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1. INTRODUCTION 
 
The Juneau terrain-induced turbulence and wind shear 
project (Barron and Yates, 2004) is evolving from a 
wind information system that provides users with wind 
data into a warning system that additionally provides 
users with turbulence and wind shear alerts. These 
alerts are issued when the estimated turbulence or 
wind shear levels exceed thresholds associated with 
aircraft performance (Wilson, 2004). The key element 
in this process is estimating the hazard (turbulence or 
wind shear) level based on the available sensor data. A 
linear regression technique was chosen for this 
purpose based on previous work (Neilley, 1996). The 
statistical verification and validation of the resulting 
regressions are discussed by Fowler et al. (2004). 
 
This paper gives a brief description of the overall 
warning system and describes in more detail the 
process by which the hazard regressions were 
developed. 
 
2. SYSTEM OVERVIEW  
 
Figure 1 shows a block diagram of the overall Juneau 
warning system. The system sensors consist of seven 
anemometer sites and three wind profiler sites in the 
locations shown in Fig 2.   
 
The Anemometer Subsystem ingests 1-s wind speed 
and direction data from each of the ten individual 
anemometers in the system and performs quality 
control (Weekley et al., 2004) on that data. One minute 
statistics of the 1-s data, including mean and standard 
deviation, are computed for each of the anemometers. 
In a separate step the statistics from the redundant 
mountaintop anemometers at the same site are 
combined/selected as representative of the site.  
 
The Profiler Subsystem ingests Doppler spectral data 
from each radar and performs quality control at the 
moments level using NIMA (Morse et al., 2002). From 
the quality-controlled moments, winds are calculated 
(Goodrich et al., 2002) and additional quality control is 
performed at the winds level.  “Rapid-update” (every 
~30 seconds) winds are generated by calculating new 
winds after every radar beam is collected. 
 
- - -  
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Fig. 1: The top level architecture of the Juneau warning 
system consists of four major subsystems: one for each 
of the major sensor components to perform data ingest 
and quality control, one to translate sensor data into 
hazards and alerts, and one to display the information 
to users. 
 

 
 
Fig. 2: The locations of the anemometers and wind 
profilers are shown relative to local terrain and 
landmarks in the Juneau area. The Gastineau Channel 
separates Douglas Island from the city of Juneau on 
the mainland. 
 
The Hazard Algorithm Subsystem derives hazard 
estimates and alerts from the sensor data produced by 
the sensor subsystems. It consists of three major 
components as shown in Fig 3.  The Regressor 
Generation component converts and formats the 
quality-controlled sensor data into the specific 
regressors that will be used to estimate the hazard 
levels. A fuzzy logic algorithm is applied to the wind 
speed and direction from the mountaintop 



anemometers and the profilers to classify the current 
wind regime as one of Taku, Southeast, Mixed, Calm, 
or Unknown (Cohn et al., 2004). 

Fig. 3: The three major components of the Hazard 
Algorithm Subsystem. The Regression Coefficients are 
pre-calculated and supplied to the algorithm via 
configuration files. 
 
The Hazard Generation component uses the 
regressors and wind regime, in combination with pre-
calculated regression coefficients, to estimate the 
hazard levels in each of the hazard areas.  The 
determination of these regression coefficients is 
described in Section 3. The wind regime is used to 
select the appropriate set of regressions (and their 
associated coefficients) to use for each hazard area. 
From this set of regressions, a subset is chosen to 
apply based on the skill of the regression and the 
availability of high confidence regressors. Simply 
stated, each regression in the set is considered, 
starting with the most skillful based on r2, the square of 
the sample correlation coefficient.  If each of its input 
regressors is available and has sufficiently high 
confidence, the regression is included in the subset, 
otherwise it is excluded. When the target number of 
regressions, currently 10, has been included in the 
subset, or the regression set has been exhausted, the 
subset is complete. Each of the regressions in the 
subset is evaluated to estimate the hazard level and 
these estimates are averaged to give the final hazard 
estimate. This process is repeated for each hazard 
area and hazard type. These hazard estimates are 
used by the Alert Generation component to determine 
what alerts should be displayed to users.  

The behavior of the Alert Generation component is 
largely dependent upon the requirements of the FAA. 
By design, all the alerting complexity is embodied in 
this component. Because alerting strategy is an area 
where requirements often are subject to change, this 
component was designed to be flexible and has the 
capability of generating and prioritizing multiple types of 
alerts, e.g., wind shear and turbulence, as well as 
implementing different alerting philosophies, e.g., worst 
encounter, first encounter. The current prototype 
alerting system being fielded produces turbulence 
alerts only at three specific alert levels; each alert area 
is categorized based on the highest turbulence 
estimate from any of the hazard areas that overlap that 
alert area. Each area is categorized as having no alert, 
or having an alert at one of three levels. If there are no 
hazard estimates available from the associated hazard 
areas, the alert area is categorized as “out of service” 
(OTS). Additionally, if only some of the associated 
hazard areas do not have hazard estimates available, 
an “impaired” flag is set for the alert area.  
 
