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1. INTRODUCTION
Cloud-to-ground (CG) lightning is a
dangerous and potentially deadly natural

phenomenon. Electrical systems are particularly
susceptible to lightning damage. Not only are
power outages disruptive to customers, but they
are costly to electric providers if not repaired in a
timely manner. Improved CG lightning forecasts
will lead to fewer injuries and deaths, with less
time and money spent repairing damaged property
and restoring electric services.

Various statistical models have been
developed to predict thunderstorms and lightning.
Reap and Foster (1979) used Model Output
Statistics (MOS) to develop probability equations
for 12-36 hour thunderstorm forecasts over much
of the nation east of the Rocky Mountains. The
equations were derived by applying screening
regression techniques to relate manually digitized
radar (MDR) data to large scale meteorological
parameters. Burrows et al. (2004) developed
statistical model guidance for lightning occurrence
in Canada and the northern United States during
the warm season. Their technique utilized a tree-
based regression algorithm with input from the
Canadian  Meteorological Center's  Global
Environmental Multiscale (GEM) numerical
forecast model.

Several studies have developed statistical
guidance for considerably smaller areas. Reap
(1994) used the National Meteorological Center’s
(NMC’s) Nested Grid Model (NGM) and
climatological lightning frequencies to develop
statistical forecast equations for the Florida
peninsula. Brenner (2004) used multiple linear
regression analysis to produce equations
predicting average areal coverage and rainfall
amount in West-Central Florida. His analysis used
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parameters extracted directly from the 1200 UTC
radiosonde sounding.

A few authors have developed statistical
thunderstorm forecast guidance for the immediate
area of the Kennedy Space Center (KSC).
Neumann and Nicholson (1972) used non-linear,
multivariate regression techniques to forecast
thunderstorm activity at KSC. Their regression
models were developed using radiosonde-derived
training data. Predictors found useful included
orthogonal wind components at several levels, 900
hPa temperature, mean relative humidity in the
800-600 hPa layer, and the Showalter stability
index.

Logistic regression techniques were
implemented by Mazany et al. (2002) to develop
an index for predicting short term lightning
occurrence at the KSC. They initially tested
twenty-three predictors derived from a host of
sources. Screening techniques selected four of
the predictors to comprise the lightning index,
including maximum electric field mill strength, GPS
Integrated Precipitable Water Vapor (IPWV), the
9-hour change in IPWV, and the K-index.

The current study develops statistical
model guidance for lightning occurrence in the
eastern halves of Miami-Dade and Broward
Counties in South Florida during the warm season.
These areas are served by Florida Power and
Light Corporation (FP&L) who are using the
guidance in various manpower decisions. Data
from the National Lightning Detection Network
(NLDN) (Cummins et al. 1998) and upper air
soundings from Miami (West Palm Beach prior to
1995) are used to develop the statistical
procedure. Screening regression techniques are
employed to select the thermodynamic and
kinematic variables that best explain the observed
day-to-day variation in lightning occurrence.
Statistical models then are developed to determine
whether at least one flash will occur between noon
and midnight local time (LT) in the two areas of
interest.
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2, METHODOLOGY

21 Study Period

The study area consists of two specific
portions of two South Florida counties -- 1) East of
highway US 27 in Broward County, and 2) East of
State Route 997 (Krome Avenue) in Miami-Dade
County (Fig.1). These areas were selected by
FP&L because they contain most of the population
in these counties and contain most of FP&L’s
power generating facilities and transmission lines
that serve these customers.

FP&L typically decides around 1:30 PM LT
whether extra line crews will be needed after
normal business hours. They defined noon to
midnight as the forecast time period when the risk
of lightning is most costly to them. If lightning
causes power outages after normal business
hours, when most line crews already have left for
the day, time and money are lost restoring
services. Conversely, if extra line crews are kept

after hours and no lightning occurs, FP&L suffers
unnecessary overtime labor costs.

