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1. INTRODUCTION 
 

Technological advancements in Micro Electro 
Mechanical Systems (MEMS) and nanotechnology 
have inspired a concept for a revolutionary 
observing system called Global Environmental 
Micro Sensors (GEMS).  The system features a 
massive, wireless network of in situ, buoyant 
airborne probes that can monitor all regions of the 
Earth with unprecedented spatial and temporal 
resolution.  The probes will be designed to remain 
suspended in the atmosphere for hours to days 
and take measurements of temperature, humidity, 
pressure, and wind velocity that are commonly 
used as dependent variables in numerical weather 
prediction (NWP) models.  As a result, it will not be 
necessary to develop complex algorithms for 
assimilating such data into research or operational 
models. 

In addition to gathering meteorological data, 
probes could be used for environmental 
monitoring of particulate emissions, organic and 
inorganic pollutants, ozone, carbon dioxide, and 
chemical, biological, or nuclear contaminants.  
Once the probes settle out of the atmosphere, 
they could continue making surface 
measurements over land or water.  

This paper provides a discussion of the 
system used to simulate dispersion of and 
observations collected by an ensemble of probes.  
The GEMS simulation system is described in 
section 2.  Section 3 highlights the several 
possible deployment scenarios and section 4 
describes a preliminary set of Observing System 
Simulation Experiments (OSSEs) performed to 
assess the forecast impacts of GEMS on NWP 
models.  
 
2.  SIMULATION SYSTEM 
 

The Advanced Regional Prediction System 
(ARPS; Xue et al. 2000; Xue et al. 2001) coupled 
with a Lagrangian particle model (LPM) is used to 
simulate the dispersion of observations collected 
by an ensemble of probes.  The ARPS is a  
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complete, fully automated, stand-alone system 
designed to forecast explicitly storm- and regional-
scale weather phenomena.  It includes a data 
ingest, quality control, and objective analysis 
package known as ADAS (ARPS Data Analysis 
System; Brewster 1996), a prediction model, and a 
post-processing package. 

Probe dispersion is simulated using the LPM 
embedded within ARPS.  The probes are 
assumed to be passive tracers moving 
independent of one another and transported by 
the wind.  The LPM tracks the location of each 
probe based on three-dimensional wind 
components and updates probe position using the 
resolvable-scale components of wind velocity 
directly from the ARPS model, as well as turbulent 
velocity fluctuations.  The turbulent velocity 
fluctuations are estimated from a subgrid scale 
(SGS) turbulence parameterization (Mellor and 
Yamada 1980) similar to the SGS turbulence 
scheme of Deardorff (1980) used in the ARPS 
model.  A parameterization scheme for wet 
deposition or precipitation scavenging is included 
in the LPM to simulate the impact of frozen and 
liquid precipitation on probe trajectory and 
possible washout (Seinfield and Pandis 1998). 
 
3.  DEPLOYMENT SCENARIOS 
 

A large number (>106) of simulated probes 
can be deployed at any time during the model 
integration, and at any latitude, longitude, and 
altitude within the three-dimensional ARPS 
domain.  The LPM provides accurate position 
information because the velocity variables are 
updated every model time step by interpolating to 
the actual probe locations. 

A number of potential deployment strategies 
are being studied including probe release from 
high-altitude balloons (Girz et al. 2002; Pankine et 
al. 2002), surface stations assuming positive 
buoyancy, and vertical profiles similar to 
rawinsonde measurements.  Each of these 
deployment strategies is simulated using the 
ARPS/LPM on a 50-km hemispheric grid to 
determine long-range probe dispersion patterns.  
Since data impact studies are focused on much 
finer scales, a one-way nested grid is implemented 
with a grid spacing of 10 km covering a synoptic-
scale domain. 