The Display Subsystem receives the quality-controlled 
sensor data and the alerts and reformats this 
information for display to the users (Mueller et al., 
2004).  By design, components in the Display 
Subsystem are “dumb” and do not include any 
significant algorithmic processing. The prototype uses a 
variety of web-based technology. Text-based web 
pages that display the current anemometer and profiler 
winds data have been a part of the wind information 
system for several years. The prototype system also 
has two Java-based display clients. The Alpha display 
displays only the textual alert messages for each alert 
area and is intended for use in the air traffic control 
tower. The Gamma Display, shown in Fig. 4, provides a 
greater variety of information including a geographical 
situation display and time history of the sensor data, 
and is intended for use by the Flight Service Center, 
airline operations, and other general aviation users. 
 

 
Fig. 4: Example of the Gamma Display showing the 
Alpha alerts in the upper left corner and the geographic 
situation display in the main window. Two alert areas 
show alerts. 



 
3.   DETERMINING THE HAZARD REGRESSIONS 
 
The key component of the Hazard Generation 
algorithm is the set of regression coefficients used to 
estimate the hazard levels.  The method by which 
these coefficients are generated is discussed in this 
section.  
 
3.1 Where and how can we skillfully predict hazards? 
 
The first step was to identify geographic regions where 
aircraft hazards are observed (Cohn et al., 2004 and 
Braid, 2004).  Figure 5 shows research aircraft tracks 
flown in the Juneau area. The indicated hazard boxes 
were chosen so that the turbulence “hot spots” were 
located near the center of the boxes in order to 
generate good statistics. 
 
Because turbulence occurs in different regions under 
different wind regimes, improved skill is expected if a 
separate analysis is done for each of the different wind 
regimes. This expectation was corroborated by the 
results of the feasibility study (2000). This study also 
indicated that better skill was achieved when the 
Gastineau channel hazard areas were further refined 
by altitude. Each of the four channel hazard areas 
shown in Fig. 5 represents two hazard areas, one 
below 2000 ft and another at 2000 ft and higher. 
 

 
 
Fig. 5: Eddy dissipation rate as measured by research 
aircraft along flight tracks in the Juneau area are shown 
with the hazard prediction boxes overlaid. 
 
A linear regression approach was chosen as the 
method to predict the hazards based on the successful 
use of this technique by Neilley (1996) for estimating 
terrain-induced turbulence hazards from anemometer 
data in Hong Kong.  For this application, regressions of 
the form shown in Eqn. 3.1 were used. 
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where p is the predicted hazard, 
                      ri are the regressor values, and 
                       ci are the regression coefficients. 
 
3.2 What is truth? 
 
The source of the truth data for the regressions was 
research aircraft data collected during three field 
programs in the winters of 1998, 1999/2000, and 
2002/2003 (Cohn et al. 2004). In the 1998 field 
program the University of North Dakota Citation was 
employed as the research aircraft and in the latter two 
field programs the University of Wyoming King Air was 
employed. During the 2002 field program, data was 
also collected from an Alaska Airlines B737 aircraft.  
 
It was critical to perform in-depth review and quality-
control on this aircraft data (Gilbert et al., 2004) in order 
to insure that only valid truth data were used in 
generating the regression coefficients. The aircraft data 
analysis resulted in eddy dissipation rate (EDR) values 
calculated at time resolution of one second, each value 
representing an average over a distance of one 
kilometer, about 12 seconds. EDR values for the time 
period when the aircraft was within the geographic 
confines of a specific hazard box were collected and 
statistics generated.  Because of the intermittent nature 
of turbulence it was desired to use a target statistic that 
captured the worst hazard observed in the box but one 
that was still averaged enough to produce stable 
statistics. To this end, the one-second data were 
replaced with the 3-point median value of the one-
second values at each point and the target statistic for 
the regressions was chosen as the largest of those 
median values within the box. In the following 
discussions, a “data point” is one excursion of the 
aircraft through a hazard box and the associated target 
hazard value. 
 
3.3 Choosing the candidate regressors 
 
The set of candidate regressors was chosen based on 
the measurements that would be likely to have a 
positive correlation with the atmospheric turbulence as 
measured by the research aircraft.  A set of simple 
regressors could be obtained from the one-minute 
statistics generated for each anemometer site, i.e., the 
mean wind speed, the wind speed standard deviation, 
and the wind direction standard deviation. Because the 
dimensional analysis suggests that the square of the 
wind speed might be more likely to be linearly 
correlated with the EDR than the non-squared quantity, 
the square of the mean wind speed is also included as 
a candidate regressor along with the wind speed and 
wind direction variances. 
 
