
19.12 MCNA - A RELIABLE MULTICAST PROTOCOL FOR RADAR
 PRODUCT DISTRIBUTION

Zack Jing1, Sallie Ahlert1 and Gary Gookin2

1NOAA/NWS/Radar Operations Center (ROC), Norman, Oklahoma

2METI, 3200 Marshall Ave, Norman, Oklahoma

1. INTRODUCTION

The WSR88D products and base data, like many other

operational meteorological data, are currently distributed on
networks via "unicast". That is a copy of the data is sent to each
receiver separately. If multiple receivers request the same data,
multiple copies of the same data must be sent across the
networks.

As the number of product users increases, the product

distribution bandwidth must increase proportionally. The data
transmission delay will also increase as more data have to be
transmitted on the same network. Additional bandwidth will add
operational cost and the increased data communications delay
will reduce quality of operations.

IP multicast technology provides a possible solution to this

problem. In a multicast network environment, data from a single
source can be directed to multiple receivers without duplicated
transmission on any of the physical lines in the network. The
network uses minimum bandwidth to route the data to all
registered receivers.

IP packet multicast capability is now available on many of

the networks. The technology, however, has not yet often been
used for operational data distribution. One of the reasons is
because of reliability concerns. Data sent through IP multicast in
the network are not guaranteed to reach receivers correctly and
completely. Although reliable unicast protocol (e.g. TCP) has
been available for many years, there is so far no standard
protocol for reliable multicasting. Several experimental
protocols have been proposed. These protocols are mostly
designed for applications with large number of receivers and
moderate reliability requirements.

Since the FAA is studying the possibility of receiving WSR-

88D products via multicasting, the NWS Radar Operations
Center (ROC) is currently designing and implementing a
reliable multicasting protocol for distributing radar products.
The protocol is specifically designed for distributing operational
data with high reliability.

In this paper, we will briefly present the protocol, describe

an implementation of the protocol and explain how it can be
used in WSR88D product distribution. Preliminary test results
indicate that reliable and efficient distribution of operational

* Corresponding author address: Zack Jing, Radar Operations
Center, Engineering Branch, 3200 Marshall Avenue, Norman,
OK 73072; e-mail: zack.z.jing@noaa.gov.

data via multicast may be both possible and practical.

2. MULTICAST PROTOCOLS

Internet Protocol (IP) multicast is a bandwidth-conserving

technology that reduces traffic by simultaneously delivering a
single stream of information to many receivers. IP Multicast
delivers source traffic to multiple receivers without adding any
additional burden on the source or the receivers, while using the
least network bandwidth of any competing technology.
Multicast packets are replicated in the network by routers
enabled with a multicast protocol and sent to registered
receivers. Packets are transported in the network without
duplication.

IP multicast protocols have been standardized for many

years. They are supported by most modern computing
equipment: Computers, Switches and Routers. Operational
LANs and WANs can be configured to support IP multicast.
The IP multicast protocols address how receivers register in the
network and how data packets are routed to the destinations. IP
Multicast technology, however, does not address the reliability
issue. Data packets may be lost or become corrupted while
being transported from the sender to the receiver. The IP
Multicast protocols do not guarantee that a registered receiver
always receives exactly the same data sent by the sender.
Several experimental, reliable multicast protocols have been
proposed to address the reliability issue.

Pragmatic General Multicast (PGM) is an experimental

Protocol (RFC 3208, http://www.ietf.org/rfc.html) supported by
Cisco. It is specifically intended as a workable solution for
multicast applications with basic reliability requirements. A
multicast source sends, via IP multicast, sequenced data packets
and receives, via unicast, selective negative acknowledgments
(NAKs) for data packets detected to be missing. The source then
retransmits the missing packets. NAK provides the sole
mechanism for reliability. The packet availability for
retransmission depends on the transmit window size allocated
on the sender side, as well as the data rate. PGM scales well in
terms of number of receivers because it uses an efficient, built-
in-router mechanism for transporting NAKs from the receivers
to the sender. Thousands of receivers can be supported. PGM is
targeted for applications such as stock and news updates, data
conferencing and video transfer. PGM is best suited to those
applications that are either insensitive to unrecoverable data
packet loss or are prepared to resort to application recovery in
such event.

Another NAK based protocol is NACK-Oriented Reliable

Multicast (NORM, INTERNET-DRAFT draft-ietf-rmt-pi-norm-
10, http://www.ietf.org/html.charters/rmt-charter.html) proposed
by researchers at the Naval Research Laboratory (NRL) and
others. Unlike PGM, NORM does not require router-assisted
NAK transportation which is a vendor-specific, non-standard
router feature. Because of this, NORM is easier to deploy, but
less scalable, in comparison with PGM. NORM, using IP
multicast for NAKs, is an end-to-end approach. NORM offers
basic reliability and ordered data delivery as PGM does. For
more information about NORM, please refer to the following url
http://pf.itd.nrl.navy.mil/projects.php?name=norm.