 



The initial focus was on simulating probe 
deployment from rawinsondes at ~950 standard 
launch locations over the northern hemisphere.  
For this scenario, one probe was released every 
450 m from each ascending rawinsonde beginning 
at 2 km above the surface and continuing through 
~17 km near the top boundary of the model.  The 
advantages of the rawinsonde deployment 
strategy are that it could leverage an existing 
observational infrastructure and allow probes to be 
released at a number of vertical levels over a 
period of 1-2 hours.  A depiction of the resulting 
probe distribution from a June 2001 simulation 
over the northern hemisphere after 25 days is 
shown in Fig. 1a. 

A strategy to deploy positively buoyant probes 
that ascend upward through the atmosphere was 
also developed.  For this scenario, simulated 
probes are released from surface weather station 
sites around the northern hemisphere and ascend 
to a level of neutral buoyancy that depends on 
probe mass.  This scenario examines the impact 
of probes remaining neutrally buoyant throughout 
30-day simulations versus becoming negatively 
buoyant and falling out of the air gradually.  A 
depiction of the resulting probe distribution over 
the northern hemisphere after 25 days is shown in 
Fig. 1b. 
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Figure 1.  Probe positions for the hemispheric ARPS simulations at 0000 UTC 26 June 2001, 25 da
after model initialization time for (a) rawinsonde, and (b) buoyant surface release deployment.  The pro
altitude (km) is denoted by the colors according to the key provided and total number of probes is giv
by N. 

 
4. REGIONAL DATA IMPACT STUDY 
 

4.1 OSSE Methodology 
 

OSSEs are used to assess the impact of 
probe measurements on weather analyses and 
forecasts following Atlas (1997) and Lord (1997).  
OSSEs have been conducted for decades in 
meteorology to evaluate the potential impact of 
proposed remote and in situ observing systems, 
determine trade-offs in instrument design, and 
evaluate the most effective data assimilation (DA) 
methodologies to incorporate the new 
observations into regional and global NWP models 
(Arnold and Dey 1986; Rohaly and Krishnamurti 
1993; Atlas 1997; De Pondeca and Zou 2001). 

The model used for OSSEs is t
Pennsylvania State University (PSU)/Nation
Center for Atmospheric Research (NCAR) Fif
generation Mesoscale Model (MM5; Grell et 
1995).  The OSSE methodology consists of thr
steps: 

• Nature simulation.  This forecast run 
considered “truth”, and the trajectories of 
simulated probes are tracked and extract
from this model simulation.  The ARP
model is used for the nature simulation. 

• Benchmark simulation.  The MM5 is us
for the benchmark run and configured 
such a manner as to generate a significan
different solution from the nature simulati
to approximate the differences between
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state-of-the-art model and the real 
atmosphere (Atlas 1997). 

• OSSEs.  The various OSSEs are identical to 
the benchmark forecast run, except that 
simulated data are intermittently assimilated 
into MM5 at specified times. 

 
The period of interest selected for initial study 

was 13-15 June 2001.  During this time, a severe 
weather outbreak occurred over the midwest U.S. 
producing 72 tornadoes reported in South Dakota, 
Nebraska, Kansas and Iowa impacting a wide 
population base.  The initial convective 
development and transition of the system from 
single or multicelluar structure to a well-defined 
squall-line feature provide an excellent opportunity 
to examine GEMS data impact on a regional 
scale. 

The ARPS 50-km nature run was initialized 
using Aviation Model (AVN) analysis fields from 
0000 UTC 1 June 2001 and run for 30 days to 
simulate large-scale dispersion of GEMS probes.  
Additional AVN analysis fields were obtained at 
12-h intervals to provide lateral boundary 
conditions throughout the entire model run.  A 
one-way nested 10-km domain covering a large 
portion of the United States was initialized at 1200 
UTC 12 June 2001 and run 2 days (Fig. 2).  It is 
important to note that all simulated observations 
were extracted from the 10-km domain. 

 

 
Figure 2. Domain for 50-km hemispheric ARPS 
simulation and coverage of 10-km grid used for 
regional OSSEs. Yellow-shaded box represents 
area of calculated objective verification statistics.   