Because of the much larger amount of raw winds data 
available from the profilers, additional averaging was 



performed to generate regressors from the profiler 
data. The range of the profilers was divided into six 
altitude regimes each with a depth of 300 m. These 
regimes were characterized by the lowest included 
altitude, i.e., 300, 600, 900, 1200, 1500, and 1800 m, 
respectively. Over each of these altitude regimes the 
wind speed and direction data from each of the 
included profiler range gates were included in the 
statistics.  Candidate regressors included the same 
quantities as used from the anemometer statistics with 
the addition of the eddy dissipation rate measured from 
the spectral widths and the standard deviation and 
variance of those measurements over the included 
range gates. Separate statistics were calculated for 
EDR measured as ε1/3 and measured as ε2/3, where ε is 
the eddy dissipation rate (m2s-3). For each altitude 
regime, the average vertical shear of the horizontal 
wind was also calculated as a candidate regressor. 
 
In addition to these “simple” regressors, certain derived 
quantities were considered likely to be better correlated 
with the truth data.  For example, the wind direction 
standard deviation scaled by the wind speed, might be 
better correlated than the sigma value alone since at a 
low wind speed, a large sigma value is expected and is 
not particularly interesting, but in conjunction with a 
large wind speed might suggest the presence of 
turbulence.  Both wind speed and wind direction 
sigmas scaled by the mean wind speed were included 
as candidate regressors from each of the anemometers 
and profiler altitude regimes. 
 
Another category of derived regressors is the wind 
speed component along some specific direction vector, 
as it is possible that the setup of a turbulent 
environment might be sensitive to winds coming from 
some specific direction.  Component calculations, Eqn. 
3.2, were carried out for values of d at ten degree 
increments, but only positive wind speed component 
values were used. Negative values of wd were not used 
as regressor values. The squares of the positive wd 
values were also considered as candidate regressors. 
 
 *cos( )dw wspd wdir d= −  (3.2) 
 
A final category of derived regressors were the “point-
to-point shear” calculations. Here an attempt is made to 
directly calculate an estimate of the headwind shear 
experienced between two points, p0 and p1, along a 
specific flight path, as illustrated in Fig 6. 
 
Let 0uv  and 0vr be the unit vectors along and 
perpendicular to the flight path at p0, respectively.  
Similarly, let 1ur  and 1vr  be these unit vectors at 1p . 

The head wind shear hs  is calculated as the difference 
in the dot product of the unit vector along the flight path 
and the wind vector at the two points, normalized by 
the path length, as shown in Eqn. 3.3. 
 

 
Fig. 6: Schematic diagram of the aircraft track between 
points p0 and p1 and the wind vectors, h, at the nearby 
sensors.  
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Similarly, the calculation of the cross wind shear xs  
takes dot products between the wind vectors and the 
cross direction unit vectors, Eqn 3.4. 
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Headwind and crosswind shear regressors for six flight 
path segments were included among the candidate 
regressors. A total of 2138 candidate regressors were 
considered for use in predicting the hazards. 
 
3.4 Finding skillful regressions 
 
In preparation for the regression analysis, a tabular 
database was created, each row representing one 
excursion of the research aircraft through a hazard box. 
The columns of the database consisted of the various 
hazard values calculated from the aircraft data for that 
excursion, status information such as the identity of the 
hazard box, and the time-associated regressor values 
calculated from the sensor data. The latest sensor data 
received prior to the time the aircraft entered the 
hazard area were used to calculate these regressor 
values.   
 
With such a large number of candidate regressors, a 
combinatoric explosion occurs if a brute force method 
is applied to testing all possible combinations of four 



regressors. Several techniques were applied to mitigate 
this problem.  The process described below was 
performed for each hazard area and hazard type for 
which regressions were required. 
 
The first step was to test the individual skill of each 
regressor by calculating the single variable linear 
regression of each candidate regressor against the 
truth values using a Singular Value Decomposition 
technique. For a given hazard area and hazard type, 
the regressors with the largest r2  values were selected 
for the next step with the restrictions that there be at 
least 20 data points for calculating the regression, that 
each selected regressor could have an r2 value of no 
less than 0.1, and that no more than 500 regressors 
total were retained.  
 