The study focused on the warm season
months of May to September when the sea breeze
generally is the dominant forcing mechanism for
afternoon convection. The period of study was
1989 to 2002, a total of fourteen warm seasons.
Synoptic scale forcing during these months
typically is weak, and the influence of mid-latitude
systems is minimal. Instead, mesoscale
phenomena such as sea and lake breezes interact
with their environment, geographic features, and
each other to produce complex patterns of
convergence and resulting convection. Frontal
passages and upper level waves are more likely
during May and September, and tropical waves
are a greater concern during late August and
September than in the other summer months. The
forecast guidance described here is not suitable
for those situations. The following section
describes our cursory attempt to remove these
days.
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Figure 1. Map of South Florida Counties. Broward

and Miami-Dade Counties are shown in their

entirety. The two study areas in these counties are outlined in black. (Map taken from

www.mapquest.com)
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Separate guidance equations were
developed for the two areas in Miami-Dade and
Broward Counties. The two counties were treated
separately for a number of reasons. First, the
coastline of Miami-Dade County is more complex
than in Broward County, having more inlets and
capes. And, the average orientations of the
coastlines differ.  Broward County’s average
coastline orientation is nearly north-south, while
the Miami-Dade coastline is approximately 18°
east of north. Second, the east to west extent of
Broward County’s area of interest is greater than
in Miami-Dade County due to the coastline
orientation. The total area of interest in Miami-
Dade County is 1906 km? while in Broward
County the area of interest is 450 km? smaller.
Finally, Broward County is closer to Lake
Okeechobee, suggesting that lake breezes will
exert more influence on convective activity and
lightning occurrence. Only results for Miami-Dade
County are presented in this paper.

2.2 Lightning Data

The NLDN detects and records CG
lightning flashes over the contiguous United States
and adjacent coastal waters. Owned and
operated by Vaisala Inc., specifics concerning the
network’'s operations and methodology are
discussed in detail by Cummins et al. (1998).

The detection efficiency and location
accuracy of the NLDN have improved substantially
since its inception. During its early years, the
detection efficiency ranged from 65% to 85%,
while the location accuracy was 2 km to 8 km
(Cummins et al. 1998). System upgrades
between 1994 and 1995 greatly improved both the
detection efficiency and location accuracy. Since
these upgrades, the network’s detection efficiency
is 80-90%, and location is accurate to within 0.5
km over most of the country. However, in South
Florida the detection efficiency is degraded due to
a lack of NLDN sensors over the adjacent waters.
Detection efficiency near the northern border of
Broward County is approximately 70%, and is only
60% at the southern tip of Florida (Cummins et al.
1998). No corrections were applied to the data to
compensate for variations in detection efficiency
and location accuracy across the study area. This
produces an underestimation of flash counts.

Due to the recent enhanced detection,
lightning other than CG may be recorded.
Following the suggestion by Cummins et al.
(1998), weak positive flashes with strengths less

than 10 kA were removed from the working
dataset. Additionally, when two or more flashes
were detected within 10 km and within the same
second, only the first flash’s data were retained,
but their multiplicities were added (Cummins et al.
1998).

Lightning flashes were counted separately
within the two domains of Fig. 1. If a flash
occurred in the area of interest during the time
period specified by FP&L (noon to midnight LT), it
was included for analysis.

2.3 Radiosonde Data

Lightning occurrence was related to
parameters calculated from the 1200 UTC Miami
(West Palm Beach prior to August 1995)
radiosonde sounding. Since Miami and West
Palm Beach are separated by only 108 km, both
sounding sites were assumed to represent the
study area (Blanchard and Lopez 1985; Lericos et
al. 2002). Radiosonde data from 1989 to 1999
were available on the “Radiosonde Data of North
America” CD-ROM distributed by the National
Climatic Data Center (NCDC) and the Forecast
Systems Laboratory (FSL) (NCDC and FSL 1999).
Data from the years 2000 to 2002 were obtained
directly from FSL’'s website
(http://racb.fsl.noaa.gov).

Various wind, moisture, temperature, and
stability parameters were calculated for potential
use in the algorithm. The original sounding data
were converted to 25 hPa increments using a
logarithmic interpolation scheme. The interpolated
soundings then were run through a series of
FORTAN programs that calculated the fifty-four
parameters considered here (Table 1).

