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1.   INTRODUCTION 
 

Over the last 30 years, cloud-to-ground (CG) 
lightning has ranked above both tornadoes and 
hurricanes in weather related fatalities across the 
United States (Curran et al. 1997).  Aside from the 
loss of life, lightning damages trees, buildings, and 
utility lines, and is one of the leading causes of 
power outages and disruptions to 
communications.  For these reasons, accurate 
forecasts of the timing and location of 
thunderstorms and associated CG lightning are of 
great interest to all persons concerned with 
protecting life and property. 

Florida leads the nation in lightning related 
casualties, a majority of which occur during the 
warm season months of May through September, 
the climatological peak for lightning activity in 
Florida.  Many studies examining lightning 
patterns across the contiguous United States have 
found that Florida receives more CG lightning 
strikes annually than any other region (e.g., Orville 
and Silver 1997, Orville et al. 2002).  Thus, Florida 
has been deservedly labeled the “lightning capital” 
of the United States.   

Fig. 1 shows the spatial distribution of CG 
lightning for Florida on a 2.5 x 2.5 km grid for all 
warm season days (May through September) 
during the 14-year period from 1989-2002 
(Stroupe 2003).  Several areas of enhanced flash 
density are noted, specifically near Tampa Bay 
and Fort Myers on the west coast, as well as Cape 
Canaveral and a region stretching from West Palm 
Beach southward to Ft. Lauderdale and Miami on 
the east coast.  These regions of enhanced flash 
density are due to many complex factors that have 
been studied in great detail.  These include 
irregularly shaped and protruding coastlines, and 
thermal circulations such as the sea breeze and 
lake/river breezes, which interact with the 
prevailing synoptic flow.   
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During the warm season, absent of synoptic or 
tropical disturbances, the Atlantic and Gulf of 
Mexico sea breeze circulations act as the primary 
triggering mechanism for afternoon convection 
and lightning in Florida.  If adequate moisture and 
instability are present, the degree of afternoon 
convective activity that occurs and its location are 
primarily governed by the strength and inland 
penetration of the sea breeze boundary, which has 
been shown in previous studies to be highly 
dependent on the magnitude and direction of the 
prevailing low-level flow (López and Holle 1987, 
Camp et al. 1998, Lericos et al. 2002). 

It is evident from Fig. 1 that many heavily 
populated areas along the east and west coasts of 
Florida are vulnerable to intense lightning activity.  
Consequently, the risks for casualties, damage, 
and disruptions to power and communications 
attributable to lightning are inherently much 
greater in these areas.  The eastern halves of 
Miami-Dade and Broward counties in South 
Florida are especially vulnerable, since over 3.9 
million people reside in the metropolitan areas of 
Miami and Fort Lauderdale (U.S. Census Bureau 
2004).  Here, power disruptions are not only 
problematic to customers but can pose major 
problems for the power companies responsible for 
repairing outages.  For example, a company such 
as Florida Power & Light Corporation (FP&L) must 
determine well ahead of time whether lightning is 
likely during the late afternoon and evening hours 
anywhere within their service areas.  If a high 
lightning threat is perceived, extra crews must be 
retained after normal business hours to deal with 
potential problems.  If this threat is misjudged, the 
company either will not be able to respond to 
outages effectively, or, conversely, resources 
could be wasted on a threat that does not occur.  
Clearly, an accurate forecast of the timing, location 
and intensity of afternoon lightning activity in 
heavily populated areas of South Florida would be 
of great benefit to a power company, as well as to 
the customers they serve. 
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FIG. 1.  Map of the spatial distribution of warm season 
CG lightning (flashes km-2 warm season-1) for the state 
of Florida during a 14-year period from 1989-2002.  Map 
obtained from http://bertha.met.fsu.edu/~jstroupe/ 
flclimo.html. 
 
 

The development of a lightning forecast 
procedure for these areas is a difficult problem.  
Despite the regular and predictable forcing 
produced by the sea breeze circulation, the nature 
of summertime convection and lightning over 
South Florida exhibits considerable spatial and 
temporal variability (López et al. 1984).  This 
variability arises due to many complex localized 
and regional factors that govern the timing and 
preferred locations for convection and lightning on 
a given day.  Even if one could pinpoint the exact 
locations that will experience convection on a 
particular day, it does not necessarily follow that 
those same areas will experience the most 
lightning, since this is governed by cloud 
microphysical processes that currently are 
unresolved by numerical models. For these 
reasons, one currently should not attempt to 
predict with any lead-time the exact number of 
lightning flashes that will occur within a small area 
during a specific time period.  However, one can 
develop a prediction scheme that will provide 
useful guidance about the location and movement 
of the sea breeze and any associated convection, 
and, therefore, the degree of afternoon and 
evening lightning activity that can be expected, 
based on what has happened in the past under 
similar atmospheric conditions.  In this regard, 
many studies have found statistical models to be 
useful for predicting thunderstorms and lightning.  
Some of the statistical methods that have been 

used include multiple linear regression, binary 
logistic regression, as well as Classification and 
Regression Trees (CART) (e.g., Livingston et al. 
1996, Mazany et al. 2002, Burrows et al. 2004, 
Brenner 2004).  These methods attempt to 
quantify the relationship between a set of 
predictors (i.e., sounding parameters or model 
data) and some outcome of interest such as 
thunderstorm probability at a particular location or 
spatial patterns of lightning frequencies (e.g., 
Neumann and Nicholson 1972; Reap 1994).  
Studies such as these have demonstrated the 
potential usefulness of statistical models for 
predicting thunderstorm and lightning activity 
during the warm season.  However, most have 
focused on either a yes/no forecast of lightning or 
distinguishing between an active and an inactive 
day.  Thus, no study has fully addressed the more 
complex issue of predicting the “amount” of 
lightning that will occur within a small domain such 
as the eastern halves of two counties. 

The present study seeks to develop a system 
of statistical guidance equations describing the 
amount of warm season CG lightning activity that 
can be expected during the noon-midnight time 
period within two areas of South Florida serviced 
by FP&L, the eastern halves of Miami-Dade and 
Broward Counties in South Florida.  The equations 
will give probabilities for different ranges of CG 
flash count, conditional on at least one flash 
occurring.  The question of whether at least one 
flash will occur is a different problem that has been 
explored by Winarchick and Fuelberg (2005, 
Conference on Meteorological Applications of 
Lightning Data).  The equations being derived are 
for the warm season months of May through 
September when the sea breeze is the dominant 
forcing mechanism for convection in Florida.  
Candidate predictors for the regression models 
include various wind, stability and moisture 
parameters calculated from 14 years of morning 
radiosonde data at Miami or West Palm Beach 
(1989-2002), as well as day number, morning 
lightning activity, and persistence.  Lightning flash 
counts for each area are subdivided into quartile 
groups based on climatology, and separate logistic 
regression equations are derived for each domain 
giving the conditional probability of occurrence for 
different quartile ranges of flash count.  Using 
probability thresholds for each of the equations, 
decision trees are constructed to determine the 
predicted lightning quartile for the day.  Finally, the 
resulting models are evaluated and independently 
tested using k-fold cross-validation. 
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2. DATA 
 
2.1 Study Domain 
 
 Statistical guidance equations were developed 
for two domains, the densely populated FP&L 
service areas of eastern Miami-Dade and Broward 
Counties in South Florida.  A map of these areas 
is shown in Fig. 2, with the two regions outlined.  
In Broward County, the domain includes all land 
areas east of U.S. Route 27, north to the border 
with Palm Beach County and south to the border 
with Miami-Dade County.  This domain includes 
the metropolitan areas of Hollywood and Fort 
Lauderdale.  The Miami-Dade domain includes all 
land areas east of State Route 997 (a.k.a. Krome 
Avenue) from Homestead northward, and east of 
U.S. Route 1 from Homestead southward to the 
end of the peninsula.  This region encompasses 
much of the Miami metropolitan area. 
 
 

 
 

FIG. 2.  Map of the two study regions.  The Miami-Dade 
and Broward County domains are outlined. 
 
 
2.2 Lightning Data 
 

The study utilized CG lightning data from the 
National Lightning Detection Network (NLDN).  
This network, in operation since 1989, detects and 
records CG lightning flashes across the 
contiguous United States.  The NLDN is owned 
and operated by Vaisala-Global Atmospherics Inc. 
(GAI), providing both real-time and historical data 
to electric utilities, the National Weather Service 
and other government, educational, and 

commercial users (Cummins et al. 1998).  A 
complete description of sensors and methods of 
detection is given in Cummins et al. (1998).   

The study period was the warm season 
months of May through September for the years 
1989-2002.  The location accuracy and detection 
efficiency of the NLDN has changed during this 
time due to system upgrades.  Prior to 1994, 
detection efficiencies across the U.S. ranged 
between 65% and 85%, with location accuracies 
between 8 km and 16 km.  A system upgrade in 
1995 allowed a greater number of flashes to be 
detected, as well as improvements in location 
accuracy.  Since the upgrade, the NLDN has a 
location accuracy of ~ 0.5 km over most of the 
U.S., and an estimated flash detection efficiency of 
80-90% (Cummins et al. 1998).  Detection 
efficiencies over Florida currently range from ~ 
80% over most of the peninsula to only ~ 60% 
over the extreme southern part of the state.  In this 
study, no corrections were applied to account for 
these spatial and temporal variations in detection 
efficiency or location accuracy.  Thus, actual flash 
counts are underestimated. 

Due to the improved detection efficiency of the 
NLDN, the same flash can be sensed multiple 
times, and non-CG discharges also can be 
detected (Cummins et al. 1998).  Following the 
recommendation of Cummins et al. (1998), weak 
positive flashes with signal strengths less than 10 
kA were removed from the data set.  In addition, 
multiple flashes occurring during the same second 
and within 10 km of each other were assumed to 
be the same flash, and were combined into a 
single flash by retaining the first flash’s time and 
location and adding the multiplicities. 

The procedure to count the number of CG 
flashes in our areas of interest was 
straightforward.  A rectangular array of 2.5 km by 
2.5 km grid boxes was superimposed over the 
region, with the southwest corner at 25.0°N, 
81.0°W, and the northeast corner at 26.5°N, 
79.5°W.  This created a 61 x 67 array of boxes 
that encompassed all of Broward and Miami-Dade 
Counties, including areas just west and offshore.  
Each flash was referenced by latitude/longitude 
coordinates which were converted to (i, j) 
coordinates to find the location of the flash within 
the array.  The total flash count for each grid box 
was calculated by summing the number of hits in 
that box over the period of interest, noon-midnight 
local time (1600-0359 UTC).  To obtain the total 
noon-midnight count within each domain, flash 
totals for the hours of 1600 UTC through 0359 
UTC were accumulated for all grid boxes lying 
within the areas outlined in Fig. 2.  A morning flash 
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count also was calculated for each domain as a 
potential predictor of afternoon lightning.  This was 
obtained by summing all flashes between 0600 
and 1159 local time (1000-1559 UTC).        

