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1. INTRODUCTION

The use of ensemble forecasting systems has become
one of the most important recent advances in numerical
weather  prediction  (Kalnay,  2003).  Ensemble
techniques  provide  an   opportunity  to  explicitly
incorporate  the  presence  of  uncertainties  in
observations and models,  and to include them in the
forecasting  process.  Identifying,  quantifying  and
representing  these  uncertainties  in  the  forecasting
system has become a great challenge that is receiving
primary  attention  in  the  weather  research  community
(eg,  Shapiro  and  Thorpe,  2004).  Ensemble
methodologies have notably  benefited the skill  of  the
medium-range forecasts in the synoptic scale, with the
member  generation  strategies  at  this  scale  being
basically  focused  upon  the  uncertainties  in  the initial
conditions  (ICs)  and  their  evolution.  Despite  some
debate  about  whether  Monte  Carlo  perturbations  or
dynamically  constrained  methodologies  are  best  for
specifying a set of initial conditions (Hamill et al. 2000),
the  “breeding”  of  growing  modes  (Toth  and  Kalnay,
1993)  and  singular  vector  (Molteni  et  al.  1996)
techniques are currently used at the major operational
centers  in  United  States  and  Europe.  However,  for
applications in the mesoscale, methods to generate the
perturbations  needed  for  ensemble  systems  become
more  complex  due  to  the  larger  and  less  known
observational  errors,  more  important  model
imperfections  and  users'  sensitive  dependence  upon
reliable  forecasts.  Xu  et  al.  (2001,  hereafter  Xu01)
propose a method to generate a short-range ensemble
that  would  benefit  from  forecaster's  guidance  in
identifying areas  of  forecast  concern.   They describe
with  detail the method to be used to generate such an
ensemble,  which  involves  running  an  adjoint  model.
They also present results of a test on a single case.
With  the  aim of  assessing  the  value  of  short  range
numerical  forecast  ensembles  to  assist  in  the
operational  forecasting  of  threatening  weather,  the
Storm  Prediction  Center  and  the  National  Severe
Storms Laboratory conducted the 2003 Spring Program
(SP03)  experiment  focused  on  the  generation  and
interpretation  of  mesoscale  short-range  ensembles.

Encouraged by the promising conclusions in Xu01, the
SP03 included a sub-experiment aimed at testing their
method  for  a  longer  period,  using  operational
forecasters  as  drivers  of  the  system.  The  underlying
idea  was  to  create  a  daily,  customized  ensemble  to
generate  guidance  for  the  severe  weather  to  be
forecast in the following 48 hours. Given the information
obtained  from  an  operational  forecaster  about  the
mesoscale-sized  regions  of  potential  severe weather,
an adjoint model was used to compute the areas in the
IC where adding perturbations would, in a linear sense,
maximize the spread of the ensemble over those areas
of concern and in directions deemed important by the
forecaster.  Essentially,  ensemble  dispersion  was
intended to be generated in specific areas and fields of
interest  as  opposed  to  everywhere in  the  domain  or
following  fast  growing  modes  under  global  generic
norms.

This  study  shows  results  from  an  evaluation  of  this
ensemble during the experiment period, assessing the
quality  of  the  short-range  probabilistic  forecasts  of
severe weather events  and precipitation. Comparison
with the National Centers for Environmental Prediction
(NCEP) operational  deterministic  Eta model  and  with
the Short Range Ensemble Forecasting (SREF) system
for the same period are provided. 

Section  2  presents  the  model  configuration  and  a
description of the IC perturbation generation process. A
description of the verification and comparison datasets
used in the evaluation is presented in section 3. Section
4  shows  the  verification  of  severe  weather  events
forecasts. Various skill scores of precipitation forecasts
are  shown  and  compared  in  section  5.  Section  6
presents a summary and suggestions for future similar
ensemble set-ups.

