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1. INTRODUCTION* 

 

 Recent development of an exploratory 
automated ceiling and visibility (C&V) analysis and 
forecast system by the FAA’s National Ceiling and 
Visibility (NCV) product development team utilizes 
expert system methodology to merge numerical and 
observational inputs in the synthesis of current 
analyses and forecasts out to twelve hours.  Trial 
products covering the continental U.S. have yielded 
encouraging early results and useful insight into 
directions for future development.   

(a) This paper provides a brief overview of the 
methodologies used for analysis and forecast product 
generation in the NCV system.  We also describe 
early development steps associated with two new 
techniques: (i) use of Knowledge Discovery in 
Databases (KDD) to improve real-time analysis of 
ceiling in data-poor areas, and (ii) an observations-
based forecast technique that utilizes forecast 
rulesets derived from data mining of long-term 
observational records at selected sites.   

 

2. OVERVIEW OF THE NCV SYSTEM  
 The NCV product development team is 
researching and developing products targeted for 
operational use directly by the flight service station 
briefer, pilot, dispatcher, controller, and other end 
user.  Since automation is key to enabling frequent 
product updates and around the clock operation, our 
work relies upon unattended, computer-aided 
techniques.  These include (i) expert system methods 
to conditionally manipulate data inputs and manage 
functional interactions among them, and (ii) fuzzy 
logic techniques to formulate a consensus product 
(e.g., analysis, or forecast), generally based upon the 
selective merging of individual data and product sub-
elements.   

(b) 

 

Gridded Analyses 
 The NCV system produces gridded analyses 
of current ceiling, visibility and flight category 
conditions.  These are provided at the RUC forecast 
model native grid resolution (currently 20 km) and 
provide ready access to supporting interactive data 
overlays.  The concept here is to provide rapid (15 
min) updates of current C&V conditions in graphical 
form while incorporating tools that allow concurrent 
examination of METARs, TAFs, AIRMETs, and 
satellite and NEXRAD imagery.  The analysis of 
present conditions given by the current NCV proto-
type product covering the continental U.S. (CONUS)  

(c)

Figure 1.  Current conditions as given by METAR 
reports analyzed by the NCV automated system.   
(a) Flight Category (Low IFR, IFR, Marginal VFR and 
VFR) as determined from the values in (b) and (c).   
(b) Visibility in statute miles.  (c) Ceiling in feet AGL.  
Prototype display is continuously accessible at  
www.rap.ucar.edu /projects/cvis.                                                              
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Figure 2.  Schematic representation of NCV forecast system components for CONUS C&V in use today and those 
planned for future implementation.  Forecast components flow to the expert system-based automated merging 
process shown at center.  Real-time scoring of component forecast skill feeds back to optimize the weighting of 
forecast components in the automated merging process.   

is illustrated in Fig. 1.  

1-12h Forecasts 
 The NCV forecast product is formulated as a 
consensus among a variety of parallel forecast tech-
niques comprised of numerical modeling and observa-
tions-based approaches.  The forecast product is 
updated hourly.  The NCV plan makes use of several 
forecast components and techniques, with future 
additions planned for implementation.  The key 
elements of the conceived forecast system are illus-
trated schematically in Fig. 2, which also shows the 
fuzzy logic-based system currently in place to weight 
and merge forecast information through an additive 
model. 

3. IMPROVING CEILING ANALYSES USING  
 KNOWLEDGE DISCOVERY IN DATABASES  

Current NCV Practice 
 Characterizing ceiling behavior in the regions 
between routine METAR observations is one of the key 
challenges to be met in improving regional analyses of 
ceiling height needed for flight planning and in-flight 
guidance.  The NCV system uses a natural neighbor 
interpolation scheme to estimate ceiling height between 
METAR sites.  This interpolation scheme is based on 
Voronoi polygons and takes into account the geometry 