Figure 3a shows the hourly distribution of flash 
count for the Miami-Dade domain for all warm 
season days with lightning data available (2097) 
during the 14-year period.  The hourly distribution 
for Broward County (not shown) is very similar.  A 
diurnal peak in lightning activity occurs between 2 
PM and 3 PM local time, with a rapid decrease 
after 7 PM.  Similar diurnal variations have been 
observed in previous studies (e.g., Neumann and 
Nicholson 1972; Maier et al. 1984; Reap and 
MacGorman 1989; Reap 1994; Livingston et al. 
1996; Lericos et al. 2002; Mazany et al. 2002).  
The noon-midnight period considered in this study 
captures most of the daily activity in each region, 
accounting for 89% of the daily total in the Miami-
Dade domain and 92% of the daily total in the 
Broward region.  Although early afternoon is the 
most active period for lightning, the evening hours 
were included in the forecast period so that FP&L 
officials can ensure that sufficient manpower will 
be available to repair outages after normal 
business hours.                

The frequency distribution of flash count for all 
available warm season days during the 14-year 
period is shown in Fig. 3b for the Miami-Dade 
domain (the graph for Broward County is very 
similar).  The distribution clearly is right-skewed, 
with the greatest number of days having either no 
activity or between 1 and 50 CG flashes during the 
noon-midnight period.  Very few days have greater 
than 300 flashes.  A similar distribution was 
observed by Burrows et al. (2004) in their study of 
flash densities over Canada and the northern 
United States.  

 
2.3 Radiosonde Data 
 

Morning radiosonde data for Miami/West Palm 
Beach were used to calculate various wind, 
moisture, and stability parameters that serve as 
candidate predictors for the regression models.  
Data for the years 1989-1999 were obtained from 
the “Radiosonde Data of North America” CD-ROM 
prepared by the Forecast Systems Laboratory 
(FSL) and the National Climatic Data Center 
(NCDC) (FSL and NCDC 1999).  Data for the 
remaining years 2000-2002 were obtained directly 
from FSL’s “Radiosonde Database Access” Web 
site (http://raob.fsl.noaa.gov).   

After 1977 and prior to 1995 the Miami (MFL) 
radiosonde site was located in West Palm Beach 
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FIG. 3.  a) Hourly distribution of CG flash count and b) 
frequency distribution of flash count during the noon-
midnight period for the Miami-Dade domain for all warm 
season days with lightning data available during the 14 
year period 1989-2002. 
 
 
(PBI).  López et al. (1984), Blanchard and López 
(1985), and Lericos et al. (2002) determined that 
basic features of the two soundings are very 
similar, with only minor differences in the boundary 
layer due to local phenomena.  Thus, given the 
close proximity of both radiosonde sites (~ 100 km 
apart), it is assumed that the conditions at either 
site generally are representative of the conditions 
within the two study areas.  Therefore, no 
adjustments were made to account for the 
difference in location of the two soundings.  
 Fifty-four parameters were calculated from the 
soundings, many of which have been found in 
previous studies to be useful predictors of 
thunderstorms and lightning during the warm 
season.  These include variables that describe 
wind direction, wind speed, moisture in various 
layers, temperature, and stability.  A complete list 
of the parameters is given in Table 1.  For ease of  
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Table 1.  Radiosonde-derived parameters and abbreviations. 
 

Parameter Description                 Abbreviation            Parameter Description                      Abbreviation             

Mean 1000-700 hPa wind direction (MNDIR) Surface wet bulb temperature (SFCTWB)
Mean 1000-700 hPa wind speed (MNSPD) Precipitable water (PW)
Mean 1000-700 hPa cross-shore component (UPERP) Mean surface-825 hPa mixing ratio (WSFC-825)
Mean 1000-700 hPa along-shore component (VPARLL) K-index (KI)
sin (mean 1000-700 hPa wind direction) sin(MNDIR) Vertical totals (VT)
sin (wind direction at 950 hPa) sin(DIR950) Cross totals (CT)
sin (wind direction at 700 hPa) sin(DIR700) Total totals index (TT)
Mean sfc-850 hPa u component (USFC-850) Severe WEAther Threat index (SWEAT)
Mean sfc-850 hPa v component (VSFC-850) Convective Available Potential Energy (CAPE)
Mean sfc-850 hPa wind speed (SPDSFC-850) Modified CAPE (MCAPE)
Mean 850-700 hPa u component (U850-700) Lifted Index (LI)
Mean 850-700 hPa v component (V850-700) Modified Lifted Index (MLI)
Mean 850-700 hPa wind speed (SPD850-700) Showalter Stability Index (SSI)
Mean 700-500 hPa u component (U700-500) Temperature at 900 hPa (T900)
Mean 700-500 hPa v component (V700-500) Sfc-1000hPa temperature difference (DTSFC-1000)
Mean 700-500 hPa wind speed (SPD700-500) Sfc-850 hPa temperature difference (DTSFC-850)
Wind speed at 900 hPa (SPD900) 850-700 hPa temperature difference (DT850-700)
Surface dew point (SFCDWP) 850-500 hPa temperature difference (DT850-500)
Modified surface dew point (MSFCDWP) 500-300 hPa temperature difference (DT500-300)
Mean sfc-900 hPa relative humidity (RHSFC-900) 1000 hPa height (Z1000)
Mean 800-600 hPa relative humidity (RH800-600) 850 hPa height (Z850)
Mean 700-500 hPa relative humidity (RH700-500) Equilibrium level pressure (EL)
Mean 600-400 hPa relative humidity (RH600-400) Freezing level height (FRZLVL)
Mean sfc-500 hPa relative humidity (RHSFC-500) Wet bulb zero height (WBZLVL)
Mean 500-300 hPa relative humidity (RH500-300) 1000-500 hPa thickness (THICK)
Mean 800-600 hPa dew point depression (DD800-600) Convective temperature (TCON)
Mean sfc-500 hPa dew point depression (DDSFC-500) Temperature at the Equilibrium level (T@EL)
 
 
 
calculation, the raw sounding data were 
interpolated to 25 hPa levels, with the first level 
being the surface and then decreasing by 25 hPa 
increments from 1000 hPa to 100 hPa. 
 As discussed previously, many lightning 
studies in Florida have found that the magnitude 
and direction of the prevailing flow are important 
factors determining the degree of lightning activity 
in a particular location, since this flow exerts a 
major influence on the strength and inland 
penetration of the sea breeze (e.g., Gentry and 
Moore 1954; López and Holle 1987; Reap 1994; 
Lericos et al. 2002).  For our study areas, the 
Atlantic Coast sea breeze has a significant 
influence on the amount of afternoon lightning that 
will occur, and its location and strength depend 
greatly on whether the low-level flow is offshore or 
onshore.  To include this effect in the prediction 
scheme, various wind direction and wind speed 

predictors were calculated from the morning 
soundings.  These include mean wind direction 
(MNDIR) and speed (MNSPD) in the 1000-700 
hPa layer, the mean 1000-700 hPa cross-shore 
(UPERP) and along-shore (VPARLL) wind 
components, as well as the mean speed and u 
and v wind components in various other layers 
(see Table 1).  The 1000-700 hPa layer was 
chosen because previous studies have 
determined it to represent best the combined 
motion of the sea breeze front and thunderstorms 
over the Florida peninsula during the warm season 
(López and Holle 1987; Camp et al. 1998).   

The wind parameters listed above are vector-
averaged quantities, calculated by computing the 
u and v components at each 25 hPa level, finding 
the mean of each component (U and V) through 
the layer of interest, and then computing the 
inverse tangent of (U/ V) to obtain a mean wind 

 5



 

direction (radians) in that layer.  A mean layer 
wind speed was obtained by taking (U2 + V2 )1/2.  
The wind components perpendicular and parallel 
to the coastline, UPERP and VPARLL, were 
calculated by assuming an average coastline 
orientation of 15° clockwise from the north-south 
direction. 
 The equations being derived are for situations 
when the sea breeze is the dominant forcing 
mechanism for convection, and are not meant for 
days when large-scale forcing leads to 
thunderstorms.  Therefore, some effort must be 
made to remove these synoptically influenced 
days from the analysis before the model building 
process begins.  This was done by removing any 
day whose 1000-700 hPa layer mean wind speed 
was greater than three standard deviations from 
the climatological mean  value (any day ≥ 25.53 
knots).  A total of 28 days was removed, leaving 
2019 days available.  Eleven of the 28 excluded 
days contained tropical storms or hurricanes in the 
vicinity of South Florida, and 13 days had some 
form of large-scale synoptic disturbance in the 
area.  This was not an exhaustive effort, and it 
does not guarantee that every synoptically 
disturbed day was removed. 

Atmospheric stability and moisture content 
also influence thunderstorm activity.  As found by 
Fuelberg and Biggar (1994) for the Florida 
panhandle, adequate moisture and instability are 
prerequisites for thunderstorm formation during 
the warm season.  Since this study only concerns 
days having at least one lightning flash in the two 
domains, adequate moisture and instability are 
assumed to be present.  Nonetheless, there still 
may be relationships between the moisture/ 
stability parameters and the degree of convection 
and lightning that occurs (e.g., López et al. 1984; 
Reap 1994; Brenner 2004).  To investigate, 
several parameters describing moisture and 
stability were calculated from the soundings (Table 
1).  The moisture parameters include surface dew 
point, dew point depression in various layers, 
mean relative humidity in various layers, and 
precipitable water.  The mean relative humidity 
parameters are pressure-weighted averages 
based on the 25 hPa data within the layer of 
interest.  A 12-h change in PW also was 
calculated (e.g., Mazany et al. 2002) by computing 
the difference in PW values between the 1200 
UTC and previous 0000 UTC soundings.    