2. MODEL DESCRIPTION AND ENSEMBLE
MEMBER GENERATION

The  evaluated  ensemble  consists  of  32  forecasts
produced using the nonhydrostatic Pennsylvania State
University-National  Center  for  Atmospheric  Research
(PSU-NCAR)  Fifth-generation  Mesoscale  Model
(MM5V3)  (Dudhia  1993,  Grell  et  al.  1994).   All
simulations in the  experiment are run with two domains
interacting with a two way nesting strategy. The coarser
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domain  has  66 
�

 46 grid points, 90 km grid spacing
and  covers  the  continental  United  States  (CONUS),
south Canada, the Gulf of Mexico, easter North Pacific
and western North Atlantic. The inner domain has  157�

 97  grid  points,  30  km  grid  spacing  and  covers
basically the CONUS.  All simulations are performed on
24  sigma levels,  with  higher  concentration  at   lower
altitudes  to  better  resolve  near-ground  processes.
Subgrid  moist  convection  is  parameterized  using  the
Kain and Fritsch (1990) scheme. A simple microphysics
scheme  that  allows  for  ice  concentration  at
temperatures below freezing is  used.  Boundary  layer
processes are parameterized using the Eta PBL (Janjic,
1994)  scheme together  with the  Dudhia  (1996),  five-
layer simple soil  model.  Cloud and clear air  radiative
effects,  as  well  as  water  vapor,  carbon  dioxide  and
ozone  concentrations  are  considered  in  the  radiative
scheme.  Both coarser and inner domains use the same
parameterizations for all simulations.

This  experimental  ensemble  of  the  SP03  experiment
(MM5ADJ) ran from April 28 to June 6, but only from
Monday-Friday of each week. The Eta model forecasts
at  1200  UTC  are  used  to  provide  the  ICs  for  the
MM5ADJ.  Lateral boundary conditions for the MM5ADJ
also come from the 1200 UTC Eta model. To generate
the set of different IC, the method detailed in Xu01 was
followed: each day a human forecaster was asked to
identify  16 features of interest in the control  run such
that severe weather for the following day (day 2) was, in
the forecaster's opinion, most sensitive to the feature.
The forecaster was able to select structures at any time
(in 6 h intervals) from the Eta forecast, on the following
fields:  horizontal  and  vertical  wind  components,
temperature, specific humidity, geopotential height, sea
level  pressure,  vorticity  and  pseudo-Convective
Available Potential  Energy (pseudo-CAPE, defined as
temperature difference between middle an low levels).
The fields in this list were predetermined to allow easy
operational  implementation  but  there  is  no  other
limitation  on  the  feature  of  interest  but  to  be
differentiable with respect to the model fields. Table 1
shows the distribution of fields used by the forecasters
during  the  whole  experiment.  There  is  not  a  clearly
preferred  subset  of  fields  by  the  forecasters,  with

perhaps  less tendency to  use the  vertical  velocity  or
vorticity  fields.  This  may be  related to  the  traditional
fields involved in mesoscale conceptual models used to
identify the areas of concern and also the confidence of
the  forecaster  on  the  numerical  forecast  of  vertical
velocity.  The  distribution  in  forecast  hours  (Table  1)
shows  that  almost  3  out  of  4  times  the  forecaster
defined the feature of interest at T+30h or T+36h, the
time of the afternoon convection for day 2 forecast. A
total of 27 cases are finally available for this evaluating
the ensemble guidance potential.

For  each  of  the  16  selected  features  of  interest,  an
adjoint  model  integration on the coarser  domain was
correspondingly  initialized  and  the  sensitive  areas  of
each  forecaster-specified  feature  to  the  IC  were
derived.  The  adjoint  model  used  is  the  MM5 Adjoint
Modeling System (Zou et al., 1997, 1998) developed by
NCAR. The code is derived from a simplified version of
the  forward  MM5.  The  adjoint  runs  have  no
parameterized  convection  but  include  explicit
microphysics, radiation scheme and surface processes.
Once  the  sensitivity  fields  were  obtained  from  the
adjoint,   the  horizontal  wind  fields  and  temperature
sensitivities  were  rescaled to an amplitude within an
estimation  of  the  typical  analysis  error  on  the
mesoscale. Table 2 shows the maximum perturbation
amplitude  used  for  each  field.  Then,  two  MM5
simulations were run for each highlighted feature, each
one  perturbed  in  opposite  direction  (positive  and
negative).  Since  the  forecaster  was  requested  to
highlight  16  features  each  day,  32  perturbed
simulations  were  produced  to  form  the  MM5ADJ
ensemble.

Table 1. Relative frequency of fields and forecast times selected by the forecasters and used to initialize the adjoint
model integrations and IC perturbation generation.