To simulate measurements obtained from 
probes and conventional observational networks, 
interpolation is used to extract values of 
temperature, humidity, pressure, cloud water, and 
other model variables at locations throughout the 
nature model integration.  Assuming the probes 
are passive tracers, temporal changes in their 
absolute or relative position are used to estimate 
wind velocities.  The nature run is the source of all 
the simulated observations and provides the truth 
for the OSSEs. 

The MM5 benchmark simulation was initialized 
using the ARPS 50-km nature solution data at 
0000 UTC 12 June 2001, approximately 2 days 
prior to the selected severe weather event.  The 
MM5 simulation was configured with a 60-km 
hemispheric domain and nested 20-km domain.  
The MM5 20-km domain covers the same area as 
the ARPS 10-km domain.  The benchmark run 
was initialized with “perfect” initial conditions by 
interpolating the nature solution to the benchmark 
grids.  In addition, the same AVN hemispheric 
boundary conditions are used for the outermost 
grids of the nature and benchmark simulations.    

The configuration of the OSSEs is identical to 
the benchmark simulation, except that simulated 
probe data or conventional data (surface and 
rawinsonde) are assimilated at select times during 
the model integration.  Following a 24-h spin-up 
period, all simulated data are assimilated into the 
MM5 between 0000 UTC and 1200 UTC 13 June, 
prior to the evolution of the storm system 
responsible for the severe weather outbreak.  A 
depiction of the nature, benchmark and OSSE 
methodology is illustrated in Fig. 3.  

 

 
Figure 3.  Summary of OSSE timeline and 
methodology. 

 
 

 



Data were assimilated into the MM5 OSSEs 
using an intermittent DA technique similar to 
Rogers et al. (1996) and Manobianco (2002).  This 
technique incorporated data from the nature run 
into the model integration by using the MM5 
Little_r analysis package and then integrating the 
MM5 for a chosen time interval.  The intermittent 
DA technique was performed at 3-h intervals 
during the 12-h assimilation window (Fig. 3). 

Several OSSEs have been conducted thus far, 
and the details of each experiment are 
summarized in Table 1.  It is important to note that 
all the experiments represent an upper bound to 
the potential forecast impact, as observations are 
assumed perfect with no associated error.  

Table 1.  Summary of simulations and OSSE 
experiments for 13-15 June 2001 case. 

Simulation Variables 
Assimilated 

Experiment 
Description 

Benchmark 
 
 
 
 
GEMS 
Rawinsonde 
 
 
 
 
GEMS 
Surface 
 
 
 
 
 
 
Conventional  

N/A 
 
 
 
 

T,p,Td,u,v 
 
 
 
 
 

T,p,Td,u,v 
 
 
 
 
 
 
 

T,p,Td,u,v 

No data 
assimilated 
during model 
integration 
 
Data assimilated 
from GEMS 
rawinsonde 
deployment 
scenario 
 
Data assimilated 
from GEMS 
surface 
deployment 
scenario 
assuming positive 
buoyancy 
 
Data assimilated 
from surface 
stations at 3-h 
intervals and 
rawinsonde sites 
at 0000 and 1200 
UTC. 

 
The benchmark simulation serves as a point of 

reference against which the OSSEs are 
compared, since no simulated observations were 
assimilated.  The second and third experiments 
include simulated data obtained from the GEMS 
rawinsonde and surface deployment scenarios 
respectively, as explained in section 3. The 
assimilation method for the GEMS surface release 
OSSE was similar to that of the rawinsonde 

release experiment except simulated data were 
produced from the surface release scenario.  
Since probes remained neutrally buoyant 
throughout the 30-day surface release simulation 
versus becoming negatively buoyant and falling 
out of the air, probe concentrations were greater 
and thus average three-dimensional spacing was 
smaller than the rawinsonde release scenario.   