of METAR site location with respect to the grid point in 
question. The ceiling value at a grid point is formed as a 
weighted sum of neighboring METAR reports. The 
choice of neighboring METAR sites affecting a grid point 
is determined by an analysis of the Voronoi polygons,  
and the weights are determined by an area weighting 
scheme.  
 Where GOES data indicate a cloud-free region, the 
interpolated ceiling height is raised to a value corre-
sponding (effectively) to unlimited ceiling conditions.  
This is a simple, first-order approach to gap-filling.  The 
approach can successfully represent clear areas within 
the analysis, but takes no step toward improvement of 
ceiling values in cloudy regions between METAR sites.  
Any information in the GOES data beyond that indicat-
ing cloudy vs. clear conditions is unused.   
 A second area under development is the accurate 
derivation of ceiling values (which are not a direct 
product of model predictions) from model-predicted 
meteorological fields.  This translation is a critical step in 
extracting predicted ceiling fields from numerical model 
results.  Common practice today is to apply the 
Stoelinga and Warner (1999) translation algorithm (or a 
related adaptation of that approach) to model output to 
derive ceiling and visibility fields.  The Stoelinga-Warner 
(hereafter SW) technique utilizes theoretical and 
empirical relationships between light extinction and 
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hydrometeor characteristics to translate model-predicted 
hydrometeor fields to useable ceiling and visibility 
values.   

• METAR ceiling height is the ground truth parameter 
(dependent variable) used in the KDD process for 
this study.  Other METAR observation parameters 
(e.g, visibility) are collected and could be used simi-
larly in future studies.   Overview of a KDD Approach  

 The problem of estimating cloud ceiling heights at 
locations where no ground observations exist is a 
difficult one for both satellite and numerical model 
applications.  While the modeling of weather phenom-
ena has been driven by physical laws verified by data, 
some parameters (e.g, cloud ceiling height) the 
conceptual modeling can be data-driven.  Through 
proper analysis, data relationships representing the 
physics implicit in the data are empirically discovered.    

• Satellite data covering each METAR site at each 
hour were extracted from GOES-10, NOAA’s polar-
orbiting Advanced Very High Resolution Radiometer 
(AVHRR), and the Defense Meteorological Satellite 
Program’s Special Sensor Microwave Imager 
(SSM/I).  Satellite data selected included all sensor 
fields, plus results from a microwave sensor satellite 
rain rate algorithm, a cloud optical depth algorithm, a 
low cloud product, and a cloud top height algorithm.  
Only GOES-10 parameters will be used in the data 
mining described below.   

 Data mining methods, used in a Knowledge 
Discovery from Databases (KDD) procedure, are 
applied to the cloud ceiling height assessment problem 
(Bankert, et al, 2004).  The KDD process involves 
collection and processing of data and the application of 
data mining tools to stored data records to uncover the 
relationships that represent physical laws implicit in the 
data (Fayyad, et al, 1996). 

• Model data covering each METAR site were taken 
hourly from COAMPSTM  (Hodur, 1997; Hodur et al., 
2002) triply-nested (81, 27, 9 km) mesoscale model 
runs (12 hour).  Forty-two model parameters were 
selected based on a priori assumptions about which 
parameters might have most influence on cloud 
ceiling height.    In the previous research at the Naval Research 

Laboratory (NRL), satellite (including GOES-10) and 
numerical model (COAMPSTM) data were collected 
within the KDD procedure to determine those relation-
ships that could provide estimates of cloud ceiling 
heights at California METAR stations.  While there is no 
direct indication of ceiling height in GOES data, it is 
justified to reason that specific factors such as the 
existence of cloud and a variety of its detectable 
characteristics and patterns of occurrence should reflect 
significantly on the probability that certain ceiling 
characteristics are associated with the cloud.  These 
detectable characteristics might include, for example, its 
type (i.e. stratus, cirrus, etc.), optical thickness, the 
height of cloud top, observed ceiling values at neighbor-
ing METAR sites, the ceiling values associated with 
similar GOES cloud signatures in the same region in the 
past, and many others.  KDD techniques provide 
systematic means to find and categorize the patterns 
and relationships among factors that are found to affect 
a targeted characteristic – in this case the existence of a 
cloud ceiling and its height.  In addition, KDD techniques 
provide means to develop a simple model from existing 
data and apply that model to retrieve estimates of the 
targeted characteristic.  Such a data-derived model for 
ceiling height is outlined below. 