Field U V T Q Vort Hgt CAPE SLP W

Freq. (%) 12.7 11.3 13.2 11.3 7.2 13.0 14.4 11.8 5.1

Fcst Time (h) +12 +18 +24 +30 +36 +42 +48

Freq. (%) 0.5 0.9 11.3 26.4 47.0 8.3 5.6

Table  2. Maximum  and  typical  amplitude  of  the  IC
perturbations.

Field U & V T

Max. 8.0 m s-1 4.0 K

Typical 2  m s-1 1.5 K



3.  VERIFICATION AND COMPARISON DATA 

Ensemble forecasts are expected to provide information
on the uncertainty of the forecast aspect of interest. We
evaluate here the ability of the MM5ADJ ensemble to
forecast  probabilities  of  severe  weather  and
precipitation. All verification and comparison fields used
in this study are remapped to the MM5 30 km domain,
in  order  to  facilitate  and  ensure  a  fair  comparison
among them. Two observational datasets are used in
this verification:
a)  SPC severe  weather  reports:  The severe weather
probabilistic forecasts are verified using the SPC severe
weather  reports  database.  This  database  contains  a
quality  controlled  list  of  tornado,  large  hail  and  wind
damage reports in the  United States with information
about the intensity of the event and its location in space
and time. Figure 1b shows an example of the reports in
the SPC database for the same period shown in Fig.
1a. A gridded field on the MM5 domain is  created by
setting the grid points with at least one report in its grid
box  to  the  value  of  1.  This  field  does  not  contain
information  about  the  type,  intensity  or  density  of
reports within the grid box but it is consistent with the
probabilistic  forecast that it  verifies. Here, the models'
forecasts  strictly  refer  to  the  occurrence  of  severe
weather  within  a  gridbox  rather  than  to  the  type,
intensity or density of events (see next section).
b)  NCEP/CPC Stage IV precipitation: In order to verify
the precipitation forecasts we use the NCEP/CPC 4km
Stage IV data every 6 h. This dataset is  based on a
multi-sensor  hourly analysis and it is quality controlled
manually.  The  precipitation  remapping  is  performed
maintaining the original  amount of  precipitation in the
MM5 grid as done by NCEP for grid interpolation and
QPF verification (Mesinger, 1996).

In  addition  to  the  objective  verification  against  the
observational datasets, we assess the relative value of
the  MM5ADJ by comparing it to other available short-
range forecasts for the same period:
a)  Subjective  Day2  Outlooks:  During  the  SP03  a
forecaster issued a severe weather outlook for Day2,
following  the  same  guidelines  used  for  the  daily
operational SPC outlooks (Kay and Brooks, 2000). Note
that  the  operational  SPC  outlooks  are  theoretically
designed to forecast the probability of severe weather
within 20  miles of  a  point,  which  is  equivalent  to an
square  area  with  57  km  on  each  side.  Admittedly,
remapping the probabilities to a 30 km grid produces a
shift  towards   overforecasting  (increasing  the  false
alarms).  However,  it  is  uncertain  how  sensitive  the
forecaster  is  to  this   definition  when  defining  the
outlook.  On  the  other  hand,  the  SPC  outlooks  are
issued  using  5  discrete  probability  categories:  0.00,
0.05, 0.15, 0.25 and 0.35. Again, in order to ensure fair
comparison  among  the  forecasts,  we  will  project  the

models' forecasts to the SPC values. For instance, all
probabilities  above  0.35  from  the  models  are
considered 0.35 in the verification.
b) Operational Eta: We include the 1200 UTC  run from
the  NCEP  Eta  to  add  a  deterministic  model  in  the
comparison. Probabilistic  forecasts from this model are
trivially created by setting the field to 1 (actually, 0.35
for the severe weather forecasts) when the condition for
severe weather is satisfied and 0 otherwise.
c) Short  Range  Ensemble  Forecasting  (SREF):  The
NCEP ensemble for short range forecasting (e.g. Hamill
and  Colucci  1997)  at  that  time  consisted  of  10
members,  five  Eta  and  five  RSM (Regional  Spectral
Model).  The  SREF forecasts  would  have  provided  a
good opportunity to compare the experimental MM5ADJ
ensemble, that uses human perturbed IC, against the
dynamical method of breeding of growing modes used
in the SREF. Unfortunately, only 11 days are available
to perform the comparison for the period that the SP03
lasted. This hampers the statistical significance of such
comparison.  As  a  solution  of  compromise  we  will