Instead of relying on NAK-based packet retransmission,

Forward Error Correction (FEC) technology has also been
proposed for increased reliability. Each packet is augmented
with additional redundant data before it is transmitted to the
network. On the receiving side, lost packets can be recovered
from other received packets. FEC based technique offers the
best scalability. It works well if the packet loss is random and of
relatively low probability. An example of FEC based reliable
multicast proposals is "Asynchronous Layered Coding (ALC)
(RFC 3450, http://www.ietf.org/rfc)". Vincent Rosa et al
(www.inrialpes.fr/planete/people/roca/mcl) have investigated
the FEC technique called "Low Density Generator Matrix
(LDGM)" which is more efficient than traditional Reed-
Solomon erasure code for large data blocks. FEC based
multicast typically adds about 50 percent overhead to the data
rate. This bandwidth consumption overhead is present even if
the network error rate is very low.

At this moment, there is no standard reliable multicast

protocol. The proposed or experimental protocols are mostly
targeted for distribution of data to a large number of receivers
while achieving moderate reliability. Because the protocols are
experimental, the sources of implementation and support are
limited. Thus, most of the operational data (e.g. weather radar
products) are transported through unicast, so far, although the
multicast capability is often already available on many LANs,
WANs and inter-networks.

3. MCNA (MULTICAST WITH NEGATIVE

ACKNOWLEDGMENT - A MULTICAST PROTOCOL
FOR RELIABLE DATA DISTRIBUTION

In the following we introduce a simple multicast protocol

that is specifically designed for transporting data with high
reliability. The design goals of the protocol are:

• Reliability. Mission or business critical data
distribution often has more stringent reliability
requirements than news and video. As long as
bandwidth is available, data must be reliably received
by all receivers, even if the network circuits are noisy
or there is temporary network break down or
congestion.

• Simplicity. A practical protocol must be simple to

understand and implement such that it can be part of
the application system and most of the application
developers can develop and maintain it.

• Easy to deploy. An end-to-end protocol on top of

standard IP multicast can be deployed on many
existing LANs and WANs. The assumption about the
network topology is minimal.

• Bandwidth efficiency. The protocol should add little

overhead when the network is in normal condition,
and traffic generated by NAKs and packet
retransmission should be minimized.

• Scalability. Moderate scalability supporting hundreds

of receivers is desirable. The number of direct
receivers of operational weather radar data is typically
less than that of news and publicly offered video. Note
that, even if there are only two receivers, the network
bandwidth savings can be substantial in many cases
when compared to unicast. In the case of a large
number of receivers, redistribution of the data at
additional locations can often provide larger scale
solution.

MCNA consists of the following.

o MCNA transports messages of arbitrary sizes. Each

message is segmented to fit in IP multicast packets. A
unique sequence number is associated with each packet.
Packets are sent with IP multicast. On the receiving
side, the IP packet payload is recombined to create the
original messages. MCNA assumes that the packets
received may not be in the order they have been sent.
Because MCNA is on top of the UDP protocol,
detecting corrupted packet is not necessary (UDP drops
any corrupted data).

o A receiver sends NAK messages to the sender to

request retransmission of missing packets. The receiver
detects missing packets through the packet sequence
numbers and through a timing scheme. The sender
resends missing packets requested by one or more
receivers through IP multicast. A receiver repeats
NAKing until all missing packets are received.

o The NAK messages are sent from receivers to the

sender through IP multicast. Each NAK message is sent
with an exponentially distributed random time delay to
implement "NAK suppression" (Nonnemacher and
Biersack, 1998). That is, if a number of receivers
request the same retransmission, only the earliest
responding receiver actually sends the NAK message
and all others will back off upon receiving the NAK
message from the earliest responder. Each NAK
message can contain NAKs of multiple missing packets.

o The sender does not resend a lost packet immediately

after receiving a NAK from a receiver. Instead, it does
so only after a specified delay. This reduces the
probability of resending the same lost packet multiple
times. The delay time increases as the number of
retransmissions of the same packet increases.

o The sender sends a special "I-am-alive" packet
periodically if there is no data packet to send. This
helps the receivers detect any lost packet and a dead
sender.

o The sender controls the data rate of IP multicast

according to a specified maximum rate. This is designed
to reduce the possibility of packet loss in the routers due
to buffer overflow. It also reduces the likelihood of
network congestion problems. If the sender needs to
send both new data packets and retransmission packets,
the allowable bandwidth is equally divided between
them.

o The sender notifies the receivers if a requested

retransmission packet is not available so no further
NAK is generated. The sender also notifies the receivers
before termination so no further NAK is generated.
Three termination packets are sent in a row to increase
the probability of reception.

