurs for  m, while the best agreement 
near the mid-level of the PBL is for  m. The agree-
ment with the diagnostic estimates of  given above is en-
couraging.

Finally, we note that the vertical momentum flux 
( ) can be determined using a formula analogous to Eq. 6.

 

2.2  Rolls

 

Next, consider idealized “roll” circulations, which 
are horizontally uniform in one direction. Our approach that is 
broadly similar to that used, in the preceding section, to analyze 
plumes. Key differences are that rolls are expected to occur in 
the presence of significant shear of the horizontal wind, and 
they are expected to transport horizontal momentum vertically. 
We simulated the roll case of Glendening (1996; G96) with the 
LES model described by Khairoutdinov and Randall (2003). 
All results in this Section are compared with this LES run.

To represent rolls, we adopt Cartesian coordinates 
and assume alternating updrafts and downdrafts, aligned at an 
angle  from the -axis (Fig. 4). 

Let  denote the boundary between one 
particular downdraft and one particular updraft, with the up-
draft on the side of the larger values of  (Fig. 4). The “op-
posite” wall of the updraft is at , so 
that the updraft occupies the region . A neigh-
boring downdraft occupies the region 

, where  is the 
total width of the roll, i.e., 

, (8)
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and  is the width of the downdraft. The fractional area
occupied by the updraft is 

. (9)

We assume that 

. (10)

Here again we integrate the continuity equation to 
obtain the horizontal velocities  seperately in the updraft 
and downdraft regions (  and  respectively). 
This results in

 for (11)

and

 for . (12)

To obtain 11-12, we used 9 and the fact that the mass flow
rates are continuous across  and . 

The next step is to work out , the departure of  
from its horizontal average, , which can be determined by the 
integral

. (13)

We substitute Eqs. 11-12 into Eq. 13 and subtract the result
from Eqs. 11-12 to get

for (14)

and

for . (15)

The vertical flux of  momentum can then be determined by
Eqs. 14-15 and 

(16)

A similar process can be done to determine the variance of the
 momentum. According to 16, the momentum flux is differ-

ent from zero only when the tilt of the updrafts and down-
drafts, defined by

, (17)

is different from zero. Using mass-flux formulas, we can write
16 as

. (18)

In model that predicts both  and  as func-
tions of height, we can use 18 to diagnose the tilt. From 9, we 
see that 

. (19)

Using 18-19, we obtain

, (20)

and

. (21)

If , ,  and  are known, we can di-
agnose  and  from Eqs. (20) and (21). ADHOC2 
predicts the latter 3 quantities and we have developed a method 
to determine  (using a method similar to that used to diagnose 

 in the clear convective case; see Lappen and Randall, 
2004).

Using this value of  and the LES values of , 
, and , we plot the tilt in Fig. (5). Here,  is the 

tilt of the wall to the left side of the updraft, while  is the 
tilt of wall on the right side of the updraft (see Fig. 4). The tilt 
ranges between 0% and 10% throughout the PBL. Plots of ob-
served and numerically simulated rolls show this to be a rea-
sonable number (G96). 

At this point, we have a complete picture of the roll 
including tilt, and circulation. We can use Eqs. (11)-(12) along 
with LES updraft and downdraft vertical velocities to get the to-
tal wind vector. Figure 5 shows the diagnosed roll structure.
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 Figure 1: Idealization of the clear convective geometry. The 
inner and outer cylinders are concentric circles. 
Ru (Rd) is the distance from the updraft center to 
the outer edge of the updraft (downdraft). Note 
that Ru to varies with height.
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 Figure 2: Parameterized radial velocity obtained for the Wangara case. The solid line is the updraft center, while the 
dashed lines represent the updraft-downdraft border. The longest arrows shown (near the bottom) are approxi-
mately 2.0 m/s.
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 Figure 3: Comparison of the LES and parameterized (Eq. 
7) horizontal TKE for different values of .Ro

 Figure 4: Cross-sections through the roll: (a) A vertical cross 
section--  and  are the widths of the updraft 
and downdraft r;  and  represent mass 
entrained across a draft edge. 
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 Figure 5: Picture of the parameterized roll and its parameterized circulation. 
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