A variety of stability indices were calculated 
(Table 1).  K index, vertical totals, cross totals, 
total totals, SWEAT, and SSI were obtained from 
standard formulas as given in the Glossary of 
Meteorology (2000).  CAPE and lifted index were 

calculated by lifting a standard surface parcel to its 
lifting condensation level (LCL) and then 
ascending the moist adiabat to determine the level 
of free convection (LFC) and equilibrium level 
(EL).  Modified stability parameters also were 
calculated to better reflect afternoon conditions 
(Table 1), including a modified CAPE (MCAPE) 
and a modified lifted index (MLI).  These were 
calculated in a manner similar to CAPE and lifted 
index, except they were based on a modified 
surface parcel heated to the convective 
temperature (TCON).  TCON was obtained by 
descending dry adiabatically from the convective 
condensation level (CCL) to the surface, with the 
CCL based on a mean mixing ratio in the lowest 
100 hPa. 

Several additional parameters were calculated 
(Table 1) which have been found by previous 
studies to be useful predictors of afternoon 
convection in Florida during the warm season.  
These include temperature differences in various 
layers, 1000-500 hPa thickness, height of the 
freezing level and wet bulb zero, as well as 1000 
hPa and 850 hPa heights.           

Since this study is concerned with forecasting 
the amount of lightning that can be expected 
conditional on at least one flash occurring, only 
lightning days were retained in the data set.  A day 
qualified as a lightning day for either domain if at 
least one flash occurred somewhere within those 
areas during the noon-midnight time period, 
regardless of what occurred elsewhere (e.g., on 
the other side of Krome Avenue/ U.S. Route 27).  
Of the 2019 days for which both lightning and 
sounding data were available, 1223 days had at 
least one flash in eastern Miami-Dade County and 
1189 had at least one flash in eastern Broward 
County.  These days constitute the final data sets 
used in the statistical analysis described in the 
following sections. 
 
2.4 Statistics Software 
 

Two statistical software packages were used 
to perform the regression analysis.  Most of the 
exploratory work was done using S-PLUS, version 
6.1 for Windows, distributed by Insightful 
Corporation.  The final model development and 
testing were performed using the Statistical 
Package for the Social Sciences (SPSS), version 
11.5 for Windows, distributed by SPSS, Inc.  Both 
are powerful, state-of-the-art software packages 
with a wide range of capabilities.   
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3. MODEL DEVELOPMENT AND TESTING 
 
3.1 Modeling Options 
 

A major decision was to determine the form of 
the predictand, i.e., whether to estimate the actual 
flash count for the noon-midnight period or to 
transform the counts into discrete categories and 
predict a range of flash count.  The final choice 
depended on which approach yielded the best 
predictions. 

Several statistical techniques were attempted 
initially but were found to yield undesirable results.  
The first efforts were aimed at predicting an actual 
flash count for the noon-midnight period using 
multiple linear regression and Poisson log-linear 
regression (Wilks 1995 gives a complete 
description of these methods).  Predictors were 
chosen for inclusion in the model through forward 
stepwise selection of variables.  This procedure 
began by first selecting the independent variable 
that resulted in the largest reduction of the residual 
sum of squares (RSS).  It then selected the next 
variable, which, together with the first, further 
reduced the RSS by the greatest amount (i.e., had 
the highest partial correlation with flash count).  
After each step, the algorithm performed a 
backward check to determine if removing any 
previously selected variable did not significantly 
increase the RSS.  Any variables meeting this 
criterion were removed from the model, and all 
others were retained.  This process continued until 
the RSS could not be changed by a significant 
amount, or until no other variables remained.   

Several problems were encountered with the 
resulting regression equations.  In short, several 
collinear (redundant) predictors were selected for 
inclusion in the equations, and there also was a 
high degree of unexplained variance in flash 
count, especially for larger counts.  Wilks (1995) 
warns that stepwise selection procedures can 
sometimes result in highly correlated variables 
being included, which can have undesirable 
effects on the estimates of the regression 
coefficients and on model performance.  In an 
attempt to correct these issues, several different 
transformations of the response variable were 
attempted in order to stabilize the variance, and 
non-linear and interaction effects were included as 
additional candidate predictors.  However, the 
resulting equations still displayed a high degree of 
unexplained variance and collinearity among the 
selected predictor variables.  Classification and 
Regression Trees (CART) also was attempted as 
an alternative to linear methods; however, the 
trees had a tendency to over-fit the training data 

and did not perform well under cross-validation.  
At this point, it was clear that attempting to 
estimate an actual flash count with any degree of 
confidence would be impossible given the large 
amount of variance that was present in the data 
set.  In addition, some other method of variable 
selection was needed such that only the most 
important non-redundant variables would be 
included in the equations.    
 
3.2 Development and Testing of Final Model 
 
a. Binary Logistic Regression 
 

Given the many problems encountered while 
attempting to predict an actual flash count, it 
became apparent that predicting a range of counts 
was the more feasible option.  Therefore, the flash 
counts were grouped into four quartiles of activity 
based on climatology (Fig. 4), and the four 
quartiles were used as the predictand.  Rather 
than developing one model to forecast the quartile, 
it was found that better results would be achieved 
if there were separate equations to distinguish the 
lowest quartile of activity (Q1) from all other days, 
the highest quartile (Q4) from all other days, and 
an equation to differentiate the upper two quartiles 
(Q3, Q4) from the lower two (Q1, Q2).  The three 
equations would give conditional probabilities for 
each outcome, and thresholds could be 
determined for each equation to forecast the most 
likely quartile.   

For situations when the outcome is binary or 
dichotomous (i.e., 1 for “yes” or 0 for “no”) the 
most often used technique is “binary logistic 
regression” (BLR) (Hosmer and Lemeshow 1989).  
Let π denote the probability of a success for some 
outcome of interest (e.g., the probability of a Q4 
event versus all other days).  BLR relates this 
probability to a linear combination of predictor 
variables, XK by the following equation:  
 
ln [π/(1- π)] = g(XK) = b0 + b1X1 + . . . + bKXK       (1) 
               
where ln is the natural logarithm.  The term on the 
left side of (1) is the “logit link function,” which may 
be continuous and can range from -∞ to +∞ 
depending on the range of XK (Hosmer and 
Lemeshow 1989).  The probability of a success is 
then given by:  
 
π  =  exp(g(XK)) / [1 + exp(g(XK))],              (2) 
 
and the probability of a failure (i.e., the probability 
of not observing a Q4) is just 1-π.   
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FIG. 4.  The four quartiles of CG flash count for the (a) Miami-Dade and (b) Broward County domains. For 
the Miami-Dade domain, Q1: 1-7 flashes, Q2: 8-39, Q3: 40-125, Q4: > 125 flashes, and for the Broward 
County domain, Q1: 1-9 flashes, Q2: 10-47, Q3: 48-143, Q4: > 143 flashes.  
 
 

BLR generally has less stringent assumptions 
than linear regression.  Unlike multiple linear 
regression, logistic regression does not assume a 
linear relationship between the independent 
variables and the dependent (binary) outcome.  
Rather, the logit function on the left side of (1) is 
assumed to be linear in its parameters, although 
explicit interaction and power terms can be added 
as additional variables on the right side.  In 
addition, the form of (2) guarantees that BLR will 
always produce probability estimates that are 
bounded between zero and one (Hosmer and 
Lemeshow 1989).  
  To create the binary response variables for the 
three models, three separate binomial indicators 
were assigned to each day in the Miami-Dade and 
Broward County data sets according to that day’s 
lightning quartile value.  For example, a “1” was 
assigned to Q1 days and a “0” otherwise, a “1” for 
Q4 days and a “0” otherwise, and a “1” for days in 
the upper two quartiles (Q3 or Q4) and a “0” 
otherwise.  This resulted in three predictands for 
both domains, each having a climatological 
frequency of occurrence that is approximately 
25%, 25%, and 50%, respectively. 
 
b. Principal Component Analysis 
 

To address the collinearity problem discussed 
previously, a principal component analysis (PCA) 
(Wilks 1995) was performed on all of the potential 
sounding predictors (Table 1).  PCA is a 
mathematical procedure that transforms a number 
of possibly correlated variables into a smaller 
number of uncorrelated variables called principal 

components (PCs).  Wilks (1995) gives a complete 
description of this procedure.  In this study, the 
PCs were used as a classification method to 
cluster all of the highly correlated predictors into 
groups for purposes of physical interpretation.  
This was done by grouping together all sounding 
parameters that had the highest weights (or 
“loadings”) on each component.  A total of eleven 
PCs were extracted during this process using the 
SPSS software.  The first three PCs consisted of 
parameters describing moisture, wind direction 
and wind speed, respectively.  The next three PCs 
were consolidated into one group representing 
unmodified and modified stability-related 
parameters.  The last five components were 
combined into a set of miscellaneous parameters 
that were not directly assigned to any other 
component, although many of them are 
interrelated.   

Table 2 lists two-tailed Pearson correlation 
coefficients between each predictor and the three 
binomial indicators of lightning activity for both 
domains.  Asterisks indicate whether the 
correlations are significantly different from zero at 
the 0.01 (**) and 0.05 (*) significance levels.  The 
correlations generally are low (all are below 0.3), 
suggesting that no single parameter from the 
morning sounding is a good indicator of the 
amount of afternoon lightning that will occur.  
Since many of the correlations in each group differ 
by only the hundredths place, the correlations 
themselves were not useful for determining which 
parameters out of each group to retain for the 
regression analysis.  Instead, one parameter was 
chosen from each of the five groups that was  
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Table 2.  Two-tailed Pearson correlation coefficients between each predictor and the three binomial 
indicators of lightning activity for both domains.  Asterisks indicate whether the correlations are 
significantly different from zero at the 0.01 (**) and 0.05 (*) significance levels. 
 