The next task was to generate sets of four-variable 
regressions to evaluate. The theoretical upper limit for 
the r2 value of the four-variable regression is the sum of 
the r2 values from the single variable regressions. This 
theoretical maximum can be achieved only if the 
variables are not correlated with each other. So as a 
prerequisite for selecting the four-variable regressions, 
the “covariance ratio” between each pair of regressors 
was calculated using the hazard estimates from their 
respective single variable regressions. The covariance 
of these hazard estimates was calculated resulting in a 
2x2 covariance matrix, M. The “covariance ratio”, c12, 
between regressors R1 and R2 is calculated as shown 
in Eqn. 3.5. 
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To insure representation by all sensor sites and to limit 
the combinatoric explosion, a fixed number of 
regressors from each of the ten sensor sites were 
selected for use in the four-variable combinations. The 
site regressor with the largest r2 is selected as S0. 
Subsequent site regressors Sm are selected as the 
remaining regressor Rj with the highest score, Eqn 3.6, 
based on its value and its correlation with the 
previously selected regressors. 
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For our analysis, five regressors from each sensor site 
were selected limiting the total number of possible 
combinations of four regressors to 230,300. The 
number of combinations was further reduced by 
eliminating combinations whose r2 sum did not exceed 
the final r2 minimum target of 0.6. Also eliminated were 
any which included pairs of regressors whose 
“covariance ratio” exceeded 0.7.  Even with these a-
priori exclusions, the resulting test sets typically 
consisted of many thousands of four-variable 
regressions.   

 
Each four-variable regression in the test set was 
evaluated by examining its r2 value. Regressions for 
which there were 20 or fewer data points were 
eliminated from consideration.  Regressions with too 
high a condition number from the SVD analysis were 
also eliminated. For clarity in the condition number 
analysis, the regressor values were first normalized 
over their own ranges, i.e., regressor and target values, 
x,  were replaced by  ( ) /x µ σ− , where µ is the mean 

value and σ is the square root of the variance of all the 
values for that regressor. This normalization also 
results in regression coefficients that are proportional to 
their contribution to the regression, uncontaminated by 
the effects of the varied scale and units of the 
unnormalized regressors. 
 
Originally a fixed number of the regressions with the 
highest r2 values were selected for use in the system. 
However, as the real time system would be averaging 
the estimates from the ten best-performing regressions, 
this approach might result in including a large number 
of regressions that might not ever be used.   
 
An alternate method for selecting the final set of 
regressions to use was to consider possible sensor 
outage scenarios.  First the entire set of regressions 
was ranked by a “figure of merit” (FOM) that was 
comprised principally of the regression r2 value. As 
shown in Eqn. 3.7, the FOM was decreased for 
regressions calculated with fewer than 80 points. 
 

 2 0.25FOM r f=  (3.7) 
where f is the smaller of unity and the ratio between n, 
the number of data points, and the product of nmin, the 
minimum acceptable number of data points for a single 
variable regression, i.e., 20, and  nvar, the number of 
variables in the regression, i.e., 4.  
 
With this ranked set of regressions, each possible 
sensor outage scenario was considered beginning with 
no outage, a single sensor outage, dual sensor outage, 
etc. The ten physical sensor sites were considered for 
this exercise, resulting in 1021 possible scenarios. For 
each scenario, the best regressions in the list that did 
not use any regressors from the excluded sensor(s), up 
to a maximum of ten, were added to the final list. For a 
given hazard area and hazard type this resulted in final 
regression sets on the order of 1000 regressions. 
 
Each regression set, consisting of the regressor 
names, associated coefficients and the r2 value for 
each four-variable regression selected, was output to a 
configuration file for use by the real time warning 
system. One configuration file was generated for each 
hazard area/hazard type combination.  
 
 
 
 



4.  SUMMARY AND FUTURE WORK 
 
We have outlined the architecture and design of a 
system that utilizes linear regression to estimate 
turbulence and wind shear in real time to produce alerts 
for pilots in the Juneau area. The linear regressions 
utilize quality-controlled data from wind profilers and 
from anemometers located at mountaintop and near 
the airport to estimate turbulence and wind shear 
hazards in each of several geographic areas. Separate 
regressions are used in different wind regime 
conditions. We have outlined the approach taken to 
generate the regression coefficients used in the system 
and described the approaches used to mitigate the 
combinatorial explosion that results from considering a 
large number of potential regressors.  
 
It remains to evaluate the performance of the hazards 
regressions on a larger sample of data than that 
included from the field programs. This analysis can be 
performed by applying the hazard algorithms to the 
three years of sensor data archived thus far over the 
course of the project, as well as observing the 
performance of the prototype system in the field. Of 
particular interest is whether the regressions appear to 
be over- or under-warning as compared with pilot 
reports. As required, strategies to mitigate the under- or 
over-warning will need to be developed. 
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