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ABSTRACT 
Estimates of small-scale turbulence from 

numerical model output are produced from local 
estimates of the spatial structure functions of 
model variables such as velocity and temperature. 
The key assumptions used are the existence of a 
universal statistical description of small-scale 
turbulence and a locally universal spatial filter for 
the model variables. The shape of the model 
spatial filter is determined by comparisons with 
published results for the spatial structure functions 
derived from the GASP and MOZAIC aircraft data 
collected at cruising altitudes. This universal filter 
is used to estimate the magnitude of the small-
scale turbulence, i.e., scales smaller than filter 
scale. A simple yet universal description of the 
basic statistics (such as the probability density 
function and the spatial correlation) of these 
small-scale turbulence levels in the upper 
troposphere and lower stratosphere is proposed. 
This technique can be used to diagnose and 
forecast upper level turbulence, and statistical 
evaluations of its performance in that regard are 
presented. 
 
 
1. INTRODUCTION 

Commercial, air taxi, and general aviation 
(GA) encounters with turbulence continue to be a 
source of occupant injuries, and in the case of GA, 
often of fatalities and loss of aircraft.  According to 
a recent MCR Federal survey of NTSB accident 
data for the years 1983-1997 (Eichenbaum, 2000), 
turbulence contributed to 664 accidents leading to 
609 fatalities (mostly GA), 239 serious and 584 
minor injuries, for an estimated average annual 
societal cost of $134 M. Of significance 
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here is that the MCR Federal report also 
estimated that only about 30% of these upper 
level incidents were forecast based on previous 
turbulence pilot reports (PIREPs) or valid 
AIRMETs.  Clearly, even with this most liberal 
definition of a forecast, there is much room for 
improvement. 

Theses numbers underscore the difficulties 
associated with forecasting turbulence, either by 
manual means or by automated forecasting 
systems. A major source of the difficulty is related 
to the fact that, from the meteorological 
perspective, turbulence is a “microscale” 
phenomenon.  In the atmosphere, turbulent 
“eddies” are contained in a spectrum of sizes, 
from 100s of kilometers down to centimeters.  But 
aircraft bumpiness is most pronounced when the 
size of the turbulent eddies encountered are about 
the size of the aircraft; for commercial aircraft this 
would be eddy dimensions of about 100m.  It is 
impossible to directly forecast atmospheric motion 
at this scale, now or even in the foreseeable 
future.  Fortunately, it appears that most of the 
energy associated with eddies of this scale 
cascades down from the larger scales of 
atmospheric motion (e.g. Dutton and Panofsky, 
1970, Cho and Lindborg 2001), which may in fact 
be resolved by current weather observations and 
numerical weather prediction (NWP) models.  
Assuming the large-scale forecasts are sufficiently 
accurate, the turbulence forecasting problem is 
then one of identifying large-scale features that 
are conducive to the formation of aircraft scale 
eddies. 

But when using NWP models as a basis for 
turbulence forecasts, it is important to realize that 
the smallest scales resolvable by the model (i.e., 
those scales closest to the scales of aircraft 
turbulence) are in fact underrepresented because 
of explicit and implicit smoothing and filtering and 
other underresolution effects (e.g., Frehlich and 
Sharman 2004).  In most NWP models these 
effects are mostly undocumented since emphasis 
has traditionally been on accurate representations 



of the larger scale motions that contribute most 
significantly to meteorological phenomena, and to 
some extent, the need to produce numerically 
stable solutions rather than to describe the details 
of the turbulence field. 

In this paper we develop methods to quantify, 
for certain atmospheric regimes, the effects of 
spatial filtering in NWP models, and consequently 
produce more accurate estimates of the small-
scale turbulence.  Here the term “small-scale” will 
be used to refer to the smallest resolvable scales 
of an atmospheric dynamical model (i.e. scales 
smaller than the filter scale), which with suitable 
extrapolation, may be used to infer the magnitude 
of “subgrid” scale motions as well. 