o On the receiving side, only missing packets within a

specified time period of interest (TPI) are NAKed. This
eliminates NAKs and packet retransmission of old data
in which receivers are no longer interested.

o A receiver times out a quiescent sender to suppress

NAKs in case where either the sender fails to send
termination packets or the receiver fails to receive any
of termination packets.

o Messages are delivered to the application and discarded

from the buffer immediately upon complete reception.
The messages may not be delivered in the same
sequence they are originally sent. This minimizes the
message transport delay. Because the receiving buffer is
only used for storing incomplete messages, the
probability of buffer overflow is reduced and,
consequently, the reliability is increased.

o The sender may use external storage for providing

retransmission data older than the sending buffer can
hold.

o MCNA has built-in data compression. The compression

routine is user-provided.

o Multiple senders are supported in the same multicast

group.

o A sender or a receiver can join and leave the group at

any time without disturbing others. In order to do this, a
sender is uniquely identified by its source IP address, a
random number deduced from its start time and a user
specified sender ID number. When a sender leaves, any
retransmission from that sender becomes impossible.

The characteristics above are descriptive of the approach

designed in MCNA for reliability and conservation of
bandwidth resource. Because the NAK is repeated until a
missing packet is received, no data will be lost if both sending

and receiving buffers are sufficiently large and the bandwidth
resource is available. If we choose to use externally stored (e.g.
in data files or databases) data for retransmission, the data
availability for retransmission can be practically unlimited.
Because only partially received messages need to be buffered
on the receiving side, the probability of receiving buffer
overflow is reduced substantially. For example, the large
number of missing packets in an extended network outage will
not take any space from the receiving buffer.

In normal cases, the packet loss rate should be small and

MCNA adds very little overhead to the bandwidth consumption.
NAK messages and retransmissions happen infrequently. "I-am-
alive" packets may add some load to the network, if the
messages are sent intermittently. This load, however, is only
present when there is no data to send and the network is in low-
utilization. The substantial problem of packet loss happens in
the following cases:

a. Part of the network is overloaded.

b. Some of the network devices or physical links are

not in normal operating condition.

c. Some of the network devices or physical links are
broken.

In such cases, the number of NAK messages and

retransmitted data packets may become large, generating
substantial load to the network. Several techniques have been
introduced to MCNA to minimize NAK messages and
redundant retransmissions. The more efficient use of the
network, the better chance there is to survive network problems.
Another issue is so-called “NAK implosion”. The NAK
suppression technique in MCNA reduces NAK messages in case
the packet loss happens close to the sender (all receivers lose
the same packets). However, when the number of receivers
increases, the number of NAK messages will increase in
general. It is expected that MCNA will be able to support
hundreds of receivers.

4. AN MCNA IMPLEMENTATION

An implementation of the MCNA has been completed at the

ROC. We chose to implement the protocol in the form of an
Application Programming Interface (API) and the associated
software library. The choice of API over a background program
(daemon process) is to offer flexibility for building applications
for different systems and run-time environments. The design
goal is a simple and easy to use API. Buffer sizes, IP multicast
setups and MCNA parameters are all configurable. Multiple
sender and receiver sessions can be opened in the same process.
Status and statistics information is available through the API.
The implementation must be efficient in terms of CPU and
memory resource utilizations.

 The API consists of the following functions.

 int MCNA_open (char *ip, int port,
 void (*receive_func)(int, char *, int, int));

 int MCNA_send_message (int sd, char *msg, int msg_len);
 int MCNA_set_options (int sd,
 const char *optname, int value);
 void MCNA_main_loop (void (*application_func)(void));
 MCNA_statistics_t *MCNA_get_statistics (int sd);
 MCNA_status_t *MCNA_get_status (int sd);
 int MCNA_close (int sd);
 int MCNA_set_external_buffer (int sd,
 int (*get_data_func)(int, int, int, char *),
 int *size, char **msg);

MCNA_open opens a multicast session for group IP address

"ip" for sending and/or receiving messages. MCNA_open, if
successful, returns a non-negative number called session ID
which will be used in other MCNA function calls to identify this
open session. The "port" parameter is the UDP port number
used for the group. If the session is opened for receiving
messages, one must supply a call-back function "receive_func",
which will be called when a message is completely received. In
the function, one can process the incoming message or simply
save it in a file. The receiving function must have the following
interface:

 void receive_func (int sd, char *msg,
 int msg_len, int sender_id);

When a message is delivered to the application through
"receive_func", the session ID ("sd"), a pointer to the message
("msg"), the message length in number of bytes ("msg_len"),
and the sender ID ("sender_id"), are passed to the function.

For multicasting a message to a group, one first opens a

session by callling MCNA_open. Then, one calls
MCNA_send_message to pass the message to MCNA for
sending.