 

   

MIAMI-DADE 
BINOMIAL 

INDICATORS    

BROWARD 
BINOMIAL 

INDICATORS  
  Q1 yes/no Q3 or Q4 yes/no Q4 yes/no  Q1 yes/no Q3 or Q4 yes/no Q4 yes/no 
  (< 8 flashes) (≥ 40 flashes) (> 125 flashes)  (< 10 flashes) (≥ 48 flashes) (> 143 flashes) 
         
GROUP 1: MOISTURE (COMP 1)       
         
DD800-600    0.120**    0.087**   -0.055     0.052   -0.044   -0.046 
DDSFC-500    0.116**   -0.086**   -0.050     0.046   -0.036   -0.035 
KI   -0.134**    0.120**    0.069*    -0.053    0.071*    0.071* 
PW   -0.105**    0.065*    0.018    -0.034    0.011    0.007 
RH500-300   -0.058*    0.021    0.033    -0.010    0.011    0.041 
RH600-400   -0.083**    0.048    0.044    -0.033    0.014    0.031 
RH700-500   -0.094**    0.056    0.039    -0.038    0.022    0.020 
RH800-600   -0.086**    0.050    0.023    -0.015    0.012    0.015 
RHSFC-500   -0.083**    0.047    0.017    -0.012    0.003    0.001 
WBZLVL   -0.075**    0.058*    0.011    -0.042    0.006   -0.015 

         
GROUP 2: WIND DIRECTION  
(COMP 2)       
         
MNDIR  -0.163**  0.222**  0.213**   -0.149**   0.217**  0.194** 
sin(DIR700)   0.214** -0.256** -0.227**    0.176**  -0.234** -0.205** 
sin(DIR950)   0.208** -0.251** -0.217**    0.169**  -0.229**   -0.202** 
sin(MNDIR)   0.209** -0.282** -0.254**    0.203**  -0.273** -0.232** 
U700-500  -0.167**  0.196**  0.182**   -0.166**   0.190**  0.171** 
U850-700  -0.194**  0.239**  0.206**   -0.183**   0.228**  0.190** 
UPERP  -0.207**  0.275**  0.236**   -0.182**   0.230**  0.206** 
USFC-850  -0.205**  0.272**  0.219**   -0.185**   0.230**  0.198** 
         
GROUP 3: WIND SPEED (COMP 3)       
         
MNSPD    0.101** -0.178**   -0.151**   0.114**   -0.123**   -0.147** 
SPD700-500    0.049 -0.084**   -0.040   0.039   -0.061*   -0.030 
SPD850-700    0.083** -0.145**   -0.106**   0.088**   -0.097**   -0.108** 
SPD900    0.094** -0.173**   -0.171**   0.127**   -0.127**   -0.166** 
SPDSFC-850    0.102** -0.177**   -0.161**   0.111**   -0.126**   -0.160** 
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Table 2 (continued). 
 

 

   

MIAMI-DADE 
BINOMIAL 

INDICATORS    

BROWARD 
BINOMIAL 

INDICATORS  
  Q1 yes/no Q3 or Q4 yes/no Q4 yes/no  Q1 yes/no Q3 or Q4 yes/no Q4 yes/no 
  (< 8 flashes) (≥ 40 flashes) (> 125 flashes)  (< 10 flashes) (≥ 48 flashes) (> 143 flashes)
         
GROUP 4: STABILITY 
(COMPONENTS 4-6)        
         
CAPE    0.002   -0.008   -0.037    0.006 -0.017 -0.015 
CT   -0.090**    0.103**    0.035   -0.052  0.051  0.054 
DT850-700    0.062*   -0.080**   -0.124**    0.048   -0.098**   -0.098**
DTSFC-1000   -0.051    0.108**    0.116**   -0.126**    0.134**    0.117**
DTSFC-850   -0.096**    0.122**    0.121**   -0.124**    0.128**    0.109**
EL    0.032   -0.019    0.003   -0.005 -0.011 -0.013 
FRZLVL    0.019   -0.025   -0.051    0.037 -0.040  -0.065* 
LI    0.017   -0.014   -0.001    0.027 -0.024 -0.021 
MCAPE   -0.060*    0.103**    0.089**   -0.122**    0.099**    0.086**
MLI    0.074**   -0.109**   -0.121**    0.125**   -0.124**   -0.124**
SFCDWP   -0.036    0.023   -0.025   -0.041  0.007 -0.011 
SFCTWB   -0.024    0.001   -0.036   -0.018 -0.016 -0.019 
SSI    0.102**   -0.129**   -0.056*    0.063*  -0.058* -0.053 
SWEAT   -0.048    0.020   -0.052    0.018 -0.045 -0.040 
T@EL    0.012    0.024    0.061*   -0.019  0.026  0.031 
TT   -0.108**    0.129**    0.082**   -0.089**    0.097**    0.106**
VT   -0.055    0.075**    0.107**   -0.087**    0.106**    0.118**
         
GROUP 5: MISCELLANEOUS 
(COMPONENTS 7-11)       
         
DT500-300   -0.071*    0.060*    0.091**   -0.057    0.061*    0.083** 
DT850-500    0.011   -0.016   -0.017    0.057*   -0.038   -0.050 
MSFCDWP   -0.038    0.047    0.023   -0.063*    0.023   -0.009 
RHSFC-900    0.027   -0.042   -0.059*    0.040   -0.053   -0.088** 
T900   -0.139**    0.161**    0.124**   -0.139**    0.106**    0.119** 
TCON   -0.090**    0.088**    0.082**   -0.105**    0.085**    0.129** 
THICK   -0.061*    0.032   -0.016   -0.047   -0.010   -0.012 
V700-500    0.050   -0.093**   -0.119**    0.016   -0.018   -0.058* 
V850-700    0.032   -0.082**   -0.088**   -0.023    0.019   -0.028 
VPARLL   -0.047    0.021   -0.004   -0.092**    0.104**    0.043 
VSFC-850    0.009   -0.052   -0.065*   -0.037    0.040   -0.016 
WSFC-825   -0.044    0.049    0.027   -0.065*    0.025   -0.008 
Z1000    0.088**   -0.062*   -0.038    0.021   -0.038    0.007 
Z850    0.059*   -0.030   -0.016   -0.009   -0.017    0.028 
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thought to have the most physical relevance to 
afternoon convection in South Florida, while still 
possessing as high a correlation as possible with 
the three binary predictands.  From the wind 
direction and wind speed groups, UPERP and 
MNSPD were chosen because they have the 
greatest influence on the strength and inland 
penetration of the sea breeze front (e.g., López 
and Holle 1987; Camp et al. 1998).  From the 
group of moisture-related parameters, K index was 
chosen since it is one of the most widely used 
indices for assessing thunderstorm potential 
during the warm season (e.g., Reap 1994; 
Livingston et al. 1996; Mazany et al. 2002).  MLI 
was selected from the group of stability-related 
parameters because it is representative of 
afternoon conditions.  Finally, the temperature at 
900 hPa (T900) was chosen from the group of 
miscellaneous parameters because it has a higher 
correlation with lightning activity than all others in 
this group (and all three are significant at the 0.01 
level).  Since 900 hPa is near the top of the 
nocturnal inversion, it is thought that T900 may be 
indicative of the degree of afternoon heating that 
will occur.  Neumann and Nicholson (1972) found 
T900 to be a good predictor of afternoon 
thunderstorms at the Kennedy Space Center.   

It should be noted that the correlations in 
Table 2 indicate the degree of “linear” association 
between the predictors and lightning activity.  
Thus, these correlations do not recognize the 
strength of any non-linear (or “curvature”) 
relationships that may exist (Wilks 1995).  To 
incorporate possible curvature effects between 
each of the five physical variables and lightning 
activity, power terms up to the fourth degree were 
submitted as additional candidate predictors (e.g., 
Neumann and Nicholson 1972; Reap 1994).  To 
avoid collinearity problems among the power 
terms, the five physical variables first were 
converted to z-scores (i.e., “standardized 
anomalies” formed by subtracting the sample 
mean and dividing by the sample standard 
deviation) before raising them to a power.   
 
c. Climatology and Persistence 
 

Climatology was incorporated into the 
prediction equations by computing climatological 
frequencies for each of the three binary response 
variables.  These frequencies were included as 
additional candidate predictors, which has the 
effect of smoothing any discontinuities from one 
month to the next and avoiding the need for 
separate prediction equations for each month.  Six 
persistence variables also were created as 

candidate predictors for the equations.  These 
include the previous day’s actual flash count 
(PDCNT), a yes/no indicator of at least 1 flash the 
previous day (PDYN), the previous day’s quartile 
of activity (PDQRT), and the previous day’s yes/no 
indicator for a Q1 (PDQ1YN), the upper two 
quartiles (PDQ3Q4), and Q4 (PDQ4YN). 

Table 3 shows a 4 x 4 contingency table for 
the number of observed days in each lightning 
quartile versus the previous day’s quartile of 
activity for all cases when there was at least 1 
flash the previous day for the Miami-Dade domain.  
It is clear that persistence is a powerful predictor 
of the degree of lightning activity during the warm 
season in South Florida.  Thus, it should be 
included as a candidate predictor in the equations.  
Overall, persistence forecasts the correct quartile 
~ 34% of the time and is correct to within one 
quartile of the observed ~ 73% of the time.  To put 
these statistics into perspective, the most naive 
forecast would be the climatological average for 
each of the quartiles, in which case one would 
forecast the correct quartile by chance ~ 25% of 
the time and would be correct to within one 
quartile of the observed by chance ~ 62.5% of the 
time (if the random choice is constrained to being 
unbiased).  Since persistence typically produces a 
more accurate forecast than does climatology, 
persistence is used as the primary standard of 
reference for assessing the overall skill of the 
prediction equations derived in this study.   

Table 4 lists the final set of candidate 
predictors that were used to derive the prediction 
equations for each domain.  There were twenty 
physical variables (including powers up to the 
fourth degree), three climatic predictors, two 
indicators of morning activity, and the six 
persistence variables, for a total of 31 potential 
predictors.  All days with a missing value for any 
predictor were removed from the data set, leaving 
1209 days available for the Miami-Dade domain 
and 1177 days for the Broward domain.  

 
d. Model development and testing 
 

Three separate logistic regression equations 
were derived for both the Miami-Dade and 
Broward County domains (total of six equations), 
one giving the conditional probability of a Q1 
lightning event, one for the probability of an event 
in the upper two quartiles (Q3/Q4), and the last 
giving the probability of a Q4 event.  The logistic 
regression algorithm in SPSS was used to build 
the equations and screen the variables (Table 4) 
for selection into each model.  
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Table 3.  4 x 4 contingency table for the number of observed days in each lightning quartile versus the 
previous day’s quartile for all cases with at least one flash the previous day.  

 

Miami-Dade Persistence 
  

 PREVIOUS DAY QUARTILE    
 Q1 Q2 Q3 Q4 Total % Correct % Within 1Q 

OBSERVED        
Q1 63 62 44 37 206 31 61 
Q2 54 66 56 45 221 30 80 
Q3 51 54 72 67 244 30 79 
Q4 36 40 77 117 270 43 72 

        
Total 204 223 248 266 941 34 73 

        
  

 
 
 
 
Table 4.  List of final candidate predictors for the regression models.  The asterisk denotes all first-order 
terms that are standardized quantities (z-scores) based on the sample mean and standard deviation of 
each variable for each domain.  The higher order terms are products of z-scores.   