The first step in the process is to assess the 
statistical properties of the spatial variability of the 
atmosphere on scales both resolvable and 
unresolvable by current NWP models (i.e., scales 
smaller than about 100 km).  The most reliable 
statistical data available on these scales is 
probably the Global Atmospheric Sampling 
Program (GASP) (Nastrom and Gage 1985) in the 
US and MOSAIC (Measurements of Ozone by 
Airbus In-service airCraft) program in Europe 
(Lindborg 1999; Cho and Lindborg 2001).  This 
data was obtained by specially instrumented 
commercial aircraft collecting wind and 
temperature data at aircraft cruise levels 
(approximately 8-10 km MSL, i.e., in the upper 
troposphere and lower stratosphere) over several 
thousand flight legs. The statistical analyses of 
these datasets demonstrated rather convincingly 
that the atmospheric wind and temperature spatial 
spectra at middle latitudes and upper levels 
exhibit a k-5/3 behavior where k is the horizontal 
wavenumber (or equivalently exhibit an s+2/3 
behavior for the second-order structure function, 
where s is the separation) from scales ranging 
from about 400 km down to 1 km.  Flights of 
research aircraft also show a persistent k-5/3 scale 
dependence (Sharman and Frehlich 2003).  An 
example of velocity and temperature spectra from 
data collected by NCAR’s C130 research aircraft 
during the INDOEX campaign is shown in Fig. 1. 

The cause of the observed k-5/3 statistical 
behavior is at the moment not completely 
understood.  Discussions of competing theories 
are provided, for example, by Tung and Orlando 
(2003), Cho and Lindborg (2001), and by Koshyk 
and Hamilton (2001) within the context of recent 
simulation results which seem to point to a 
downscale cascade.  For our purposes, it is 
sufficient merely to accept the k-5/3 spectral 
behavior as a universal statistical description of 
mid-latitude upper-level "turbulence" so that this 

behavior can be used as “truth” to quantify the 
underrepresentation of the small-scale motions in 
mesoscale models.  Depending on the model 
numerics and filtering used, a mesoscale model 
will in general show an energy deficit from this 
assumed universal statistical behavior, and 
generally this deficit will be largest for the smallest 
scales resolved by the model (Frehlich and 
Sharman 2004; Skamarock 2004). This model-
dependent deficit can be estimated from the s 
dependence of model-derived second order 
structure functions compared to the expected s2/3 
behavior.  For this comparison the use of structure 
functions is preferred since they permit accurate 
measurements of turbulence over small 
measurement domains and are more robust 
compared with spectral methods which suffer from 
windowing and aliasing effects (Frehlich 1997; 
Frehlich et al. 1998, 2001).  Once the spatial filter 
of the model has been determined, information 
about turbulence levels can be extrapolated to 
scales smaller than the model resolution to 
provide information about the energy content of 
the grid scale and sub-grid scale turbulent 
motions. 

 
 

2.  STATISTICAL DESCRIPTION OF 
UPPER_LEVEL TURBULENCE 
 
We assume that the spatial statistics of upper-

level turbulence can be described by spatial 
structure functions (Lindborg 1999) (or 
equivalently spatial spectra).  Longitudinal and 
transverse second-order structure functions are 
defined as 
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where vL (x) and vN(x) are the velocity 
components along and transverse to the 
displacement vector s=(x,y,z), respectively, and 
<> denotes an ensemble average.  Both the 
GASP and MOSAIC campaigns produced 
essentially the same average statistics for mid-
latitude upper-level turbulence.  The best-fit 
models to the combined data sets were derived by 
Lindborg (1999) as 
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Note that for small spacings s, the first term 

dominates, and the structure functions recover the 
Kolmogorov form of fully developed 3D isotropic, 
in which case the turbulence intensity, as 
measured by the eddy dissipation rate ε, is related 
to DLL (s) and DNN (s) [Monin and Yaglom (1975)  
Eq. (2.17)] through 
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where CK ≈2 is the Kolmogorov constant.  For 
fully-developed 2D isotropic turbulence analogous 
relations can be written as (Lindborg 1999) 

 
2/3 2/3 2/3 2/3( )  2 LL KD s C s sε   ε                   (6) = ≈

2/3 2/3 2/3 2/35 10( )   
3 3NN KD s C s sε   ε  = ≈            (7) 

 
where ε as used here, may not strictly satisfy the 
definition of 3D turbulence. 