The final OSSE includes data from simulated 
conventional networks.  Simulated surface station 
data containing all sampled meteorological 
variables were assimilated into the MM5 OSSE at 
3-h intervals, in a similar method to the GEMS 
simulated data (Table 1).  In addition to the 
surface station data, simulated vertical sounding 
data were assimilated at 0000 UTC and 1200 UTC 
13 June to mimic a current rawinsonde network.  
The ARPS 10-km nature run was the source of all 
simulated conventional data.   

For all 20-km MM5 experiments, the 60-km 
MM5 simulation supplied the lateral boundary 
conditions.  The domain was chosen as large as 
computationally practical to limit the influence of 
these pre-defined lateral boundary conditions.  
However, current work is in progress to investigate 
the importance of these boundary conditions on 
subsequent forecast impacts similar to the 
experiments performed by Weygandt et al. (2004). 

Objective verification of the OSSE 
experiments was accomplished by calculating bias 
and root mean square (RMS) errors over a sub-
domain centered on the event of interest (yellow-
shaded box in Fig. 2) following Nutter and 
Manobianco (1999).  If Φ represents a predicted 
variable from the benchmark simulation or OSSEs, 
then forecast error is defined as  

 

natexp Φ−Φ=Φ′ ,                   (1)    
 

where the subscripts exp and nat denote the 
experiment (benchmark or OSSE) and nature 
quantities, respectively.  The bias represents the 
average model error of the benchmark or OSSEs, 
and is computed as 

∑
=

Φ′=
N

1iN
1Bias

,                   (2) 
 

where N represents the total number of grid points 
at any given height in the atmosphere.  The RMS 
error is calculated as 
 

2
N

1i
)(

N
1Error RMS ∑

=

Φ′=
,          (3)

 

 



For brevity, only graphs of temperature and vector 
wind error at 850 and 300 hPa are shown to 
summarize results for the OSSEs.  The pressure 
levels were chosen to represent temperature and 
vector wind from the lower and upper troposphere, 
respectively.  Results from each of the 
experiments are discussed in the next sub-section.  
 
4.2 Results 
 
4.2.1 Benchmark Simulation 
 

Following the initialization of the MM5 20-km 
domain at 1200 UTC 12 June, the temperature 
biases and RMS errors increased with time at 
each level (black line in Fig. 4).  The benchmark 
simulation indicated a cold bias, ranging from -1 to 
0 K, at 850-hPa before 0000 14 June, while at 
300-hPa it showed a slight warm bias ranging from 
1-6 K during the entire period (Figs. 4a and c).  
Overall, this would indicate a stable bias in the 
vertical column and is noted by the lack of 
convective precipitation produced by the 
benchmark simulation when compared to the 
nature simulation (not shown).   

The benchmark simulation also showed 
significant differences to the nature simulation 
when comparing the vector wind.  The nature 
simulation had depicted a strong low-level jet 
feature at 850-hPa, whereas the benchmark 
simulation had no such feature.  This is evident in 
both the bias and RMS error graphs throughout 
the simulation (Figs. 5a and b).  The 300-hPa level 
winds from the benchmark run were also much 
weaker than the nature simulation as shown by 
RMS errors on the order of 15-25 m s-1 after 0000 
13 June (Fig. 5d).  The wind biases and RMS 
errors from the benchmark simulation are 
important because the absence of the strong low-
level and upper-level level jets found in the nature 
run were likely responsible for determining the 
intensity and type of convective storms during the 
June 2001 case. 
 