 
 

Physical variables:       Climatology (as a function of day number): 
 
UPERP*, UPERP 2, UPERP 3, UPERP 4   Frequency of a Q1         (CLIQ1) 

  MNSPD*, MNSPD 2, MNSPD 3, MNSPD 4   Frequency of upper two quartiles    (CLIQ3Q4) 
 KI*, KI 2, KI 3, KI 4        Frequency of a Q4      (CLIQ4) 
 MLI*, MLI 2, MLI 3, MLI 4 
 T900*, T900 2, T900 3, T900 4 
 

Persistence/morning activity: 
 
 Previous day noon-midnight flash count     (PDCNT)  
 Previous day yes/no indicator of at least 1 flash (PDYN) 
 Previous day lightning quartile     (PDQRT, 0 if no activity or 1-4) 

Yes/no indicator for Q1 the previous day     (PDQ1YN) 
 Yes/no indicator for Q3 or Q4 the previous day (PDQ3Q4) 
 Yes/no indicator for Q4 the previous day     (PDQ4YN) 
 Morning Flash count 0600-1159 local time     (MORNCNT) 

Morning yes/no indicator         (MORNYN) 
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To derive each equation, a procedure 
combining forward stepwise screening and cross-
validation was used to select the best combination 
of variables that is most likely to generalize to 
independent data.  In short, the process began by 
randomly dividing the working data set into two 
parts.  One set, containing 75% of the cases, was 
used as a “learning” sample for screening the 
predictors for selection into each of the models.  
The remaining 25% of the cases were reserved as 
an “evaluation” sample to test the model each time 
a predictor was added or removed during the 
stepwise selection process.  The screening 
procedure in SPSS uses “forward conditional” 
stepwise selection, with a test for backward 
elimination.  This procedure is similar to that 
described previously for the multiple linear 
regression, except now the selection criterion was 
the significance (p-value) of the variable’s log-
likelihood (LL) chi-square statistic.  This procedure 
is described in greater detail in Wilks (1995).  The 
stepwise selection procedure generated a 
sequence of candidate models, one for each time 
a predictor was either added to the model or 
removed at a later step.  At each step in the 
sequence, SPSS produced a 2 x 2 contingency 
table showing the number of observed “1s” and 
“0s” versus the number predicted, one table for the 
75% learning sample and another showing test 
results for the 25% evaluation sample.  The 
predictors comprising the model at the step with 
the highest percentage of correctly classified days 
(i.e., the highest “hit rate”) for the 25% evaluation 
sample were noted. 

The above steps were repeated an additional 
four times, each time using a different random 
number seed to divide the training data into 75% 
(learning) and 25% (evaluation) samples.  Each 
time, the predictors that were in the model at the 
step with the highest hit rate for the independent 
(evaluation) cases were noted.  The rationale for 
this procedure was to identify only those predictors 
most likely to generalize to independent data and 
not “over-fit” the learning sample.  The reason for 
repeating the random sampling multiple times was 
to guard against the possibility that the evaluation 
results depended heavily on how the division was 
made, or in other words, which cases ended up in 
the learning set and which were in the evaluation 
set.  The list of “best” predictors identified during 
this process were re-entered for stepwise 
screening on the entire data set to obtain final 
logistic regression equations for each of the three 
outcome responses (prob(Q1), prob(Q3/Q4), and 
prob(Q4)).  Out of this sequence of candidate 
models, the step with the highest overall 

percentage of correctly classified days (highest hit 
rate) was chosen as the final prediction equation.   

After final equations were obtained for the 
three outcomes, a decision tree was constructed 
to determine the predicted lightning quartile using 
probability thresholds for the three equations.  To 
produce an unbiased scheme, the thresholds were 
chosen so an equal number of training cases were 
partitioned to the left and right at each split of the 
decision tree.  This guarantees that the scheme 
will not have a prediction bias toward any one 
quartile (i.e., a tendency to forecast a particular 
quartile more often than another).  Further details 
about the decision tree and its implications are 
discussed in the results section.  

To assess the degree to which the final 
prediction scheme generalizes to data that were 
not used to derive the equations, a k-fold cross-
validation procedure was followed, whereby each 
warm season of data was individually set aside to 
be used as an independent data set for cross-
validating the prediction scheme derived from the 
remaining thirteen warm seasons (used as the 
“training” data).  In other words, the procedure 
described in the preceding paragraphs was 
repeated a total of 14 times, once for each warm 
season of data.  

To obtain the three logistic regression 
equations that will be implemented operationally 
by FP&L (three for each domain, a total of six), 
one final stepwise screening was performed using 
the entire fourteen-year data set (i.e., all days, all 
years).  The predictors now entered for screening 
were only those “best” predictors that were 
identified during the k-fold cross-validation 
procedure described above.  Again, this assures 
that only the predictors that are most likely to 
generalize to independent data are selected.  As 
before, a sequence of candidate models was 
produced, and the model with the highest 
percentage of correctly classified days among the 
sequence was chosen as the final model.   Finally, 
decision trees were constructed to obtain the final 
operational prediction schemes for each domain.  
 
4. RESULTS 
 
4.1 Final Prediction Equations 
 

Since the final equations and results are very 
similar for the two study regions, this section will 
only present results for the Miami-Dade domain.  
Table 5 displays the final operational logistic 
regression equations giving the conditional 
probability of a Q1 lightning event, an event in the 
upper two quartiles, and a Q4 lightning event for  
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Table 5.  Final logistic regression models for the Miami-Dade domain. 
 
 

Model for the probability of a Q1 lightning event (< 8 flashes) 
  

             
 Predictor  Coefficient (B)  Std. Error  Wald  P-value  Odds ratio 
             
 UPERP  -0.709  0.121  34.565  0.000  0.492  
 UPERP2  0.117  0.048  5.850  0.016  1.124  
 UPERP3  0.099  0.031  10.436  0.001  1.104  
 KI2  0.130  0.033  15.650  0.000  1.139  
 PDQRT  -0.187  0.052  13.073  0.000  0.830  
 CLIQ3Q4*  -2.105  0.279  57.043  0.000  0.122  
             

 
Model for the probability of a Q3 or Q4 lightning event (≥ 40 flashes) 

 

             
 Predictor  Coefficient (B)  Std. Error  Wald  P-value  Odds ratio  
             
 UPERP  0.951  0.114  69.695  0.000  2.587  
 UPERP2  -0.217  0.046  22.488  0.000  0.805  
 UPERP3  -0.138  0.033  17.136  0.000  0.871  
 KI2  -0.136  0.036  14.143  0.000  0.873  
 MLI  -0.268  0.065  17.039  0.000  0.766  
 PDQ3Q4  0.680  0.105  42.219  0.000  1.974  
             

 
Model for the probability of a Q4 lightning event (> 125 flashes) 

 

             
 Predictor  Coefficient (B)  Std. Error  Wald  P-value  Odds ratio  
             
 UPERP  0.874  0.117  56.026  0.000  2.396  
 UPERP2  -0.477  0.087  30.286  0.000  0.620  
 KI2  -0.238  0.067  12.715  0.000  0.789  
 MLI  -0.335  0.075  19.964  0.000  0.716  
 PDQ3Q4  0.710  0.150  22.479  0.000  2.034  
 CLIQ3Q4*  -2.091  0.253  68.249  0.000  0.124  
             

 
* CLIQ3Q4 = 0.562 – 0.063*(DAY2), where DAY is a z-score 
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the Miami-Dade domain.  This table lists the 
predictors in each of the equations, their 
coefficients (B) and standard errors for the 
coefficients, as well as other statistics that indicate 
the significance of each term and its relative 
predictive importance.  The Wald statistic 
(calculated by (B / Std. error)2 ) and its p-value test 
the null hypothesis that there is no relationship 
between the independent variable and the log-
likelihood of observing a “1” in the binary 
dependent variable (also called the “log-odds”) 
(Hosmer and Lemeshow 1989).  For example, a p-
value of 0.001 indicates that there is only a 1/1000 
chance that the relationship found in the sample 
would not also be true in the population, indicating 
that the parameter has “statistical significance” 
(Wilks 1995).  The p-values in Table 5 show that 
all of the coefficients exceed the 95% significance 
level, and all but one exceed the 99% level, 
providing strong evidence that the parameters are 
significant and belong in the equations.    

Also shown in the last column of Table 5 are 
odds ratios for each of the parameters (calculated 
by exp(B)).  The odds ratio is defined as the ratio 
of the odds of observing the outcome of interest 
(e.g., a Q4 day) to the odds of not observing the 
outcome (e.g., the odds of observing a Q3 or 
lesser event).  The values shown in Table 6 
indicate the change (increase > 1, decrease < 1) 
in the odds of observing the outcome of interest 
for every one unit change in the predictor variable, 
holding all other variables in the equation constant 
(Hosmer and Lemeshow 1989).  

It is informative to discuss the importance of 
each parameter in the equations (Table 5) and 
their relationships to lightning activity.  First, it is 
clear that the three prediction equations generally 
are a variation on the same theme.  The dominant 
effect in each equation is the component of the 
wind perpendicular to the coastline (UPERP).  
This is not surprising, since it is well known that 
the magnitude and direction of the prevailing low-
level flow has a significant influence on the 
strength and inland penetration of the sea-breeze 
front (López and Holle 1987; Reap 1994; Lericos 
et al. 2002).   

The magnitude of UPERP’s effect on the 
likelihood of each outcome can be assessed by 
examining the signs of the coefficients and their 
odds ratios (Table 5).  Since the first-order terms 
for each of the physical variables are standardized 
quantities (or z-scores), their respective 
coefficients indicate the change in the log-odds  
(ln[π/(1-π)]) of the dependent variable for every 
one standard deviation (1σ) change in the 
independent variable, holding all other variables 

constant (Hosmer and Lemeshow 1989).  Since 
UPERP is positive for offshore flow and negative 
for onshore flow, a 1σ increase in UPERP (~ 7 
knots) signifies a stronger offshore (or weaker 
onshore) component, while a 1σ decrease 
signifies a stronger onshore (or weaker offshore) 
component.  For example, in the equation for the 
probability of a Q1 event the coefficient for UPERP 
is negative, while it is positive for the other two 
equations. If we examine the corresponding odds 
ratios it is clear that a 1σ increase in UPERP 
(greater offshore component) decreases the odds 
of a Q1 event by a factor of 1 / 0.492 ~ 2 and 
increases the odds of a Q4 event by a factor of 
2.396.   