An empirical function Dmodel(s) for the model-
derived structure functions can be determined to 
explicitly account for the model-dependent filter 
function.  The simplest such empirical function 
has the form 
 

   cormodel ref ( )    ( )  ( )  D s K D s D s=               (8) 
 

where K is a constant and cor  ( ) D s describes the 
correction produced by the model filter, and Dref(s) 
is a normalized form of the in-situ measured 
structure functions, e.g., the Lindborg model.  
Note that according to the analysis of the GASP 
data by Nastrom and Gage (1985) and of the 
MOZAIC data by Cho and Lindborg (2001), the 
reference structure function model depends 
weakly on the measurement region, i.e., altitude, 
latitude, and longitude, but this effect will be 
ignored here. If the reference normalized 
longitudinal structure function is taken as the 
Lindborg best-fit model  Eq. (2), i.e., 
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then the correction function cor ( ) D s should 
approach unity for large separations where the 
effects of the spatial filter are negligible.  For small 
spacings s, the model structure function Dmodel(s) 
should approach s2 to reflect the spatial smoothing 
of the fields at the smallest scales.  Therefore, we 
select the following simple empirical function 
which satisfies both these requirements 
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where p1 is the length scale of the model filter and 
p2 is a fitting parameter.  The best-fit constant  
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provides an estimate of ε.  Alternatively, if the 
reference normalized transverse structure function 
is taken as the Lindborg 2D isotropic model 
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where d1=(9b1-3c1)/(5a1), d2=9c1/(5a1) and the 
best-fit constant 
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provides an estimate of ε.  The unknown 
parameters p1 and p2 are determined by 
minimizing the chi-squared error (Press et al. 
1986) between the empirical model and the 
average structure functions derived from the NWP 
model.  For example, Fig. 2 shows the velocity 
structure functions derived from RUC20 NWP 
analyses (Benjamin et al. 2004).  The same 
analyses on the RUC20 forecasts produce almost 
identical results.  Note that the best-fit model 
structure function is almost identical to the 
measured structure function.  Also shown in Fig. 2 
is the theoretical calculation of the longitudinal 
(LL60 km) and transverse (NN60 km) structure 
functions assuming the model values are given by 
a 60 km grid cell and assuming the atmospheric 
statistics are described by the 2D isotropic 
Lindborg.  As can be seen, the RUC20 analysis is 



well approximated by the 60 km grid cell filtering 
for the longitudinal structure function while there is 
a small error for the transverse structure function. 
This heavy filtering is typical of NWP models. 

The RUC20 model also provides diagnostic 
estimates of the vertical velocity w (related to the 
vertical p velocity ω) and should also contain 
information about the small-scale turbulence.     
Unfortunately, in situ truth measurements of 
vertical velocity statistics are not available from 
aircraft data as they are from the GASP and 
MOZAIC data for horizontal velocities, however, a 
simple model is provided from turbulence theory.  
We propose a universal model for the structure 
function of the RUC20 w field as 
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where 

  

 2K = 2σw                                                        (15) 
 

and σw
2 is the variance of the vertical velocity.  

The yearly average of the RUC20 w structure 
function analyses at 10 km altitude and the best fit 
model is shown in Fig. 3 with the characteristic 
constant value of K=2σw

2 at large lags indicating 
uncorrelated vertical velocity fluctuations.  

 
 