4.2.2 GEMS Rawinsonde 
 

Following the initial assimilation of probe data 
at 0000 UTC 13 June, the temperature biases and 
RMS errors improved substantially compared to 
the benchmark simulation at each level (green line 
in Fig. 4).  At 850 hPa, the benchmark simulation 
was too cold for a large portion of the simulation, 
whereas including probe data has largely 
corrected the bias (Fig. 4a).  At 300 hPa, the 
benchmark simulation was too warm by 2-6 K 
throughout the simulation after 0000 13 June, 

however when including the probe data the bias 
dropped to near 0 K during the assimilation 
window and increased to near 3 K after 1200 13 
June (Fig. 4b).  After the data assimilation window, 
the 300 hPa and 850 hPa temperature RMS errors 
increased from approximately 1 K at 1200 UTC 13 
June to 2-4 K after 0000 UTC 14 June (Figs. 4b 
and d).   

The vector wind errors from the GEMS 
rawinsonde experiment were much smaller 
compared to the benchmark simulation for much 
of the period.  The only exception was at 850 hPa 
as the RMS errors grew back by the end of the 
simulation (Fig. 5b) and a negative bias, at both 
levels, emerged by 0000 UTC 14 June (Figs. 5a 
and c).  At 850 hPa, RMS errors decreased from 
near 7 m s-1 at 0000 UTC 13 June to near 4 m s-1 

at 1200 UTC 13 June (Fig. 5b).  At 300 hPa, RMS 
errors ranged from 7 m s-1 to 8 m s-1 during the 
data assimilation window (Fig. 5d), however, after 
the assimilation window the RMS errors increased 
from 7 m s-1 at 1200 UTC 13 June to 15 m s-1 at 
1200 UTC 14 June.  The reason for the increase 
in RMS errors and re-emergence of the negative 
wind bias is related to the depiction of the low-
level and upper-level jet features associated with 
the synoptic scale low-pressure system 
responsible for the severe weather outbreak.  The 
ARPS 10-km simulation still portrayed a slightly 
stronger flow than that of the MM5 rawinsonde 
experiment (not shown). 

 
4.2.3 GEMS Surface 
 

The graphs of temperature RMS error and 
bias show that the surface release experiment 
errors were very similar to the rawinsonde release 
scenario at each level (red line in Fig. 4).  The only 
exception was during the data assimilation window 
at 300 hPa, where RMS errors were approximately 
0.5 K less than the rawinsonde release scenario 
(Fig. 4d).    The reason for the decrease in RMS 
errors in temperature during the data assimilation 
window is related to the probe spacing at each 
level for each deployment scenario.  Since probes 
were designed to remain neutrally buoyant at 
different atmospheric levels the distribution was 
fairly well stratified with height, whereas in the 
rawinsonde deployment scenario the probes were 
designed with a terminal velocity and were 
stratified mainly in the lower levels of the 
atmosphere.   

Vector wind errors show that the surface 
release scenario also had similar RMS errors and 
biases compared to the rawinsonde release 
experiment (red line in Fig. 5).  The major 

 



exception again was the decrease in RMS error 
(2-4 m s-1) at 300 hPa during the assimilation 
window (Fig. 5d).  However, the RMS error 
increased from near 5 m s-1 at 1200 UTC 13 June 
to near 15 m s-1 by 0000 UTC 14 June in both 
experiments (Fig. 5d). 

The results from the surface release strategy 
suggest that the MM5 produced a very similar 
impact on the forecast with a significantly greater 
number of probes than for the rawinsonde release 
strategy.  This is important because the 
experiments provide information that will be 
needed in the future for possible design and 
development of the probes and their measurement 
capabilities.    

 

4.2.4 Conventional Data 
 
Following the initial assimilation of 

conventional data (blue line in Figs. 4 and 5) at 
0000 UTC 13 June, the temperature biases and 
RMS errors decreased compared to the 
benchmark simulation.  However, it was only at 
the 850-hPa level that the RMS errors of 
temperature dropped to the similar values of the 
GEMS simulations (Fig. 4b).  This is a result of the 
surface pressure being at approximately 850 hPa 
for a large portion of the domain.  Also, at 850 
hPa, the temperature RMS errors remain similar to 
both the GEMS simulations, ranging from 1.5-3 K 
after 1200 UTC 13 June (Fig. 4b).     

   
a) b) 

   
c) d) 

Figure 4.  Graphs of temperature root mean square error (RMSE) and bias (Kelvin) for the benchmark 
and OSSE experiments.  Data are presented for the 850- (a) and (b), and 300-hPa levels (c) and (d) for 
the period 1200 UTC 12 June (12.5 days) to 1200 UTC 14 June 2001 (14.5 days).  The shaded area 
denotes the period of data insertion from 0000 to 1200 UTC 13 June 2001.  Experiment type is defined by 
legend in panel (b).  