Fig. 1 a)  Probability of severe weather (black lines in
20 % interval)  using the SCP parameter from the 32
member  MM5 Adjoint  ensemble  for  the  24  h  period
from  1200  UTC May  5  to  1200  UTC May  6  2003.
Shaded  field  shows  the  Practically  Perfect  Prog.
Dashed  lines  depict  the  1%  probabilities.  b)  Storm
reports  from the  same period.  Red  circles  represent
tornadoes, green circles represent large hail and blue
circles represent damaging winds.
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perform the verification process twice, one using the 27
cases where the MM5ADJ is available and another with
the 11 days available from the SREF forecasts.
d)  Practically Perfect Prog: Although this field is not a
forecast, we will use it as a measure of the upper limit
of  a  probabilistic  forecast  provided  some  limits  in
generating  the  forecast  (e.g.  smoothness,  size  and
spatial  continuity  of  significant  probability  areas).
Brooks  et  al.  (1997)  discuss  the  concept  of  the
practically  perfect  progs  (PPP) and present  the main
characteristics. Essentially, the PPP field is constructed
by using a nonparametric density estimation with a two-
dimensional Gaussian kernel for each gridpoint with a
report in the observational dataset. The parameters that
define the kernel are calculated by Brooks et al. (1997)
from the statistical properties of the climatology of SPC
operational  outlooks.  Figure  1a  depicts the PPP field
obtained from the reports shown in Fig 1b and provides
an example showing the main characteristic of the PPP
- the hypothetical forecast is  as accurate as could be
expected for a forecaster already aware of the reports.

4. VERIFICATION OF SEVERE WEATHER
FORECASTS

To diagnose “severe weather” from model output fields,
we  use  the  Supercell  Composite  Parameter  (SCP,
Thompson et al. 2002).  The SCP is calculated as:

SCP � muCAPE
1000 J kg � 1

� 0 � 3 km SRH

100 m2 s � 2

� BRN shear
40 m2 s � 2

The probability of occurrence of severe weather during
a 24 h period at every grid point is defined here as the
number  of  ensemble  members  having  a  SCP larger
than  1  and  some  convective  rain  at  that  grid  point

anytime during that 24 h period, divided by the number
of ensemble members. We use the threshold of SCP
larger than 1 as it is reported by Thompson et al. (2003)
in  order  to  differentiate  supercell  storms  in  both
observed and Rapid Update Cycle-2 analysis/forecast
model proximity soundings. Each day, two probabilities
for  the  forecast  of  occurrence  of  severe  weather  are
produced  for  each  of  the  four  available  forecasts
sources in the comparison: one for the 0 – 24 h and
another for the 24 – 48 h period. Figure 1a shows an
example of the distribution of this probabilistic forecast
from the MM5ADJ, showing for this case values up to
80% from the lower Mississippi Valley to the Ohio and
Tennessee Valley. 

A  global  verification  of  the  probabilistic  forecasts  is
done by using the  attributes diagram  (Wilks,  1995).
This  diagram  shows  the  observed  frequency  of  an
event  as  a  function  of  the  forecast  and  allows  an
interpretation  of  skill  for  each  forecast  category
separately. The attributes diagram also allows one to
interpret  the  reliability,  resolution  and  uncertainty  of
each forecast interval (Wilks, 1995). Figure 2 shows the
attributes diagram for all the forecasts compared in this
study. The observed climatological frequency is  0.016
for the 27 cases and 0.024 for  the 11 “SREF cases”
(the  days  were SREF  data are available  are mostly
during the first two weeks of May 2003, which was the
most  active  period  of  the  SP03  experiment).  Not
surprisingly  for  the  prediction  of  rare  events,  all
forecasts  in  the  comparison  show  good  skill  at
predicting no occurrence of severe events (0.00 probs),
with the human outlooks showing the higher reliability at
this  category.  For  low (0.05)  and  moderate (0.15)
probabilities, the MM5ADJ is the only forecast showing