The signs of the coefficients of UPERP and 
the odds ratios are consistent with physical 
concepts.  Specifically, offshore flow restricts the 
Atlantic coast sea breeze to near the coastline and 
allows a greater eastward penetration of the Gulf 
coast sea breeze, which increases the likelihood 
of enhanced convective activity and lightning in 
the two study regions.  Conversely, a strong 
onshore flow tends to produce a less vigorous 
Atlantic coast sea breeze that migrates further 
inland, typically confining most convection and 
lightning to the western peninsula, away from the 
two study areas.  Of course, there can be 
exceptions when outflow boundaries propagate 
into the two regions and trigger new convection.  
Since this particular situation is not handled by the 
prediction equations, it sometimes can produce an 
incorrect forecast. 

There is a significant non-linear relationship 
between UPERP and lightning activity, as evident 
by the higher order terms included in the 
equations (Table 5).  An illustration of the non-
linearity is shown in Fig. 5a.  This figure shows a 
clear increase in the frequency of events in the 
upper two quartiles, and a decrease in the 
frequency of Q1 events, as the flow becomes 
more offshore (as UPERP increases), reaching a 
maximum at an offshore speed of ~ 1-3 knots.  
Arritt (1993) found that similar flows are 
associated with the most intense sea breezes and 
greatest vertical velocities, which leads to more 
intense thunderstorm and lightning activity.  As the 
flow becomes even more strongly offshore, the 
frequency of events in the upper two quartiles 
begin to decline, and Q1 events become more 
likely.  This may be due to the strong opposing 
flow inhibiting the sea breeze front from advancing 
as far inland, or even remaining just offshore (Arritt 
1993). 

The K index is another important predictor in 
each of the equations (Table 5).  It is interesting  
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FIG. 5. The frequency of a Q1, the upper two quartiles, and a Q4 for each decile of (a) UPERP (knots) 
and (b) K-index for the Miami-Dade domain. 
 
 
that this effect appears only as a second-order 
term (with no linear term).  Fig. 5b shows that the 
frequency of events in the upper two quartiles 
increases with increasing K index until a peak is 
reached between 30.5 °C and 31.5 °C, after which 
the frequencies decline while the frequency of Q1 
events increase.  Since K index increases with 
more unstable mid-level lapse rates and greater 
middle-tropospheric moisture, it is reasonable that 
convection and lightning will increase with 
increasing K index.  The decline in lightning 
activity for K index values larger than ~ 35 °C is 

not entirely clear, but may be due to excess mid-
level moisture and cloud cover from early morning 
convection (i.e., at or near the sounding time).  
This would tend to suppress surface heating and 
strong afternoon activity. 

Also appearing as a first order term in two of 
the three prediction equations is the modified lifted 
index (MLI).  A decrease in MLI indicates greater 
afternoon instability, and vice versa.  The 
coefficients and odds ratios in the Q3/Q4 and Q4 
equations (Table 5) indicate that the odds of an 
upper two quartile lightning event increase for 
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Examination of the computed statistics for 
each equation (Table 6) reveals that the greatest 
accuracy is achieved (i.e., the highest CSI and 
lowest FAR) with the Q3/Q4 model, which 
distinguishes upper two lightning quartile events 
from lower two quartile events.  The Q1 and Q4 
equations generally perform well at differentiating 
Q1 days from other days, and Q4 days from other 
days (POD ranges from 65-70%).  However, the 
Q1 and Q4 events are considerably over-forecast, 
as evident by the relatively large bias and FAR.  
This indicates that Q1 days are not easily 
distinguishable from Q2 days, and Q4 days are 
not easily distinguishable from Q3 days.  This also 
may be due to the choice of the cut point between 
the quartile categories (i.e., < 8 flashes or > 125 
flashes). 

every 1σ decrease in MLI (about 1.4 C°).  
Fuelberg and Biggar (1994) found a form of 
modified lifted index (SLI, i.e., a surface lifted 
index based on conditions at 1100 EDT) to be a 
useful stability index for discriminating between 
categories of afternoon convective development 
over the Florida panhandle. 

The dominant non-physical predictor in the 
guidance equations is persistence (Table 5).  
Except for the Q1 equation, the most important 
persistence variable is the yes/no binomial 
indicator stating whether or not the previous day 
was in the upper two quartiles (PDQ3Q4).  The 
odds ratios in Table 5 indicate that the odds of 
observing a Q4 lightning day increase by a factor 
of  ~ 2 if the value of PDQ3Q4 is a “1” (i.e., if the 
previous day was in the upper two quartiles).  Day 
number enters the Q1 and Q4 equations through 
the climatic predictor (CLIQ3Q4, shown at the 
bottom of Table 5).  Other studies also have found 
the day number (in conjunction with other 
parameters) to be a useful predictor of warm 
season thunderstorm probabilities over Florida 
(e.g., Neumann and Nicholson 1972; Reap 1994).   

Once probabilities are obtained from the three 
logistic equations in Table 5 (giving prob(Q1), 
prob(Q3/Q4), and prob(Q4)), the next step is to 
determine the most likely quartile for the day (i.e., 
Q1, Q2, Q3, or Q4).  Since each regression 
equation does not contain the same exact set of 
predictor variables, one cannot simply solve for 
the probability of each quartile by using the output 
from the three equations.  Instead, as described in 
section 3, the best results for predicting the 
quartile were obtained by constructing a decision 
tree using probability thresholds for the three 
equations.  The thresholds were set so an equal 
number of cases in the dependent data set were 
partitioned to the left and right at each branch to 
eliminate any prediction bias toward any one 
quartile.  The resulting decision tree for the Miami-
Dade domain is shown in Table 8.  The first 
branch to the left or right depends on the 
probability output by the Q3/Q4 model, since this 
model distinguishes the lower two quartiles from 
the upper two.  For example, if the probability of   
≥ 40 flashes is ≥ 0.51654, the right branch is taken 
and that day is predicted to be either a Q3 or Q4 
event.  Then, output from the Q4 equation is used 
to determine which of these two quartiles is more 
likely.  If the probability of a Q4 day (> 125 flashes) 
is ≥ 0.39178, a Q4 lightning day is forecast, 
otherwise that day is predicted to be a Q3 event.  
Conversely, if the probability of ≥ 40 flashes is less 
than the threshold of 0.51654, the left branch is 
taken and either a Q1 or Q2 event is more likely, 
in which case output from the Q1 model 
determines which to predict.  If the probability of a 
Q1 (< 8 flashes) is ≥ 0.33085, a Q1 is predicted; 
otherwise Q2 is forecast to occur. 

 
4.2 Results for Dependent Data 
 

To assess the predictive skill of each logistic 
model on the 14 warm seasons of dependent 
data, 2 x 2 contingency tables were constructed 
showing the number of observed “1s” and “0s” 
versus the number predicted for each outcome 
(Table 6).  Various statistics also were calculated 
to assess the accuracy of each model.  These 
include the probability of detection (POD), hit rate, 
false-alarm ratio (FAR), the bias, and the critical 
success index (CSI).  Table 7 shows a sample 
contingency table used in computing the scores 
shown in Table 6.  The POD is the ratio of the 
number of “1s” correctly predicted by the model to 
the total number of observed “1s” in the sample: 
POD = x / (x + y).  The hit rate is the most direct 
measure of the accuracy of categorical (yes/no) 
forecasts, indicating the percentage of correctly 
classified “1s” and “0s”: hit rate = (x + w) / (w + x + 
y + z).  The FAR is measure of the forecast events 
(“1s”) that fail to materialize: FAR = z / (x + z).  
The bias (B) indicates the degree of over-
forecasting (B>1) or under-forecasting (B<1) the 
outcome: B = (x + z) / (x + y).  Finally, the CSI is a 
frequently used alternative to the hit rate when the 
event to be forecast occurs less frequently than its 
nonoccurrence (e.g., the Q1 and Q4 days), and 
combines attributes of the POD and FAR: CSI = x 
/ (x + y + z) (Reap 1994; Mazany et al. 2002).     

 The overall accuracy of the prediction scheme 
can be easily assessed by examining a 4 x 4 
contingency table for the number of observed days  
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Table 6.  2 x 2 contingency tables for each logistic regression model for the Miami-Dade domain.  The 
results shown are for the 14 years of dependent data.  The probability cut values shown beneath each 
table were chosen to maximize the hit rate for comparison only.   
 

 
Model for the probability of a Q1 lightning event (< 8 flashes) 

 

          
       PREDICTED       
  Q1 > Q1 Total % Correct     
 OBSERVED      CSI: 0.322  
 Q1 199 110 309 64  FAR: 0.608  
 > Q1 309 591 900 66  POD: 0.644  
       Hit rate: 0.653  
 Total 508 701 1209 65  Bias 1.644  
          

Probability cut value = 0.25 
 

Model for the probability of a Q3 or Q4 lightning event (≥ 40 flashes) 

 

          
       PREDICTED       
  Q3/Q4 Q1/Q2 Total % Correct     
 OBSERVED      CSI: 0.531  
 Q3/Q4 422 182 604 70  FAR: 0.312  
 Q1/Q2 191 414 605 68  POD: 0.699  
       Hit rate: 0.691  
 Total 613 596 1209 69  Bias 1.015  
          

Probability cut value = 0.51 
 

Model for the probability of a Q4 lightning event (> 125 flashes) 

          
       PREDICTED       
  Q4 < Q4 Total % Correct     
 OBSERVED      CSI: 0.368  
 Q4 209 95 304 69  FAR: 0.558  
 < Q4 264 641 905 71  POD: 0.688  
       Hit rate: 0.703  
 Total 473 736 1209 70  Bias 1.556  
          

 
Probability cut value = 0.30 
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Table 7.  Sample 2 x 2 contingency table for computing skill scores.  
 