Several potential parameters deserve a
brief description. Layer averaged wind
parameters were vector-averaged. Vector-
averaged winds in the 1000-700 hPa layer were
used because previous studies (e.g., Lopez and
Holle 1987, Camp et al. 1998, and Lericos et al.
2002) found that this layer best determines the
motion of sea breeze fronts and thunderstorms
over Florida during the warm season. Wind
parameters calculated at other layers and levels
(e.g., 850-700, 700-500, 950 hPa) were included
to determine if more predictive skill could be
achieved using more shallow sub-layers within
and above this steering layer. Layer averaged
quantities other than winds were simple arithmetic
means. Convective available potential energy
(CAPE), the lifted index (LI) and related
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parameters were calculated using surface data as
the parcel to be lifted. Modified CAPE and LI also
were computed based on assumed afternoon
conditions.  The convective temperature was
obtained by following the dry adiabat from the

convective condensation level (CCL) to the
surface. The modified surface dewpoint
temperature was based on the mean saturation
mixing ratio in the mixed layer (surface to 825
hPa).

Table 1. Radiosonde-derived parameters considered in this study.

Mean 1000-700 hPa wind direction
Mean 1000-700 hPa wind speed

Mean 1000-700 hPa u-wind component*
Mean 1000-700 hPa v-wind component *
Sine of the mean wind direction in radians
Sine of the wind direction at 950 hPa
Sine of the wind direction at 700 hPa
Mean sfc-850 hPa u-wind component
Mean sfc-850 hPa v-wind component
Mean sfc-850 hPa wind speed

Mean 850-700 hPa u-wind component
Mean 850-700 hPa v-wind component
Mean 850-700 hPa wind speed

Mean 700-500 hPa u-wind component
Mean 700-500 hPa v-wind component
Mean 700-500 hPa wind speed
Dewpoint at surface

Modified surface dewpoint

Mean sfc-900 hPa relative humidity
Mean 800-600 hPa relative humidity
Mean 700-500 hPa relative humidity
Mean 600-400 hPa relative humidity
Mean sfc-500 hPa relative humidity
Mean 500-300 hPa relative humidity
Mean 800-600 hPa dewpoint depression
Mean sfc-500 hPa dewpoint depression
Temperature at 900 hPa

Surface wet bulb temperature
Precipitable water

Mean mixing ratio in mixed layer
K-index

Vertical totals

Cross totals

Wind speed at 900 hPa

Total totals

SWEAT index

CAPE

Modified CAPE***

Lifted Index

Modified Lifted Index***
Showalter Stability Index
sfc-1000hPa temperature difference
sfc-850 hPa temperature difference
850-700 hPa temperature difference
850-500 hPa temperature difference
500-300 hPa temperature difference
1000 hPa height

850 hPa height

Equilibrium level

Freezing level

Wet bulb zero height

1000-500 hPa thickness

Convective temperature
Temperature at the Equilibrium level

Kk

u and v components are perpendicular and parallel to an averaged coastline of 15°

**  mixed layer is taken to be the surface to 825 hPa

Two types of persistence variables also
were considered in the parameter pool. The first
was the previous day’s noon to midnight lightning
activity (occurrence or non-occurrence). The
second persistence variable was the current day’s
morning (6:00 AM to noon) lightning activity (also
occurrence or non-occurrence).

There were 2092 days out of a possible
2142 days when 1200 UTC radiosonde data were
available. Days with mean 1000-700 hPa wind

modified values are based on Convective temperature

speeds greater than three standard deviations
above the mean ( >25.53 kts) were removed.
These 28 days were found to be synoptically
disturbed due to tropical systems or mid-latitude
systems (i.e., surface fronts or upper-level waves)
in the vicinity of South Florida. Other synoptically
disturbed days undoubtedly remain in the data set.
In addition, some days contained missing data at
various levels such that some or all of the
radiosonde-derived parameters could not be



computed. When this occurred, the day was
removed from the dataset. Days on which
lightning data were unavailable also were
excluded. In all, 268 days (12.5% of the total
possible days) either were synoptically disturbed
or contained missing radiosonde and/or lightning
data. This left 1874 days with complete
radiosonde and lightning data. @ These days
comprised our final data set.

24 Logistic Regression

Binary logistic regression (BLR) was
determined to be the best statistical procedure for
the study. BLR has several important attributes
that differ from linear regression. First, logistic
regression allows non-linear relationships between
the independent and dependent variables.
Second, it does not require normally distributed
response variables. Finally, the outcome variable
is bounded between zero (no) and one (yes)
(Hosmer and Lemeshow 1989). Applied to the
current study, the two outcomes are yes, at least
one lightning flash was observed, or no, no
lightning was observed.