3. ESTIMATES OF LOCAL TURBULENCE 

 INTENSITY 
 
Various methods have been proposed to 

estimate turbulence associated with unresolved 
scales (i.e., subgrid scale or sgs) from resolved 
scales of the numerical model fields.  The most 
common are based on prognostic equations of the 
sgs turbulent kinetic energy (TKE) (e.g., Deardorff 
1970; Moeng and Sullivan 1994; Pielke 2002).  
This requires assumptions about the local 
conditions to connect resolved scale gradients to 
sgs TKE.  Since the horizontal statistics of the 
velocity and temperature fields have a robust 
description, we propose instead to estimate local 
(i.e., all scales less than the model filter cutoff, 
including subgrid scales) turbulence intensities 
based on the assumption of a universal spatial 
filter for the model as outlined in the previous 
section.  A similar approach has been used to 
estimate the statistics of small-scale turbulence 
from lidar measurements using a correction for 

the spatial average of the lidar pulse (Frehlich 
1997; Frehlich et al. 1998; Frehlich and Cornman 
2002).  If the model does indeed have a universal 
filter function, i.e., the functional form of the 
structure functions is independent of location, then 
local estimates of the level K (or equivalently of ε 
2/3 or 2σw

2) can be produced by a best-fit to the 
shape of the structure functions using the 
previously derived longitudinal and transverse 
structure functions, respectively (Frehlich and 
Sharman 2004).  For the horizontal velocities the 
longitudinal structure functions seem to have a 
slightly better defined s2/3 region (cf. Fig. 2), so we 
use the average of the two longitudinal structure 
functions (east-west and north-south) to produce 
local estimates of ε.  In Fig. 4 plots are provided of 
average longitudinal structure functions of 
horizontal velocity at various locations in a RUC20 
model field at an altitude of 10 km and the 
corresponding estimates of ε1/3 derived from a 5x5 
point horizontal domain (100x100 km).  Note that 
at each location the fit is quite good, and the 
shape of the structure functions is approximately 
the same, but the levels ε1/3 can differ 
considerably. 

In a similar manner, local estimates of the 
turbulence intensity σw can be produced from the 
best-fit constant K to the structure functions of w.  
Examples of a few structure functions and the 
corresponding estimates of σw are shown in Fig. 
5.  Note that the w structure functions have more 
variability than the structure functions of horizontal 
velocity shown in of Fig. 4. 

 
 

4. ESTIMATES OF THE PROBABILITY  
    DENSITY FUNCTION OF LOCAL  
    TURBULENCE 
 

The statistical description of the structure 
function estimates of the local turbulence levels ε 
or σw is fully described by the probability density 
function (PDF).  The PDF of the variations in the 
spectral level of the GASP data is well described 
by a log-normal distribution (Nastrom and Gage 
1985).  This is equivalent to a log-normal PDF for 
ε,  which is completely defined by the two 
parameters: <log ε> or the median value ε50 and 
the standard deviation σlogε  of log10ε.  From the 
GASP data, Frehlich (2001) derived these 
parameters as ε50=2.66x10-5m2s-3, σlogε=0.63, and 
in addition, <ε>=7.64x10-5 m2s-3.  The PDF of the 
RUC20 estimates of ε  from local structure 
function estimates over an LxL sub-domain for 
two values of L are compared to the log-normal 



model with these parameters in Fig. 6.  It should 
be pointed out that the estimates of ε from the 
GASP data were produced from the spectral level 
at a wavelength of 400 km for flight legs longer 
than 2400 km (i.e., along a line) which will have 
different statistics than the RUC20 estimates 
which were produced over a square domain  (see 
Frehlich and Sharman 2004). However, all the 
PDFs agree well with the log-normal model, 
although the RUC20 derived estimates depend on 
the averaging length L. 

 
 

5. THE USE OF STRUCTURE FUNCTION 
             ANALYSES TO DIAGNOSE UPPER-  
             AND MID-LEVEL TURBULENCE 
             CONDITIONS 

 
Over the years there have been continuous 

efforts to nowcast and forecast the occurrence 
aircraft-scale turbulence through the use of 
various manual and automated turbulence 
diagnostics derived from NWP model output (e.g., 
Ellrod and Knapp 1992, Marroquin 1998, Tebaldi 
et al., 2002).  Most of these turbulence 
diagnostics do not have a rigorous basis from 
turbulence theory, but rather relate expected 
turbulence intensities to larger scale features in 
the atmosphere, such as upper-level fronts and jet 
streams.  However, we can apply the ideas 
presented in the previous sections to use NWP 
model-derived structure functions to produce 
patterns of turbulence intensities ε1/3 and σw as 
shown in the example of Fig. 7.  These contours 
were produced from a particular RUC20 analysis 
at 10 km.  Note the high spatial variability in both 
fields.  For reference Fig . 8 shows the associated 
synoptic situation.  It is apparent in this and other 
cases we’ve looked at, that large values of ε1/3   
correlate well with large shears that may be 
associated with an upper level jet for example, but 
the larger values of σw seem to correspond to 
regions of convective activity.  This these two 
diagnostics seem to be identifying different 
turbulence sources. 