 

 

      
       PREDICTED   
  Yes No Total  
 OBSERVED     
 Yes x y x + y  
 No z w z + w  
      
 Total x + z y + w w + x + y + z  
      

 
 
 
Table 8.  Probability decision tree used to determine the predicted lightning quartile for the Miami-Dade 
domain.  Also shown is a 4 x 4 contingency table for the number of observed days in each quartile versus 
the number predicted using the decision tree.  These results are for the 14 years of dependent data.  
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Table 8 (continued).                                                               

Results for all 14 warm seasons of dependent data 
(Accuracy measures have been rounded to the nearest percent) 

 
 PREDICTED    

 Q1 Q2 Q3 Q4 Total % Correct % Within 1Q 
OBSERVED        

Q1 135 93 46 35 309 44 74 
Q2 91 99 64 42 296 33 86 
Q3 51 81 92 76 300 31 83 
Q4 25 29 100 150 304 49 82 

        
Total 302 302 302 303 1209 39 81 

        
       

     Persistence:        34                 73 
     SSpers:           6                  8 

                 Climatology:        25                 63 
                                          SSclim:                  14                19 

 
 

 
 
in each quartile versus the number predicted from 
the decision tree.  The results for the Miami-Dade 
scheme are shown in Table 8 (beneath the 
corresponding decision tree) for all 14 warm 
seasons of dependent data.  It is encouraging that 
the number of days observed for each quartile, 
and the number of days predicted, is maximized 
along the diagonal.  The scheme best forecasts 
Q1 and Q4 events, with a hit rate of ~ 44% and ~ 
49%, respectively.   It again appears that Q2 days 
are not easily distinguishable from Q1 days, and 
Q3 days are not easily distinguished from Q4 
days.  Thus, the hit rates for the Q2 and Q3 
quartiles are somewhat smaller (between 30-
33%).  This may occur because many cases in the 
data set were assigned predicted probabilities that 
were very close to the thresholds for being 
partitioned to the left or right at each branch of the 
decision tree.  In addition, flash counts on many 
days straddle the cut point between the quartile 
categories, which also could contribute to the lack 
of discernability for the Q2 and Q3 days.  Of 
course, the probability thresholds in the decision 
tree can be adjusted to increase the detection for 
any quartile of choice (e.g., the Q4s), but not 
without creating a bias toward that quartile.  In this 

case, a more meaningful measure of accuracy is 
the percentage of time the scheme predicts to 
within one quartile of the observed.  For example, 
when Q1 is observed, the Miami-Dade scheme 
predicts either Q1 or Q2 ~ 74% of the time, and 
when a Q4 is observed, the scheme predicts 
either Q3 or Q4 ~ 82% of the time.   The 
percentages for the Q2 and Q3 events are 
somewhat higher since there are three possible 
predictions that can be within one quartile of the 
observed in this case. 

Considering all quartiles together, the Miami-
Dade scheme forecasts the correct quartile ~ 39% 
of the time and is correct to within one quartile of 
the observed ~ 81% of the time.  Shown beneath 
the 4 x 4 table is the percentage of correctly 
classified days and the percentage correct to 
within one quartile of the observed for the 
reference forecasts (i.e., persistence and 
climatology).  Also shown is the difference in 
forecast accuracy (i.e., a skill score expressed as 
a percentage point difference) between the model 
and that achieved by persistence and climatology, 
denoted by SSpers and SSclim, respectively.  The 
positive scores show that the two schemes are 
superior to both climatology and persistence, and 
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thereby represent real forecast skill.  For the 
percentage of days correctly forecast, the scheme 
is a ~ 6 percentage point improvement over 
persistence and a ~ 14 percentage point 
improvement over climatology (a random guess 
would correctly forecast the quartile by chance ~ 
25% of the time).  In terms of the percentage of 
forecasts correct to within one quartile of the 
observed, the scheme is a ~ 8 percentage point 
improvement over persistence and ~ 19 
percentage point improvement over climatology. 
 
4.2 Results for K-fold Cross-Validation 
 

The results presented in the previous section 
(and those shown in Tables 6 and 8) are for all 14 
warm seasons of “dependent” data.  That is, the 
results show the predictive accuracy of the 
scheme on the same data that was used to derive 
it.  These results do not fairly depict how well the 
guidance equations will predict cases that were 
not involved in the model development.  Thus, the 
k-fold cross-validation procedure described in 
section 3 was conducted to give a better estimate 
of how the prediction scheme will perform when 
implemented operationally.   

Figures 6a and b, Fig. 7 and Table 9 show the 
performance of the scheme when each year is 
treated independently (i.e., when each warm 
season is withheld from the data set for cross-
validating the scheme derived from the remaining 
13 warm seasons of data).  Figure 6a is a plot of 
the cross-validated hit rate compared to 
persistence for each independent warm season for 
the Miami-Dade domain.  It is clear that a 
persistence forecast is very difficult to beat during 
any particular year.  The scheme either matches 
or beats persistence on 10 of the 14 warm 
seasons, and underperforms persistence on 4 of 
the years.  All but one of the independent tests 
shows greater skill than climatology.  It also is 
clear from Fig. 6a that the cross-validated hit rate 
is fairly stable, with most years ranging between 
30-40%.  When considering the percentage 
correct to within one quartile of the observed, the 
scheme demonstrates even greater skill over 
persistence and climatology (Fig. 6b), with most 
years beating persistence by 8-12 percentage 
points (to as much as 15) and climatology by 15-
20 percentage points.  

It is informative to assess the performance of 
the guidance equations by month.  Fig. 7 plots 
monthly values of cross-validated hit rate and the 
percentage correct to within one quartile of the 
observed for all independent test seasons 
combined for the Miami-Dade domain.  The 

monthly variations in accuracy generally are small; 
however, the greatest accuracy is evident during 
June through August (the hit rate peaks in July), 
with somewhat less skill during May and 
September.  This is expected since June-August is 
the period when the sea breeze is most likely to be 
the dominant forcing mechanism for convection 
and lightning in South Florida, unlike May and 
September, which often contain days with synoptic 
or tropical influences.  Some effort was made to 
remove these days from the analysis (by removing 
days with MNSPD greater than 3σ from the 
climatological mean value).  However, it cannot be 
assumed that all such days were removed, which 
undoubtedly plays a role in the slight reduction in 
accuracy during May and September.  
Nevertheless, the skill scores for all months 
generally are within ± 10% of each other.  This 
demonstrates that it is not necessary to have 
separate prediction schemes for each month, and 
also shows the benefit of including a climatic 
predictor in the equations. 
 Table 9 shows a 4 x 4 contingency table for 
the number of observed days in each quartile 
versus the number predicted for all independent 
years combined (i.e., the 14 individual tables for 
each cross-validated warm season were summed 
into a single table).  The computed skill scores 
show that the overall cross-validated percentage 
of correctly forecast days is a ~ 4 and ~ 12 
percentage point improvement over persistence 
and climatology, respectively, and the percentage 
correct to within one quartile of the observed is an 
improvement over persistence and climatology by 
~ 6 and ~ 17 percentage points, respectively.  
Although there are year-to-year variations (Figs. 
6a, b), the overall cross-validation results show 
only a 1-2 percentage point reduction in skill from 
what was obtained for the 14 years of dependent 
data (Table 8).  This demonstrates that the 
prediction scheme is statistically “robust.”  Thus, 
there is a high degree of confidence that the 
guidance equations will achieve similar results 
when implemented operationally by FP&L. 
 
4.3 Upper Quartile (Q4) Lightning Events 
 

The 4 x 4 contingency table (Table 9) shows 
that the scheme correctly predicts Q4 lightning 
events on ~ 48% of the cases for the 14 
independent tests, and is correct to within one 
quartile (i.e., either a Q3 or Q4 was predicted)      
~ 79% of the time.  These numbers are quite 
good.  It is interesting to see how the frequency of 
correct predictions of Q4 events varies as the 
magnitude of the Q4 event increases (i.e., for  
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FIG. 6.  (a) Cross-validated hit rate and (b) percentage correct to within one quartile of the observed for 
each year treated independently for the Miami-Dade domain.  The red horizontal line on each plot 
denotes the climatology percentages, which serves as the zero reference level for forecast skill. 
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FIG. 7.  Cross-validated hit rate and the percentage correct to within one quartile of the observed by 
month for all independent test seasons combined for the Miami-Dade domain.  
 
 
 
 
Table 9.  4 x 4 contingency table for the number of observed days in each quartile versus the number 
predicted for all independent years combined for the Miami-Dade domain.   
 

 
 

All independent test years combined 
(Accuracy measures have been rounded to the nearest percent) 

 
 PREDICTED    

 Q1 Q2 Q3 Q4 Total % Correct % Within 1Q 
OBSERVED        

Q1 124 95 56 34 309 40 71 
Q2 92 89 67 48 296 30 84 
Q3 46 84 94 76 300 31 85 
Q4 23 42 94 145 304 48 79 

        
Total 285 310 311 303 1209 37 79 

        
 

      Persistence:     34              73 
       SSpers:              4          6  

                                                    Climatology:     25              63 
                                                                  SSclim:                   12        17 
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larger flash events within the Q4 category).  Figure 
8 subdivides the Q4 lightning events into four 
(quartile) groups based on CG flash count (with ~ 
75 cases in each group), and plots the percentage 
of cases that were correctly predicted to be a Q4 
event (i.e., > 125 flashes) for each subgroup of 
flashes.  Also shown is the percentage of cases 
that were correctly predicted to be in the upper two 
quartiles (i.e., ≥ 40 flashes) for each subgroup.  
This figure shows that correct predictions of Q4 
events generally increase with increasing flash 
count within the Q4 category.  For the lowest 
range of flashes within this category, the scheme 
correctly predicts a Q4 event ~ 36% of the time 
and an upper two quartile event ~ 74% of the time.  
In contrast, for cases when at least 381 flashes 
were observed during the noon-midnight period 
(the upper one-sixteenth of all events), the 
scheme flags the event as a Q4 day ~ 66% of the 
time and is within one quartile nearly 95% of the 
time!  This demonstrates that the scheme correctly 
identifies the bigger flash events as a Q4 day most 
of the time, and will only rarely forecast the lower 
two quartiles when a large Q4 event occurs.      
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FIG. 8.  Percentage of cases predicted to be a Q4 
event or the upper two quartiles (Q3 or Q4) for 
different ranges (quartiles) of CG flash count for all 
Q4 events for the Miami-Dade domain. 
 
 
4.3 Test on Days with No Observed Activity 
 

Although the prediction equations were 
derived for days when at least one flash occurs in 
either of the two study areas, it is interesting to 
determine what the scheme would have predicted 
on days when no lightning was observed.  This 

was investigated by testing the final set of 
equations (Table 5) on those days in the original 
data set when no activity was observed during the 
noon-midnight time period in each domain (these 
data were never used during model development).  
The decision tree in Table 8 was used to predict a 
quartile based on the output from the three 
probability equations.  