The quantity P; = E(Y | x;) represents the
conditional mean of a lightning flash (Y) given a
predictor (x) when the logistic distribution is used
(Hosmer and Lemeshow 1989). The specific form
of the logistic  regression model is

(By+Bjx;)

P, =

J

1+e(BO+Bjxj) ? ()

where P; is the probability of a response for the jth
covariate, By is the intercept, B; is a vector of
unknown coefficients associated with the
predictor, and x; is a predictor variable. A logit
transformation of P; then is applied, defined as

9(P;) = In[(P;)/(1 - P))] = Bo + ByX;, (2)

The link function, g(P;), has many desirable
characteristics of a linear model, and it constrains
the probability, P;, to the meaningful values of zero
to one inclusive (Hosmer and Lemeshow 1989).
Logistic regression has been used
previously in the meteorological literature.
Mazany et al. (2002) employed logistic regression
in their development of lightning guidance at the
KSC. Additionally, Leyton and Fritsch (2003)
implemented logistic  regression in their
probabilistic forecasts of ceiling and visibility for
the Upper Midwest. The Statistical Package for

the Social Sciences (SPSS) Version 11.5 for
Windows was used for the logistic regression in
this study.

3. MODEL DEVELOPMENT

The final 14-year data set was used to
develop the statistical lightning guidance models.
The model developed for eastern Miami-Dade
County for the entire study period will be used to
describe the procedures wused in model
development. Similar procedures were used for
eastern Broward County. First, the dependent (56
calculated predictors, Table 1) and independent
(lightning occurrence or non-occurrence) variables
were declared. The independent variable was
either yes (1), if one or more flashes are recorded
between noon and midnight in the study areas, or
no (0), if no flashes were recorded during this
same period. Every calculated parameter was
considered a potential predictor (dependent
variables) for the screening regression that
follows.

A forward stepwise procedure within
SPSS was used to screen the dependent
variables for the BLR equation. This procedure
uses the p-value (Hosmer and Lemeshow 1989),
also known as the rejection level or level of the
test, to determine which of the dependent
variables explains the most variation in the
independent variable (lightning occurrence or non-
occurrence) at each step of the development. The
p-value is a probability ranging from zero to one.
If this value is small, the difference in sample
means is unlikely to be a coincidence, and that
parameter may have statistical significance
(Mazany et al. 2002). The test level (p-value) is
chosen in advance, and if a predictor's p-value is
less than or equal to this value, it is a candidate for
inclusion in the BLR equation. An 85% test level
(p-value = 0.15) was used in the initial stepwise
screening process.

The forward stepwise procedure
determines the p-value for each predictor at each
step. During the first step, the predictor with the
lowest p-value (less than or equal to the test level)
is entered into the BLR equation. This is known
as forward selection. During the next step, p-
values of the remaining predictors are calculated.
Again, the predictor with the lowest p-value that is
less than or equal to the test level for forward
selection is entered into the regression equation.
Then, the p-values of these two terms are
computed again to check if inclusion of the second
term has caused either term to become
statistically insignificant, i.e., if the p-value(s)



exceed a certain, different test level, known as the
test level for backward elimination. A p-value of
0.2 was used as the test for backward elimination.
If both terms in the BLR equation still satisfy the p-
value criteria, the stepwise procedure continues to
the next step. Otherwise, the less significant term
is removed. This process of forward selection with
a test for backward elimination continues until all
statistically significant terms are included in the
model.

The next task was to select the step that
produced the best model. At each step of the
screening process SPSS provides copious
amounts of information that allow a complete
evaluation of the statistical significance of each
predictor and the model as a whole. We focused
on the Hosmer and Lemeshow Goodness of Fit
(HLGF) test, the estimated coefficient and its
standard error, the Wald statistic, the p-value of
each predictor, and a 2 x 2 contingency table (see
Table 2). The focus on these tests was based on
Mazany et al. (2002) and online support for the
SPSS software. The tests are used to determine
the appropriateness of the BLR. Each of the tests

or statistics is evaluated at each step of the
screening regression.