Currently, the accuracy of the derived values 
of ε1/3  and σw (or any other turbulence diagnostic) 
can be assessed from the only routine 
observations of atmospheric turbulence available, 
reports of encounters with turbulence by pilots 
(PIREPs).  PIREPs are semi-automated and give 
information about a turbulence encounter (time, 
latitude, longitude, altitude, severity), however 
there is some subjectivity associated with these 
reports, especially with regard to severity 
(reported on a 5 point scale: null, light, moderate, 

severe, or extreme), and it must be realized that 
the report is based on a turbulence experience 
along a flight path, i.e. along a line.  If the model-
derived diagnostics are supposed to be a grid 
point average, the correspondence to a line is not 
necessary direct.  Nevertheless, the relative 
performance of various diagnostics can be 
evaluated by comparisons to turbulence PIREPs 
as in Tebaldi et al. (2002).  In that study the metric 
used to evaluate the performance of various 
turbulence diagnostics was the area contained 
under probability of detection (POD) curves, 
similar to radar operating characteristic curves.   

To construct POD curves, a set of thresholds 
are assumed for each diagnostic, and given that 
threshold, the diagnostic performance based on 
comparisons to available turbulence pilot reports 
was evaluated for both null (as measured by 
PODN, the fraction of null events correctly 
detected) and moderate or greater turbulence 
reports (as measured by PODY, the fraction of 
moderate or greater turbulence events correctly 
detected).  The curves are then produced from the 
computed PODY values versus PODN values for 
each of the chosen thresholds.  For small values 
of the chosen threshold, PODY will obviously be 
high, near unity, while PODN will be low, near 0, 
and vice versa for large values of the chosen 
threshold.  For the range of thresholds selected, 
higher combinations of PODY and PODN and 
therefore larger areas under the PODY-PODN 
curves, imply greater skill in discriminating 
between null and moderate-or-greater turbulence 
events. Uncorrelated diagnostics produce a 
straight diagonal line indicating no skill. 

Figs. 9 and 10 show POD curves constructed 
in this manner for the ε1/3  and σw diagnostics 
based on structure function computations for 
upper- and mid-levels respectively, compared to 
the Marroquin (1998) TKE diagnostic.  The 
Marroquin (1998) approach uses a steady state 
approximation to the TKE prognostic equation, 
and should therefore provide similar estimates of 
TKE to those produced by most sub-grid 
parameterizations used in current NWP models.  
The diagnostics were computed from RUC20 
1800 UTC 6-hour forecasts (valid at 0000 UTC) 
analyses over a 3-month period from Nov 2002-
Jan 2003.    Based on the area under the curves, 
the structure function derived ε1/3 and σw 
diagnostics are superior to TKE diagnostic.  
These algorithms are therefore potentially quite 
useful for operational forecasting of upper-level 
and mid-level turbulence, and the optimal 
combination of all the diagnostic metrics is 
currently being evaluated. 