The data outlined above reside in a database whose 
structure is optimized to support efficient data mining.  
The database is continuously updated (daily) as new 
observations and model results are acquired.   
 Data mining was performed on the database to 
uncover relationships among the variables that bal-
anced predictive skill with model generality for an 
algorithm focused on the estimation of cloud ceiling.  
Classification models (represented as a decision tree) 
were produced through use of the Rulequest Research 
C5.0 data mining tool (Quinlan, 1993; Rulequest 
Research, 1997-2004).  Rule-based predictive models 
(numerical output) were produced through use of the 
Rulequest’s Cubist algorithm.   Applying both C5.0 and 
Cubist, and through repeated testing and combination, a 
three-step system for estimating cloud ceiling conditions 
was developed.  After establishing the algorithms at 
each step, the decision/estimation process for a given 
data record presented to the three-step system can be 
summarized as follows: 
Step 1:   Classification Algorithm (C5.0) – Ceiling vs. No 

Ceiling? 
If classified as ceiling, proceed to Step 2; otherwise, 
no ceiling is output. 

 The NRL KDD approach to cloud ceiling estimation 
begins with selection of data sources and collection of 
hourly data over a multi-year period for the domain of 
interest.  In the test example described here, a U.S. 
west coast domain was selected.  A 2.5 year record of 
data was compiled to relate hourly cloud ceiling 
observations made at 18 California METAR sites with 
corresponding data (coincident in time and location) 
from various satellite platforms and the COAMPSTM 
numerical model.   The data can be described as 
follows: 

Step 2:  Classification Algorithm (C5.0) – Is Ceiling  
 Below 1000 m or Above 1000 m? 

If ceiling is below 1000 m, proceed to Step 3;  
otherwise “high ceiling” is output. 

Step 3: Rule-based Predictive Algorithm (Cubist) to 
 Estimate Ceiling Height.  
 Cloud ceiling height estimate is output.    
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Fig. 3:  Comparison of results of four methods for ceiling vs no ceiling classification.  The three KDD-based methods 
use GOES-10 input data (only), COAMPS model input (only), and both GOES-10 and COAMPS input, respectively.  
The SW method applies the Stoelinga-Warner translation algorithm to COAMPS model results.  POD – Probability of 
Detection; FAR- False Alarm Ratio; CSI – Critical Success Index; ETS – Equitable Threat Score; TSS – True Skill 
Score 
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Fig. 4:  Comparison of results of four methods for low ceiling vs high ceiling classification.  The three KDD-based 
methods use GOES-10 input data (only), COAMPS model input (only), and both GOES-10 and COAMPS input, 
respectively.  The SW method applies the Stoelinga-Warner translation algorithm to COAMPS model results.  POD – 
Probability of Detection; FAR- False Alarm Ratio; CSI – Critical Success Index; ETS – Equitable Threat Score; TSS 
– True Skill Score

KDD Ceiling Experimental Results 
 To obtain an estimate of the performance capabili-
ties of the 3-step system, the hourly data records were 
divided into training and testing sets for each step.  Test 
results for each step under daytime conditions over the 
18 California METAR stations have been excerpted 
from Bankert et al. (2004).  Results from three KDD-
derived models for ceiling height estimation (using 

GOES-10 inputs only, COAMPSTM inputs only, and 
GOES-10 plus  COAMPSTM inputs) are compared with 
corresponding results of the SW translation algorithm 
(Stoelinga and Warner, 1999) as applied to COAMPS 
model results.  Fig. 3 is a bar chart of various perform-
ance measures for ceiling vs no ceiling classification 
(Step 1 of the cloud ceiling algorithm). The KDD 
algorithm using both data types produced the best 
results with all KDD algorithms outperforming SW. 
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Fig 5:  Comparison of results of four methods for low cloud ceiling height estimation.  The three KDD-based methods 
use GOES-10 input data (only), COAMPS model input (only), and both GOES-10 and COAMPS input, respectively.  
The SW method applies the Stoelinga-Warner translation algorithm to COAMPS model results.  The RMSE for SW 
(not shown on the graph) is 715 m. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6: 16 June 2004 20 UTC visible image (left) and corresponding KDD GOES-10 cloud ceiling image (right) of 
Southern California and adjacent water with heights estimated in feet. 