The HLGF test is analogous to the R?
value, providing a means to determine how well
the regressed equation fits the data. The fit of the
BLR to the data using the HLGF test is determined
using the p-value of the test. A p-value that is too
small (e.g., less than 0.1) implies that the equation
does not adequately account for the observed
variation in lightning activity. Conversely, a p-
value that is too large (e.g., greater than 0.9)
implies that the regressed equation has been
overfit, i.e., it is too dependent on the data from
which it was derived and likely will not perform well
on independent data. HLGF p-values of 0.5 — 0.6
are considered ideal (Mazany et al. 2002).

The coefficient (and its standard error) of
each predictor is estimated at each step of
deriving the BLR model. The coefficient of each
predictor is the estimated change in the link
function (2) due to a one unit change in the
predictor. All other factors and covariates are
assumed to be unchanged during this estimation
(Mazany et al. 2002).

Table 2. Contingency table for forecast and observed lightning activity.

Model Forecast

Yes No
Observed
Yes A B
No C D

The Wald statistic is the square of the t-
ratio (Hosmer and Lemeshow 1989). The t-ratio,
also known as the t test or z value, is obtained by
dividing the predictor’s coefficient by its standard
error. The t-ratio is a direct measure of the
meaningfulness of the fitted regression. Small
standard errors result in large t-ratios. If the t-ratio
is small, the standard error is large, implying
uncertainty in determining the coefficient, and the
regression is not informative. Only predictors with
the largest Wald statistic are included in the
model.

A 2 x 2 contingency table (Table 2) was
used to evaluate how well the model at that step

handled forecasting days with and without
lightning. The percent of correctly forecast days
with lightning and the percent of correctly forecast
days with no lightning can be calculated. The
percent of correctly forecast days with lightning is
calculated as A/(A+B), and the percent of correctly
forecast days with no lightning is given by
D/(D+C). Additionally, the overall percent of all
days correctly  forecast is given by
(A+D)/(A+B+C+D). This value, also known as the
hit rate, is a direct measure of the accuracy of the
forecasts.

The p-value of each predictor at each step
during the forward selection process also is used



to determine that predictor’s inclusion or exclusion.
We used the 95% significance level (not the initial
85% used during screening), corresponding to a p-
value of 0.05, for inclusion in the final model. This
p-value was the upper limit to include a predictor
in the BLR model, with terms having the lowest p-
values chosen for the BLR model. All terms in the
model for the entire 14-year study period had p-
values less than 0.01.

The step of the screening regression that
optimizes the various statistics described above is
chosen as the best BLR model. It generally is not
possible to satisfy all of the above conditions.
However, the best model satisfies as many of
these conditions as possible.

We sought to develop the most
parsimonious model possible because including
too many terms can result in the model being
numerically unstable or yielding inferior results.
Beyond a certain step in the screening regression,
the inclusion of extra terms does not improve the
forecast skill of the model. This happens because
the screening procedure continues to add
predictors to the model, regardless of the forecast
skill that is achieved, until p-values exceed the
predetermined test level as described above.

In addition to the fifty-six dependent
variables, higher order and interaction terms were
investigated to add skill to the forecasts. Higher
order terms were computed by standardizing each
predictor and then raising it to the second, third,
and fourth power. The standardization was
accomplished by subtracting the mean and then
dividing by the standard deviation (Wilks 1995).
Interaction terms were computed by multiplying
two or more terms together (Reap and Foster
1979; Reap 1994). As an example, low level u
and v wind components are multiplied by low level
moisture parameters to form moisture transport
terms. Results showed that these higher order
and interaction terms did not improve forecast
skill, and they were not chosen during the
screening process.

Based on the tests and statistics
described above, the best model for eastern
Miami-Dade County for the entire 14-year study
period is given in Table 3. Both persistence
variables, wind speed and direction, moisture, and
stability parameters comprise the equations. All of
the predictors appearing in the models make
physical sense and are discussed below.

Table 3. Predictors and coefficients of the final all-months model for eastern Miami-Dade County
based on the screening regression performed on the entire 14 year data set.