 
6.  DISCUSSION 

A procedure has been presented to estimate 
the small-scale turbulence levels from any 
mesoscale NWP model using estimates of the 
local structure functions of model variables, 
provided adequate spatial resolution is available 
to resolve at least part of the s+2/3 (or k-5/3 ) power-
law region.  The key assumptions for a given 
altitude of interest are the existence of (1) a 
universal statistical description of the small-scale 
turbulence, and (2) a universal representation of 
the spatial filter for the model.  The extensive 
archive of in-situ aircraft measurements provided 
by the GASP and MOZAIC datasets has produced 
a robust universal description of the velocity and 
temperature fields at typical aircraft cruising 
altitudes of 10 km.  This description is duplicated 
by the average structure functions derived from 
the RUC20 mesoscale NWP model (Fig. 2).  An 
accurate estimate of the spatial filter of meso-
scale models such as RUC20 is produced from 
the average structure functions of the model 
variables and the universal in-situ model (Fig. 2).  
The average velocity structure functions derived 
from RUC20 analyses agree well with the 
theoretical calculation assuming the model values 
are produced as an average over a 60x60 km grid 
cell (Fig. 2), thus indicating the true spatial filtering 
of the model and producing a quantitative metric 
for model resolution.  Estimates of small-scale 
turbulence are produced from the scaling constant 
of the best-fit universal structure function to the 
local structure function estimates (e.g., Figs. 4, 5).  
These techniques could be applied to other levels 
(i.e., lower to mid-troposphere and stratosphere) if 
suitable estimates of the spatial statistics become 
available, either from data or reliable numerical 
simulation models.  To produce the mid-level POD 
plots presented in Fig. 11 an atmospheric 
statistical description of Lindborg (1999) is 
assumed to apply. 

The climatology of the small-scale turbulence 
is well defined by the probability density function 
(PDF) and the spatial statistics of the estimates.  
The PDF of small-scale turbulence levels for the 
velocity field described by ε (Fig. 6) is 
approximately log-normal, i.e., the log10 of  ε has a 
normal or Gaussian distribution. However, the 
parameters of the log-normal distribution depend 
on the averaging length L and have simple scaling 
laws (Frehlich and Sharman 2004). The variability 
of the small-scale metrics for turbulence intensity 
is the essential component of Kolmogorov’s 
refined similarity theory (Monin and Yaglom 1975) 

for velocity fields and the extension to the 
temperature field.  An accurate statistical 
description of atmospheric turbulence must 
include this variability. 

There are many applications for these local 
turbulence estimates.  These include 
incorporating the turbulence related variability into 
optimal data assimilation methods, improving 
subgrid scale turbulence parameterizations, 
forecasting turbulence and climatology of aircraft-
scale turbulence for aviation safety, extracting 
turbulence climatologies from archived model 
fields, and calculating accurate error bars for 
various statistics. 

With regards to producing turbulence 
forecasts, the ability to provide accurate aircraft 
scale turbulence nowcasts and forecasts is 
hampered by several fundamental difficulties:  

  
(1) The resolution of current NWP models 

(several 10s km to 100 km roughly) is about 
two orders of magnitude too coarse to resolve 
aircraft scale turbulence (roughly 100s m).  
Therefore, aircraft scale turbulence diagnoses 
and predictions must be based on large scale 
features.   

(2) The performance of turbulence diagnostics is 
hampered by our current lack of 
understanding of the linkage between NWP 
observable scale features and aircraft scale 
turbulence.  An implicit assumption in all 
current turbulence diagnostics is that 
turbulence generating mechanisms have their 
origin at resolvable scales and the energy 
introduced at those scales cascades down to 
aircraft scales, but it is unclear what the exact 
mechanism is that creates small scale motion 
from the larger scales. For example the two 
small-scale turbulence metrics from the 
RUC20 analysis ε1/3 and σw have different 
spatial patterns as shown in Figs. 7-8.  This 
may indicate that each metric is sensitive to 
different turbulence phenomena, e.g., ε1/3 may 
indicate the presence of fronts and horizontal 
wind shears, while σw may be indicative of 
vertical variability due to large convective 
complexes. 

(3) Even if it is true that aircraft scale turbulence 
has its origins at the resolvable scales, the 
turbulence forecast system has all the 
inherent NWP errors associated with the 
resolvable scales. 

(4) It is not clear that any single turbulence 
diagnostic is capable of capturing all the 
relevant information that the larger scale 
representations can provide. 



(5) The large amount of spatial filtering in 
operational NWP models may be limiting the 
useful information necessary to correctly 
diagnose the smallest scales in the model. 
Next generation NWP models should attempt 
to reduce the filtering with improved higher 
order numerics (e.g., Skamarock 2004).   