Fig 2. Attributes diagrams for the probability of severe weather as obtained from: SP03 preliminary Day2 outlooks,
T+24 h and T+48 h SCP forecasts from the MM5ADJ, Eta and SREF. Left panel was calculated using all 27 days
available for the MM5ADJ experimental  period and right panel contains results only from the days the SREF output
were available during that test period.
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some skill,  with  especially  good  reliability  at  the  low
category.  The  fact  that  the  MM5ADJ  ensemble  is
underforecasting  for  both  day1  and  day2  in  the  low
category may indicate that a more adequate threshold
for the SCP parameter may be needed for this system
rather  than  the  one  used  (SCP>1).  For  high
probabilities (when a majority of the ensembles agree),
the  MM5ADJ  shows  no  skill  in  predicting  severe
weather.  This  is  an  indirect  indication  of
underdispersion in the ensemble since it  is a result of
high ensemble member agreement yet not reproducing
the  observations.  The  human  outlooks,  however,
become  skillful  at  the  high  probability  categories,
revealing  the  forecasters  skill  when  they  show  high
confidence on the intensity of the situation of the day
and decide to use high probabilities in the outlook. The
Eta  forecasts  are  clearly  hampered  in  this  type  of
probabilistic verification but it is still significant that the
model overforecasts the severe weather. In only 11 to
12 % of the times in which the model forecasts SCP > 1
and  convective  rain  in  a  gridpoint  is  severe  weather
actually reported in the gridbox during the 24 h period.

Regarding the results from the 11 “SREF cases”, similar
scores to those from the 27 days sample are obtained
for the outlooks, MM5ADJ  and Eta model, with some
minor  but  notable  differences.  The  outlooks  show  a
remarkable increase in skill  and reliability for the high
probability  categories  during  this  convectively  active
period. Also, the MM5ADJ has generally improved skill
at  all  categories.  Focusing  on  the  SREF  results,  it
shows almost perfect reliability (better than the PPP for
day1)  for  the  low category  but  no  skill  for  higher
probabilities. This result clearly shows the advantage of
the  MM5ADJ  over  the  SREF  in  forecasting  highly
probable episodes of severe weather (usually the most
intense  and  damaging).  This  is  most  likely  a
consequence of the customized design of the MM5ADJ
to focus on the areas of severe weather threat, whereas
the SREF system is designed to cover a wide variety of
mesoscale forecast aspects and shows its  strength at
the lower probability range.

As expected, and although the SREF is forecasting the
low category with great success for this small  sample
size, all forecasts considered in this comparison are far
from the potentially attainable limit set by the PPP field.

5.  VERIFICATION OF PRECIPITATION
FORECASTS

The 6-hourly accumulated precipitation forecasts from
the MM5ADJ,  Eta model and SREF are verified using
the NCEP/CPC Stage IV dataset. Although probabilistic
fields can be derived from an ensemble of precipitation
forecasts,  we  will  show  here  only  results  from  the

verification of the skill of single precipitation fields from
the ensembles such as the  mean and the probability
mean matched (PMM) precipitation. The PMM (Ebert,
2001)  is  calculated as the  ensemble  mean, rescaled
locally  using  the  global  (all  ensemble  members)
distribution  of  precipitation.  This  field  is  intended  to
possess the representativity and properties (in terms of
smoothing  out  uncertain  features  from  the  individual
members)  of  the  ensemble  mean  but  a  similar
precipitation distribution to the precipitation field of an
individual deterministic member.

The root mean square error (RMSE) of the 6-h forecast
precipitation  is  shown in  Fig.  3  as  a  function  of  the
integration  time.   A  measure  of  the  mean  total
precipitation  is  given through the labeled “Zero  Fcst”.
The  diurnal  cycle  in  the  precipitation  and  the  RMSE
clearly emerges in the plots. Maximum precipitation is
observed at  T+18 and T+24 h, which corresponds to
the period from 00 – 12 UTC. Using the sample of 27
cases (Fig. 3, top panel), the Eta model has the lowest
RMSE for the first 12 hours but it becomes the forecast

Fig.  3 Root  mean  square  error  of  the  6-hourly
accumulated  precipitation.  Top  panel  include  the  27
cases of the SP03 experiment  and the bottom panel
includes the 11 available cases from the SREF during
that period.
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with highest error during the second 24 h of the period.
The  ensemble  mean  of  the  MM5ADJ  consistently
produces relatively low RMSE during all 48 h. However,
results for the MM5AJD PMM show higher RMSE that
the ensemble mean for all time spans. This is not an

unexpected  result  since  the  RMSE  score  strongly
penalizes  small-scale  structures  in  the  field,  and  the
PMM  is  designed  to  have  enhanced  small  scale
features compared with the ensemble mean. Note how
the  lowest  RMSE  for  the  last  hours  of  the  forecast