Out of 778 days with no activity in the Miami-
Dade region, the scheme predicted a Q1 event 
579 times (~ 74%), and predicted either a Q1 or 
Q2 event on 700 occasions (~ 90%), conditional 
on at least one flash occurring.  This indicates that 
the scheme only rarely predicts the upper two 
quartiles of activity on days when no lightning is 
observed in the two study areas.  This is a 
desirable result, since one hopes that the scheme 
will not often give a false alarm of this magnitude.    
Nevertheless, there were 78 days in the Miami-
Dade area (~ 10% of the non-lightning days) when 
the scheme did predict either a Q3 or Q4 
(conditional on at least one flash occurring) but no 
lightning was observed in the study area.     

An analysis of these major “false alarm” days 
revealed that the prediction was warranted on 
physical grounds, i.e., conditions were very 
favorable for an event in the upper two quartiles.  
Specifically, close to 90% of the days had either 
weakly onshore or offshore flow, 75% had a K-
index > 25, nearly 80% had a MLI < -5, and 45% 
had either a Q3 or a Q4 event the previous day 
(which represents a drastic departure from 
persistence that the scheme did not capture).  Of 
the 20 days (~ 2.5%) when a Q4 was incorrectly 
predicted for the Miami-Dade region, 8 days had 
some activity in the Broward domain.  Similarly, of 
the 34 cases (~ 4.2%) when a Q4 was incorrectly 
predicted in the Broward region, 17 of those days 
had activity in the Miami-Dade domain.  This 
suggests that the prediction was not completely 
wrong since there was nearby lightning activity.  
Nonetheless, it did not occur within the boundaries 
of the domain being forecast.  Analysis conducted 
in the companion study to this one (Winarchick 
and Fuelberg 2005, Conference on Meteorological 
Applications of Lightning Data) has shown that this 
type of situation occurs frequently.  That is, 
intense lightning can occur in close proximity to, 
but not within the domain areas (i.e., one county 
away or just on the other side of Krome Avenue or 
U.S. Route 27).   Such situations often lead to a 
busted forecast, even though conditions were 
favorable for an active lightning day.     

These findings illustrate the inherent difficulty 
in attempting to forecast lightning and 
thunderstorm activity for very small regions and for 
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a specific time period.  Of course, one would 
expect forecast accuracy to increase with the size 
of the domain area.  To assess whether improved 
results would be achieved if the forecast domain 
was enlarged, a set of prediction equations was 
developed for a larger area of South Florida 
encompassing the entire two county region.  The 
results (not presented here) showed that indeed 
more accurate predictions are made when the 
forecast area is enlarged.  However, the prediction 
scheme for the larger area was an improvement 
over persistence by nearly the same proportionate 
amount as the scheme for the smaller domain.  
Thus, from the point of view of FP&L, there would 
be little to gain (with respect to improvement over 
persistence) from expanding the forecast area.  
This is especially true since the majority of the 
population is located in the eastern halves of the 
two counties (i.e., to the east of Krome Avenue 
and U.S. Route 27), and lightning strikes over the 
water conservation areas to the west usually do 
not cause power outages and are of minimal 
concern to FP&L officials.       
 
5. RESULTS FOR SUMMER 2004 
 

The lightning guidance equations described in 
the previous sections (Table 5) were run daily 
during the 2004 warm season (May-September) to 
assess the predictive accuracy of the scheme on a 
completely independent data set.  The output from 
the equations and the predicted lightning quartile 
(Table 8) were sent to Florida Power & Light each 
morning for their consideration.  Table 10 presents 
the results for June-August 2004 for the Miami-
Dade domain for all days when there was at least 
one flash observed during the noon-midnight 
period (the results for Broward were comparable 
and are not shown).  Results for May are not 
included here since the month was primarily dry, 
containing only 2 days with observed lightning 
within the study area.  The month of September, 
on the other hand, was highly anomalous due to 
several tropical systems that affected Central and 
South Florida during the month.  These highly 
disturbed conditions violated the basic assumption 
behind our statistical guidance, that the sea 
breeze is the dominant forcing mechanism for 
convection and associated lightning. 

Overall, the prediction scheme performed well 
during the June-August 2004 period.  The values 
in the 4 x 4 contingency table (Table 10) indicate 
that the correct quartile was forecast ~ 38% of the 
time, which is very close to the percentage 
obtained from the 14-year k-fold cross-validation 
(Table 9).  The guidance was correct to within one 

quartile of the observed ~ 88% of the time, which 
is actually better than the cross-validation results 
by ~ 9 percentage points.  This again 
demonstrates that the scheme does best 
predicting to within one quartile of the observed, 
as well as differentiating the upper two quartile 
events from the lower two quartiles.  This is further 
evident by the scores shown in the 2 x 2 
contingency table (bottom of Table 10) for the 
Q3/Q4 equation.  Recall that this equation gives 
the conditional probability of the upper two 
quartiles (≥ 40 flashes in Miami-Dade domain), 
and its output determines the first branch in the 
decision tree for predicting the quartile (Table 8). 
Overall, the model correctly distinguished upper 
two quartile events from lower two quartile events 
on ~ 69% of the days during the period, with a CSI 
of 49%, a POD of 64%, and a FAR of 32%.   
 
6. SUMMARY AND CONCLUSIONS 
 

This study utilized 14 warm seasons of data 
(1989-2002) from the National Lightning Detection 
Network, and morning radiosonde releases from 
Miami and West Palm Beach, to develop statistical 
guidance equations describing the amount of 
lightning that will occur during the noon-midnight 
period over eastern Miami-Dade and Broward 
Counties in South Florida.  A total of 54 sounding 
parameters were calculated that have been found 
in previous studies to be useful predictors of 
thunderstorms and lightning over Florida.  These 
parameters describe wind direction and speed in 
various layers, as well as moisture, temperature, 
and stability. 

Several statistical techniques that were 
attempted initially were found to yield undesirable 
results, including multiple linear and Poisson log-
linear regression, as well as Classification and 
Regression Trees.  The best results were obtained 
by creating four quartile groups of flash count 
based on climatology, and then using binary 
logistic regression to develop three prediction 
equations for each domain, one giving the 
conditional probability of the lowest quartile of 
flashes, another for the probability of an upper two 
quartile event, and a third equation giving the 
probability of an event in the highest quartile.   

Results for the Miami-Dade domain were 
presented.  The three probability equations 
generally were found to be a variation on the same 
theme.  The dominant effect in each of the 
equations was the cross-shore wind component 
(UPERP), which was found to have a significant 
non-linear relationship with lightning activity.  The 
peak likelihood of Q3 and Q4 events was found for  
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Table 10.  4 x 4 contingency table for the number of observed days in each quartile versus the number 
predicted during June-August 2004 for the Miami-Dade domain.  Also shown is a 2 x 2 contingency table 
for the model that differentiates upper two vs. lower two quartile events.   
 

 
 

Results for June-August 2004 
 

(Accuracy measures have been rounded to the nearest percent) 
 

 PREDICTED    
 Q1 Q2 Q3 Q4 Total % Correct % Within 1Q 
OBSERVED        

Q1 11 4 1 1 17 65 88 
Q2 5 9 5 3 22 41 86 
Q3 1 8 1 1 11 9 91 
Q4 0 3 13 6 22 27 86 

        
Total 17 24 20 72 38 88 

        
11 

 
Model for the probability of a Q3 or Q4 lightning event (≥ 40 flashes) 

 

          
       PREDICTED       
  Q3/Q4 Q1/Q2 Total % Correct     
 OBSERVED      CSI: 0.488  
 Q3/Q4 21 12 33 64  FAR: 0.323  
 Q1/Q2 10 29 39 74  POD: 0.636  
       Hit rate: 0.694  
 Total 31 41 72 69  Bias 0.939  
          

Probability cut value = 0.51654 

 
 
light offshore flow of between 1-3 knots.  This type 
of flow is associated with the most intense sea 
breezes and vertical velocities, which leads to 
enhanced convection and lightning in the two 
study areas.  Conversely, a strong onshore flow 
produces a weaker sea breeze that migrates 
further inland, typically confining most convection 
and lightning to the west of the two study regions.  
Other important variables were found to be the    
K-index and modified Lifted Index.  Day number 
and persistence also were selected as important 
indicators for the amount of afternoon lightning 
that will occur in the study region.    

The accuracy of the prediction scheme 
generally was found to be superior to persistence 

and climatology for both the dependent data and 
during k-fold cross-validation.  Thus, they possess 
real forecast skill.  Overall, the cross-validation 
results showed only a 1-2 percentage point 
reduction in skill from that obtained for the 
fourteen years of dependent data, demonstrating 
that the two schemes are statistically robust, and 
can be expected to achieve similar results when 
implemented operationally by FP&L.   

The guidance equations that were derived in 
this study utilized parameters calculated from the 
morning 1200 UTC sounding at Miami/West Palm 
Beach.  This approach was based on several 
assumptions that are not valid on all days.  For 
example, it was assumed that atmospheric 
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conditions do not vary significantly from the 
sounding time through the end of the forecast 
period.  This assumption is approximately valid 
most of the time over South Florida during the 
warm season, but sometimes is violated if 
advection of a different air mass occurs, such as 
the passage of a synoptic scale system or tropical 
disturbance.  It also was assumed that 
atmospheric conditions at the radiosonde site are 
representative of those for the entire domain area, 
which may not necessarily be true, even during 
the warm season.  Whenever these assumptions 
are not met, there will be errors in the lightning 
forecast.  It also is clear that factors not 
considered in this study have an important 
influence on the degree of afternoon convection 
and lightning that occurs over eastern Miami-Dade 
and Broward Counties.  These include outflow 
boundaries from pre-existing storms, and the 
interaction of smaller scale circulations such as 
lake/river breezes with the sea breeze.  These 
processes often aid in forming new convection in 
areas that otherwise would not be favored 
because of the speed and direction of the 
prevailing low-level flow.  Cloud microphysical 
processes also were not considered in this study.       

Despite these limitations, the current results 
show how remarkably well one can predict 
afternoon convection and lightning for areas as 
small as the eastern halves of two counties with 
input from just a morning sounding.  Future work 
will seek to improve the current results by 
incorporating mesoscale model output into the 
equations.  The model data will be more location 
and time specific than just a static 1200 UTC 
sounding at one location, and likely will result in 
considerable improvement in forecast skill.  
Nevertheless, the current scheme will provide 
useful guidance about the degree of afternoon and 
evening lightning activity that will occur over the 
heavily populated areas of eastern Miami-Dade 
and Broward Counties in South Florida. 
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