 



b)  
a)
    

   c) 
Figure 5.  Graphs of the vector wind root mean square error (RMSE) and bias (m s-1) for the benchmark 
and OSSE experiments.  Data are presented for the 850- (a) and (b), and 300-hPa levels (c) and (d) for 
the period 1200 UTC 12 June (12.5 days) to 1200 UTC 14 June 2001 (14.5 days).  The shaded area 
denotes the period of data insertion from 0000 to 1200 UTC 13 June 2001.  Experiment type is defined by 
legend in panel (a).   

d) 

 
At 300 hPa, the temperature RMS errors for 

the conventional simulation were 1-4 K higher than 
for both GEMS simulations before 1200 UTC 13 
June and 2-3 K higher after 1200 UTC 13 June 
(Fig. 4d).  The lack of vertical sounding data is 
apparent in the growth of temperature biases and 
RMS errors during the period between 0000 UTC 
and 1200 UTC 13 June.  Meanwhile, the 
conventional simulation had much larger 
temperature RMS errors than both GEMS 
simulations, ranging from 3.5-7 K after 1200 UTC 
13 June (Figs. 4c and d).  The only exception was 
at 850 hPa, as the temperature RMS errors are 
less than 2 K from 0000 to 1800 UTC 13 June 
(Fig. 4b). 

The vector wind errors show that the 
conventional simulation had smaller RMS errors 
and biases compared to the benchmark 
simulation, but larger RMS errors and biases 
compared to both GEMS simulations (Fig. 5).  The 
lack of vertical sounding data is again apparent 
during the data assimilation window as wind vector 
biases and RMS errors increase with time (Figs. 

5c and d).  The trend after 1200 UTC 13 June 
indicates that the differences in errors between the 
conventional simulation and GEMS simulations 
became similar with time; however, the 
conventional simulation has higher biases RMS 
errors overall. 
 
5. SUMMARY AND CONCLUSIONS 
 

A set of regional OSSEs has been performed 
for a selected severe weather outbreak during 
June 2001 to evaluate the potential impact on 
forecasts from an ensemble of GEMS probes.  
Experiments were designed to evaluate the 
predicted impacts between several GEMS 
deployment scenarios and a conventional data 
network. 

Overall, the OSSEs demonstrated that the 
assimilation of probe observations extracted from 
the ARPS nature simulation had a significant 
impact on improving the biases and RMS errors of 
several predicted primary variables over the MM5 
benchmark simulation.  On the other hand, 

 



assimilation of simulated conventional data yielded 
less of an impact on the forecasted values 
especially at non-rawinsonde release times. 

Based on the results obtained from these 
preliminary OSSEs, further work dealing with 
GEMS simulated probes is required.    
Experiments are underway to examine:   

 
• Sensitivity to deployment scenario, 

precipitation scavenging, data density, and 
data assimilation period and frequency.   

• OSSE depiction of the evolution of the case 
from single or multicelluar storm structure to 
a well-defined squall-line feature compared 
to the nature simulation. 

• Realistic errors added to the assimilated 
meteorological variables. 

• Importance of the current pre-defined lateral 
boundary conditions on the forecast impact 
especially at times after data assimilation. 

• Calibration of simulated conventional 
observations by comparing impact to 
assimilating real observations. 

• Additional OSSEs including a chosen winter 
case, longer time periods, and forecast 
cycles similar to Weygandt et al (2004).   
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