Parameter Coefficient
Bo Intercept - 4.826
B Morning persistence 1.017
B, Previous day’s persistence 0.775
B; Sine of the vector mean wind -1.093
direction (radians), 1000-700 hPa
B, Vector-averaged wind speed in the -0.088
1000-700 hPa layer
Bs Precipitable Water 0.997
Bs Modified Lifted Index -0.276

The coefficients for both persistence
parameters in Table 3 are positive, indicating that
lightning activity on the previous day and during
the morning increase the probability of afternoon
lightning activity. The previous day’s persistence
is included because meteorological conditions

during the warm season in South Florida often
change very little from day to day. Thus, if
conditions were favorable for lightning on the
previous day, conditions on the current day often
are similar. Lightning activity during the morning
of the current day means that convective activity



has occurred and that outflow boundaries may be
present. These boundaries can enhance low level
convergence by interacting with the sea breeze
circulation that may develop during the afternoon.

The coefficient for the sine of the vector-
averaged wind direction (radians) in the 1000-700
hPa layer is negative. Since the sine of angles
between 1 and 21 (i.e., between 180° and 360°, a
westerly wind) is negative, an offshore, low-level
wind increases the probability of afternoon
lightning activity. The coefficient of the mean low-
level wind speed parameter also is negative,
suggesting that as the wind speed increases, the
probability of observing afternoon lightning in the
study area decreases. This is consistent with the
findings of Camp et al. (1998) and Arritt (1993)
who found that onshore wind speeds exceeding a
few m s and offshore speeds greater than 11 m
s” suppress sea breeze development.
Conversely, weak offshore flow produces a strong
sea breeze whose leading edge remains near the
coastline. For example, in eastern Miami-Dade
and Broward Counties this scenario can produce
extensive, slow-moving thunderstorms if
thermodynamic conditions are appropriate.

The final two parameters that comprise
the BLR equation are precipitable water and the
lifted index, modified for the convective
temperature. The coefficient for precipitable water
is positive. This means that as more moisture is
present in the atmosphere, convection and
lightning activity are more likely to occur. The
lifted index is a stability parameter that decreases,
or becomes more negative, as the atmosphere
becomes less stable. The coefficient for this term
is negative, implying that as atmospheric stability
decreases, the probability of afternoon lightning
increases.

We next sought to maximize the predictive
skill of the model. The output of the BLR equation
is a probability ranging between zero and one. To
make a yes/no forecast based on this output, it is
necessary to determine a threshold value of
probability. This is necessary because a threshold
of 0.5 does not necessarily yield the best results.
If the model yields a probability that exceeds the
selected threshold, afternoon lightning is forecast.

Determining the best threshold was
based, in part, on verification scores derived from
Table 2. Donaldson (1975), Reap and Foster
(1979), Reap (1994), and Mazany et al. (2002)
describe several statistics that often are used to
test for the optimum threshold value. These are
the critical success index (CSI), or threat score,

given by A/(A+B+C), the false alarm ratio (FAR)
given by C/(A+C), the probability of detection
(POD) given by A/(A+B), and the bias given by
(A+C)/(A+B). Bias indicates the degree of
overforecasting ( Bias > 1) or underforecasting
(Bias < 1) associated with the threshold values
(Reap 1994).

Figure 2 shows how these statistics vary
for different threshold values for eastern Miami-
Dade County. Except for CSI, values of the
statistics decrease as the threshold is increased.
Reap’s (1994) lightning guidance equations used
a threshold that maximized the CSI and had as
high a POD and as low a bias as possible. This
rationale was used as a general guideline in the
present study. We also sought to minimize the
FAR and obtain the highest percent correct days
with  no lightning occurrence. This latter
consideration was used because results showed
that the BLR scheme did a better job of
forecasting days when lightning was observed,
i.e., the percent of correctly forecast days with
lightning was greater than for days without
lightning. We found that the hit rate was improved
by sacrificing some precision in forecasting days
with lightning occurrence in order to improve the
forecasts of days without lightning.

Based on the above considerations, a
threshold of 0.5 was chosen for the BLR model for
Miami-Dade County derived using the entire study
period of data (Fig. 2). The equation in Table 3,
together with a threshold value of 0.5 for
determining the yes or no forecast, constitutes the
model for Miami-Dade County when all warm
season months are considered together. Similar
procedures were followed for eastern Broward
County (not shown).

We next investigated how this model
performed during each warm season month. The
model just described was applied to each day in
our final data set, producing a forecast for each
day comprising the dependent data set.
Contingency tables were made of these forecasts,
and all previously mentioned quantities derived
from this table were calculated.