Fig. 4 Six hours accumulated precipitation BIAS and ETS as a function of precipitation threshold for the 11 “SREF
cases”. BIAS plots show the reference line of BIAS=1.
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period is  obtained by a constant  precipitation of  zero
(“Zero Fcst”), indicating almost no value for any of the
forecasts at those time spans. 
Restricting  the  sample  size  to  the  11  “SREF cases”
(Fig. 3, bottom panel) the RMSE increase generally due
to the higher average convective activity  compared to
the SP03 27 cases.  Results  for the SREF forecasts
show that the SREF mean has the lowest RMSE among
the compared forecasts for all time spans. 
To  provide  a  global  skill  score  for  the  precipitation
forecast not so sensitive to errors on a single day, we
compute the BIAS and Equitable Threat Score (ETS),
computed as:
 

where,  F  is  the  number  of  forecast  points  above  a
threshold, O the number of observed points above a
threshold,  C the number  of  points with both forecast
and observations above a threshold, T the total number
of gridpoints in the forecast and E=F·O/T. For the sake
of brevity, we show BIAS and ETS results  for the 11
“SREF  cases”  and  only  the  PMM  is  used  for  the
MM5ADJ and SREF ensembles. This field shows better
BIAS and  ETS scores than the ensemble mean (not
shown).  
All  forecasts  overpredict  (BIAS  >  1)  precipitation
amounts lower than 5 mm, though the Eta model has
the  lowest  bias.  As  expected,  for  larger  precipitation
amounts,  all  models  underpredict  (BIAS  <  1)
precipitation,  decaying  to  small  bias  with  increasing
threshold. However, the Eta model has smaller bias for
the 10 and 15 mm thresholds. It is noteworthy that the
MM5ADJ  has  larger  biases  for  small  precipitation
amounts  but  does  not  decay  to  0  as  the  other  two
systems do for very high thresholds ( > 25 mm /6h).
Regarding the ETS, similar behavior is detected in the
results. The Eta and especially the SREF obtain better
scores  for  low  precipitation  thresholds,  whereas  the
MM5ADJ  forecasts  are  better  for  the  highest
precipitation  thresholds.  This  consistent  result  in  the
precipitation verification may be a consequence of the
particular design of the MM5ADJ ensemble, focused on
severe  weather  and  active  situations  where  higher
precipitation rates are more likely, but it may also have
influence from the fact that the MM5ADJ uses the Kain
and Fritsch (1990) convective scheme whereas the Eta
and  SREF  use  the  Betts-Miller  (1986)  convective
adjustment parameterization.

6.  CONCLUSIONS

This  paper  presents  some  verification  results  of  an
ensemble created using human-generated input and an
adjoint  model.  Following  the  ensemble  generation
process  described  in  Xu01,  an  experiment  was
conducted during the 2003 SPC/NSSL Spring Program.

Results from that experiment are verified against severe
weather reports and 6-hourly accumulated precipitation.
In  order  to  assess  the  value  of  the  experimental
ensemble we compare the verification scores to other
available  short-range  operational  forecasts.  The  SPC
Day2 convective outlooks, the Eta model and the SREF
system are included in the comparison. Unfortunately,
the SREF dataset  is  incomplete for  the period  of  the
experiment  and  no  satisfactory  comparison  can  be
carried  out.  However,  from  the  small  sample  of  11
cases some differential characteristics emerge between
the SREF and the experimental MM5ADJ system.
The  SREF shows  almost  perfect  probabilistic  severe
weather forecasts for low probability events but no skill
for high probability categories (> 0.06). The MM5ADJ,
however,  shows some skill  at  most  of  the  probability
categories, being only overcome by the human outlook
at the high probability end. This suggests that human-
generated ensembles could be a useful addition to the
model guidance provided for severe weather situations.
The  comparison  of  precipitation  skill  scores  confirms
the  low  biases  and  high  ETS for  small  precipitation
amounts of the Eta model, and highlights the better skill
of  the  SREF  for  low  intensity  events  (precipitations
lower than 25 mm/6h) and the relatively good results of
the MM5ADJ forecasts for high precipitation thresholds.

Future work will  involve the verification of probabilistic
forecasts of precipitation and a more detailed analysis
of  the  suggestion  that  emerges  from  this  study
indicating the encouraging skill of the human-generated
ensemble system on very active events (high probability
of severe weather and heavy amounts of precipitation).
Limiting the verification area to areas of concern in the
forecast could help to further understand these results.
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