(6) Finally, there is the difficult matter of 
verification.  Here we have used PIREPs for 
statistical tuning and verification of the 
structure function diagnostics.  But an 
individual PIREP is subject to spatial and 
temporal errors, and is subjective in its 
intensity rating.  Since turbulence structures 
by their very nature are highly spatially 
variable (see Figs. 7-8), new verification 
metrics based on probabilistic forecast metrics 
may be required to accurately reflect the 
improvements in turbulence diagnostics and 
in the use of higher resolution models.  The 
quantitative automated in-situ turbulence 
reporting system (Cornman et al., 1995) 
should eliminate most of the uncertainty 
associated with PIREPs but a link must first 
be established between median statistics and 
line average statistics for rigorous analysis. 
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Figure 1.  Longitudinal, transverse, vertical velocity, and temperature spectra, denoted Su(k), 
Sv(k), Sw(k), ST(k) respectively, as derived from INDOEX field campaign data and the best-fit 
Kolmogorov slope of –5/3. 



 
Figure 2. Average horizontal velocity structure functions from RUC20 (solid lines) for the 
longitudinal velocity in the East-West (EW) direction and the transverse velocity in the North-
South (NS) direction, the best-fit model Eq. (8), (dashed line) with parameters p1 and p2, the best-
fit reference models  Eqs. (9) and (12) (dotted line), the theoretical predictions for a 60 km grid 
cell (dash dotted line), and the s2 scaling. 



 
 

 
 

Figure 3. Average horizontal structure functions from RUC20 (solid lines) for the vertical velocity 
w, and the best-fit model Eq. (14) (dashed line) with parameters c1 - c4 . 

  



 
 

Figure 4. Example estimates  (•) of longitudinal horizontal velocity structure functions DLL(s) from 
the RUC20 model using 100x100 km sub-domains, the best-fit Lindborg model Eqs. (8)-(10) 
(lines) with turbulence estimates ε1/3  (m2/3s-1) from Eq. (11) given to the left of each line, and the 
s2 scaling for reference. 



 
 
 

Figure 5. Example estimates  (•) of vertical velocity structure functions Dw(s) from the RUC20 
model using 100x100 km sub-domains, the best-fit model Eq. (14) (lines) with turbulence 
estimates σw (m s-1) from Eq. (15) displayed to the left of each line. 



 
 
 

Figure 6. PDF of RUC20 estimates of  ε  (o) from two different square sub-domains LxL, the log-
normal model prediction based on the mean and standard deviation of log ε values (solid line), 
and the log-normal model prediction from the GASP data derived by Frehlich (2001) (dashed 
line). 



 
 
Figure 7. Estimates of small-scale turbulence ε1/3   (upper panel) and σw (lower panel) for a 
100x100 km measurement domain.



 

Figure 8. Contours of small-scale turbulence ε1/3  (upper panel) and σw (lower panel) for a 
100x100 km measurement domain for the same day/time and flight level (FL330) as Fig. 7. 
Solid black lines are height contours, red lines are wind speed contours > 40 m/s.  Wind 
vectors, PIREPs, and cloud-ground lightning flashes (orange) are also shown.  Note that large 
values of ε1/3   correlate with the large shears associated with the upper level jet, but the 
largest values of σw correspond to regions of convective activity over southern Texas. 



Figure 9. The probability of a (moderate-or-greater) turbulence detection 
PODY vs the probability of no turbulence PODN from RU20 structure 
function derived turbulence estimates ε1/3   (blue curve) and σw (green curve) 
compared to the Marroquin TKE diagnostic (orange curve).  The case of no 
skill is also shown as a light diagonal line.  The curves are based on 14,614 
PIREPs collected at upper levels (FL>200) over a 3-month winter period. 



 

Figure 10. The probability of a (moderate-or-greater) turbulence detection 
PODY vs the probability of no turbulence PODN from RU20 structure function 
derived turbulence estimates ε1/3   (blue curve) and σw (green curve) compared 
to the Marroquin TKE diagnostic (orange curve).  The case of no skill is also 
shown as a light diagonal line.  The curves are based on 2,141 PIREPs 
collected at mid-levels (FL100-FL200) over a 3-month winter period. 