Similar results were found for Step 2 (low ceiling vs high 
ceiling classification) as seen in Figure 4. For step 3 – 
estimation of low cloud ceiling height – the correlation 
coefficient (CC) and root mean square error (RMSE) 
were computed (Figure 5).  Again, the KDD algorithms 
outperform SW with the combined GOES/COAMPSTM 
and COAMPSTM–only algorithms producing similar 
results. 

 Along with performance analysis, the relationships 
discovered through the data mining process and used in 
the derived system can also be analyzed.  For example, 
the COAMPSTM parameter representing the difference 
in temperature between 10 m and 1500 m is a dominant 
variable in the low/high ceiling classifications.  This 
variable is required to be relatively small for low ceilings 
and may be representing the cool, less stable environ-
ment in low cloud ceiling situations.  Further discussion  
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METAR LOCATION METAR 
CEILING 
HEIGHT 
(FT) 

KDD 
GOES-
10 
CEILING 
HEIGHT 
(FT) 

KSBA (Santa Barbara) 1300 1204 

KVNY (Van Nuys) 1800 1915 

KLAX (Los Angeles) 1800 1525 

KLGB (Long Beach) 1400 1315 

KSNA (Santa Ana) 1600 1355 

KOKB (Oceanside) 1900 2014 

KSAN (San Diego) 1600 1630 

Table 1: Comparison of observed cloud ceiling heights 
(METAR) and KDD GOES-10 cloud ceiling heights at 
various locations on 16 June 2004 at 2000 UTC. 

of the results and analysis can be found in Bankert, et 
al. (2004). 
 These results provide strong encouragement for 
continued development of the KDD technique and 
corresponding establishment of data collection and 
database functionality as part of the NCV data handling 
infrastructure.  Application of GOES-10 and GOES-12 
KDD models to perform gap-filling between METAR 
sites should significantly benefit the ceiling analysis 
function within the NCV system.  Since the NCV system 
makes use of the operational RUC20 model rather than 
COAMPSTM, development of KDD techniques for NCV 
use is currently addressing a change of model inputs.  
Use of a GOES plus RUC20 KDD model will enable 
comparison with the current RUC20 plus SW ceiling 
height prediction.  Based upon the results shown in Fig. 
3-5, it is expected that the KDD model will achieve 
significantly improved results, and thus improved skill in 
NCV ceiling height predictions.    
 The four geographic regions planned for data 
collection and subsequent data mining are Iowa, 
Northeast Texas, Gulf Coast, and Mid-Atlantic region 
east of Appalachians.  These regions were chosen due 
to the quantity and density of METAR stations and the 
homogeneous nature (both geographically and climato-
logically) of each region.  Half of the stations in each 
region will be used for training both ceiling and visibility 
algorithms and the other half will be the testing set.  
GOES-12, RUC, and METAR data will be retrieved from 
archived data sets comprising one to two years of hourly 
data.  Additional research will involve development of 
KDD-derived ceiling and visibility translation algorithms 
for the RUC model at individual station locations. 

Real-Time Application 
 As a follow-on to the NRL research, real-time 
application of the developed algorithm is underway. The 
NRL GOES-10 cloud ceiling algorithm is currently 
producing hourly output of cloud ceiling heights for the 
Southern California region.  Figure 6 is an example of 
these products.  Comparisons to ground observations at 
various METAR locations for this example (16 June 
2004, 2000 UTC) indicate a fairly reliable representation 
of the cloud ceiling heights (Table 1). 

4. AN EMERGING DATA MINING-BASED 
  FORECAST TECHNIQUE 
 Wiener et al. (2004, this volume) describe the 
methodology employed in a newly-developed technique 
for 1-12h forecasting at a given site utilizing rulesets 
derived from data mining of the long-term record of 
observations at that site.  In this section we further 
describe preliminary results from use of this data mining 
(DM) forecast technique for ceiling and visibility at six 
cities in the U.S.   