The application must pass program control to the MCNA

library routines so the MCNA can perform real-time processing.
This is done by calling MCNA_main_loop. Function
MCNA_main_loop takes control of the program and never
returns. In order for the application to do useful jobs such as
processing incoming messages, sending outgoing messages,
opening and closing sessions and checking status or statistics,
the application passes an application function through argument
"application_func" to MCNA. "application_func" is then called
frequently from MCNA after the application passes control to
MCNA. All of the above mentioned tasks can be performed in
"application_func".

MCNA_set_options sets various options and MCNA

parameters for an open session. One can use this function to
customize the behaviors for each open multicast group.
MCNA_get_status and MCNA_get_statistics retrieve,
respectively, the current status and statistics data for a multicast
session.

MCNA_close closes a multicast session if it is no longer

needed. The application leaves the multicast group and all
resources allocated for the session are freed.

MCNA_set_external_buffer can be used for setting up an

interface to get retransmission data from a source external to
MCNA.

Developing an application for sending or receiving

multicast messages is simple. The following code segment
shows how to write an application that sends multicast messages
to one group (IP address "239.25.172.1") and receives messages
from another group (IP address "239.25.172.2").

 #include <stdio.h>
 #include <stdlib.h>
 #include <unistd.h>
 #include <mcna.h>

 static int Sd1, Sd2;
 static void Application_func ();
 static void Receive_func (int id, char *msg,
 int msg_len, int sender_id);

 int main (int argc, char *argv[]) {

 Sd1 = MCNA_open ("239.25.172.1", 15213, NULL);
 if (Sd1 < 0) {
 printf ("MCNA_open failed (error code %d)\n", Sd1);
 exit (1);
 }
 Sd2 = MCNA_open
 ("239.25.172.2", 15214, Receive_func);
 if (Sd2 < 0) {
 printf ("MCNA_open failed (error code %d)\n", Sd2);
 exit (1);
 }
 MCNA_main_loop (Application_func);

 exit (0);
 }

 static void Application_func () {
 int ret_value, msg_len;
 char *new_msg;

 ... Getting a new message "new_msg" for multicast ...
 ret_value = MCNA_send_message
 (Sd1, new_msg, msg_len);
 if (ret_value < 0)
 printf ("MCNA_send_message failed (code %d)\n",
 ret_value);
 }

 static void Receive_func (int id, char *msg,
 int msg_len, int sender_id) {
 if (msg_len < 0) {
 printf ("Exception code %d received (%s)\n",
 msg_len, msg);
 return;
 }
 ... process or save message "msg" of "msg_len" bytes ...
 }

5. PRELIMINARY TEST RESULTS OF APPLYING
MCNA TO THE WSR-88D PRODUCT DISTRIBUTION

The ROC is developing a prototype multicast-based product
distribution support for the WSR-88D Radar Product Generator
(RPG). Up to 10 product groups can be configured. Each group
contains a set of selected products and uses a unique multicast
group (IP address) for distributing these products. The RPG's
product multicast application uses the MCNA API for sending
products to the network. Radar product user receiver
applications then can be developed with the MCNA API. A
simple user application has been built for test and demonstration
purposes. User applications can receive products from any
particular radar by joining the appropriate multicast groups.

A simple test network has been set up in the ROC for testing

the system. The test environment consists of one RPG host and
two client hosts connected with routers and serial connections.
One of the clients is a SPARC machine from SUN
Microsystems and the other is a PC running Linux. Test user
applications run on both client hosts to receive products from all
10 groups.

Preliminary test results have been encouraging. In one of the

tests, we randomly dropped 10 percent of the data packets on
both the sending and receiving sides to simulate a noisy
network. In a continuous 30 hour operation, more than 30,000
products were generated and distributed to the clients. All
products were successfully received by the two clients. In
another test, to simulate a network failure, we turned off one of
the routers for one hour while the RPG continued generating
products. When the router was powered back up, the IP
multicast service resumed automatically. Both users received all
products generated during the network outage through packet
retransmission.

6. ACKNOWLEDGMENTS

 Jose Marcos, John Moyer, Courtenay Clifford, Bill
Bumgarner and many others from the FAA made numerous
contributions to both the MCNA protocol and the operational
concepts of multicast based radar product distribution.

7. REFERENCES

Nonnemacher, J and Biersack, E.W., 1998: Optimal Multicast
Feedback, Proc. IEEE INFOCOMM, 1998.

PGM, RFC 3208, http://www.ietf.org/rfc.html

ALC, RFC 3450, http://www.ietf.org/rfc

NORM, INTERNET-DRAFT draft-ietf-rmt-pi-norm-10,
http://www.ietf.org/html.charters/rmt-charter.html

http://www.ietf.org/rfc.html
http://www.ietf.org/rfc
http://www.ietf.org/html.charters/rmt-charter.html