Single-Station Trials 
 Individual forecast rulesets are established for 
each forecast site, for each of the forecast lead times 
used in this trial (1, 3, 5 and 7 h), and for each target 
forecast parameter (in this case, ceiling or visibility).  
Each ruleset is the result of a separate data mining 
exercise over the long-term archive of observed and 
derived parameters at the forecast site.   
 We begin with a simple implementation of the 
technique in which data mining is performed over a site 
archive containing the target forecast parameter, 
associated operational meteorological observations 
(e.g., temperature, humidity, winds, precipitation, 
pressure, etc.), and derived parameters such as 
dewpoint depression and tendencies.  No additional 
forecast information is used in this simple trial approach.  
For five of the six sites reported here, forecasts were 
initiated at each hour through the two-year test period 
2003 through 2004.  The  rulesets used were derived 
from data mining of the training data set at each site, 
which covered the period 1980 to present, but excluded 
the 2003-2004 test period.  Due to the move of ASOS 
facilities upon the opening of Denver International 
Airport, our Denver studies are centered at the former 
Stapleton Airport site, and the forecast test period used 
was 1993-1994.   
 The DM forecasts specified either IFR or VFR 
conditions for ceiling and visibility.  Specification of IFR 
conditions was considered an IFR event, while specifi-
cation of VFR conditions was considered a null event.  
We chose to compare DM forecast skill with that of 
persistence, which is itself a particularly skillful forecast 
method over short lead times such as those examined 
here.   
 A selection of skill metrics for DM and persis-
tence forecasts of IFR events at the six sites are shown 
in Figs. 7 and 8.  The metrics include bias, probability of 
detection (POD), false alarm ratio (FAR) and critical 
success index (CSI). Given that these trials come at an
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Figure 7.  Plots of bias (red), probability of detection (green), false alarm ratio (blue) and critical success index 
(black) for single-site DM forecast lead times of 1, 3, 5 and 7 hours for the occurrence of IFR conditions in ceiling 
and visibility at the sites shown.   Solid lines show the DM forecast scores.  Dashed lines show the corresponding 
persistence forecast scores. 
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Figure 8.  As in Fig. 7.  Plots of bias (red), probability of detection (green), false alarm ratio (blue) and critical 
success index (black).   
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Figure 9.  Plots of bias (red), probability of detection (green), false alarm ratio (blue) and critical success index 
(black) comparing single-site and multi-site DM forecasts at JFK and Denver.  Solid lines show forecast scores for 
multi-site method.  Dashed lines show forecast scores for single-site method.   

early stage with little effort yet to explore further 
adjustments or techniques to improve forecast perform-
ance, we find the results in Figs. 7 and 8 to be very 
encouraging.  The principal points drawn from examina-
tion of these results to date are as follows.   
• DM forecast performance as indicated by CSI scores 

meets or exceeds persistence at 1h at all sites ex-
cept Portland.  At all sites except Minneapolis (7h 
visibility), DM CSI scores exceed persistence at 3, 5 
and 7 h.   

• DM scores for probability of detection and false 
alarm ratio at 1h are equal or superior to those of 
persistence at all sites except Portland and JFK.  
These scores frequently further improve over persis-
tence at 3, 5 and 7h.  Minneapolis (visibility) is a 
clear exception, where POD for the DM method falls 
below that for persistence at 7h.   

• Whereas persistence yields bias scores generally 
close to 1.0 (indicating little tendency to over or 
under-forecast IFR conditions), the DM technique 
produces biases that vary far more from site to site.  
JFK ceiling  and Minneapolis visibility, for example, 
show strong tendencies to over-forecast and under-
forecast, respectively.    Ongoing work is examining 
the roles of weighting parameters (set within the data 
mining process), additional derived forecast parame-
ters, and the use of neighboring sites in reducing the 
extremes in DM bias values and improving overall 
forecast skill.   

Multi-Station Trials 
 Observing the areal behavior of ceiling and 
visibility provides evidence that use of observations 
across a set of neighboring sites may yield improvement 
in forecasts for a target site.  For example, Leyton and 
Fritsch (2003) found improvement in statistical forecasts 
of ceiling and visibility when using neighboring sites 
surrounding target sites in the upper midwest.   

 We believe that the multi-station approach is an 
important path for examination of DM forecast improve-
ment.  The simple preliminary tests made to date are 
centered on forecasting for JFK and Denver.  At JFK we 
utilized the long-term (1980-present) data archives for 
neighboring LaGuardia and Newark airports.  At 
Denver’s former Stapleton Airport site, we used Buckley 
Field and Arapahoe Airport as the neighboring sites.  In 
the Denver case, the training data ran from 1984 
through 1992.   
 Our initial results demonstrate that there seems 
to be potential in this multi-site approach, but also, as 
expected, that non-optimal use of neighboring sites can 
degrade overall forecast performance as well.  The 
forecast results shown in Fig. 9 for JFK compare 
performance with use of neighboring sites (solid line) 
and without use of neighboring sites (dashed line).  
Slight improvement of a few per cent is shown in each 
of the scores shown for 3, 5 and 7h.  Improvement at 1h 
was essentially nil.  In contrast, the results for Denver in 
Fig. 9 show that use of the two neighboring sites 
degraded bias scores substantially below 1.0.  As might 
be expected, the bias change was accompanied by a 
significant decreases in POD and FAR.  The CSI score 
declined very slightly at 3, 5 and 7h.   
 A key aspect of these preliminary tests is that the 
choice of the neighboring stations was quite arbitrary, 
based more on the availability of data than on any 
conceptual model of ceiling or visibility behavior at the 
target sites.   The shorter period of archived data 
available for the Denver case is also a disadvantage.  
Further tests will explore the impact of this shorter 
training on the representativeness of the forecast 
results.   
 Further development of the DM forecast ap-
proach, in both single and multi-site forms, requires 
systematic evaluation of the contributing roles of 
observed and derived meteorological parameters, 
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potential use of forecasted parameters within the DM 
forecast method, weights assigned within the DM 
ruleset formation process, and optimal use of neighbor-
ing sites.  Rather than ‘one size fits all’, our experience 
indicates that the differing circumstances and regimes 
from one site to another will demand that the DM 
process be optimized on a site-by-site basis.  As a 
result, it is also necessary to balance optimization 
research/effort against anticipated performance gains.   

5.  SUMMARY 
 This paper outlines the plans and early results of 
a long-term R&D program directed toward improved 
automated analysis and forecast tools to aid avoidance 
of in-flight C&V hazards.  We principally target the 
needs for C&V information within the general aviation 
community, where improved access and utilization of 
briefing and in-flight guidance information can lead to a 
significant improvement in flight safety.   
 A three-step KDD (Knowledge Discovery from 
Databases) process has been developed to estimate 
ceiling height in regions where only satellite and model 
data are available.  The process utilizes decision steps 
based upon data mining of satellite and model data 
archives.  Initial trials of the method at 18 sites in 
California have yielded very encouraging results, 
showing ceiling height estimation performance that is 
consistently better than that derived from application of 
the Stoelinga-Warner translation algorithm to the model 
data available for the sites.  Further work is directed 
toward trials to evaluate the performance of the method 
at a broader range of sites and meteorological regimes 
across the U.S.   
 A second new technique utilizes data mining of 
long-term data archives to produce rulesets for 1-12h 
forecasting of ceiling and visibility at selected sites.  
Though the first trials reported here include little effort to 
optimize the method to improve performance, the 
results are encouraging in that the data mining forecasts 
frequently exceed the performance of persistence at 1-
7h.  A preliminary trial utilizing data from neighboring 
sites to contribute to the forecast at a target site showed 
slight improvement over single-site forecasts at JFK 
airport, and lowered performance for forecasts at a 
Denver site.  The data mining forecast results as a 
whole show excellent promise, but also demonstrate the 
importance of systematic diagnostic trials in developing 
predictors and compatible neighboring sites that most 
improve performance, rather than degrade it.   
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