Table 4 is the 2 x 2 contingency table for
this final warm season model for Miami-Dade
County. Evaluation statistics and percent correctly
forecast days are shown in the table. The
statistics and percent correct days from Table 4
show that the model handles the warm season as
a whole rather well. The CSl is 72%, the FAR is
19%, and the POD is 87%, with 79% of all days
being correctly forecast.
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Figure 2. CSI, FAR, POD, and Bias for a range of threshold values for the eastern Miami-Dade

County model.

Table 4. 2 x 2 contingency table for the warm season model for Miami-Dade County. Evaluation
statistics, and percent correctly forecast days are included.

Model Forecast Statistic/ Model

Observed Yes No Forecast Performance
Yes 1018 156 Csli 72.2%
FAR 18.7%
POD 86.7%

No 235 465 Bias 1.07
No lightning 66.4%
Lightning days 86.7%
All days 79.1%

Figure 3 graphs, by month, the various
evaluation statistics. The statistics exhibit
considerable variability between months, with the
worst results during May and September. As an
example, the CSI ranges from a high of 78%
during August to 61% during May. As previously
discussed, May and September are
climatologically different from the other warm
season months due, in part, to synoptic or tropical
influences. Also, since May begins the warm
season and September is near its end, we expect

the sea breeze to be relatively weak compared to
June, July, and August. During these middle three
months CSI, FAR, POD, and bias show little
variability from month to month. The best results
are obtained late in the warm season, during July
and August, when afternoon convection and
lightning activity are forced almost entirely by the
sea breeze circulation.  Similar results were
obtained for the Broward County model (not
shown).
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Figure 3. CSI, FAR, POD, and Bias by month for the warm season BLR model for eastern Miami-

Dade County.

Figure 4 shows the percent of correctly forecast
days with lightning, without lightning, and all days
combined for the Miami-Dade County model.
Again, it is clear that the model performs
differently during May than the rest of the warm
season months. The model exhibits increasingly
degraded performance with respect to forecasting
days with no lightning activity as the warm season
progresses. By August, the percent of correctly
forecast days with no lighting drops to nearly half
that of May (from ~90% to ~50%). Conversely,
the model produces better forecasts of lightning
days during this period (increasing from ~74% to
89%). Results were similar for Broward County
(not shown).

Based on Figs. 3 and 4, and the
climatological differences between the warm
season months, it was appropriate to derive
separate equations for each month during the
warm season. The next section describes the
monthly models that were developed.
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4. MONTHLY MODELS

The same process for model building
described in the previous section was employed to
derive the monthly models. Each month’s data
were treated separately during this process. Ten
different models were derived in all, one for each
of the five warm season months for each county.

The predictors and corresponding

coefficients for each of the monthly models for
eastern Miami-Dade County are given in Table 5.
The number of terms in each model ranges
between four and eight, depending on the month.
For example, the June model contains four terms,
and the August model contains eight terms.
Although the types and number of terms in the
models differ from month to month and between
the two counties, these terms explain the
fundamental physical processes that govern warm
season convective and lightning activity in South
Florida. The monthly models generally contain
persistence, wind speed and direction, moisture,
and stability parameters. These same general
parameters were chosen for the full warm season
models discussed in the previous section (Table
3).
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Figure 4. Graph by month for the percent of correctly forecast days with no lightning occurrence,
days with lightning occurrence, and all days for the eastern Miami-Dade County model.

Table 5. Monthly models for Miami-Dade County. Predictors and their coefficients are listed.

a) May Model Threshold = 0.47

Predictor Coefficient
Bo Intercept -12.257
B, Sine of the mean wind direction, 1000-700 hPa -1.470
B, Precipitable water 0.841
B; Lifted index -0.363
B4 Temperature at 900 hPa 0.391
Bs Previous day’s persistence 0.964
b) June Model Threshold = 0.50

Predictor Coefficient
Bo Intercept -5.043
B, Morning persistence 1.312
B, Sine of the mean wind direction, 1000-700 hPa -1.147
Bs Mean dewpoint depression, surface-500 hPa -0.217
B4 Mean temperature difference, 850-500 hPa -0.467
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c) July Model Threshold = 0.54

Predictor Coefficient
By Intercept 9.410
B, Sine of the wind direction at 950 hPa -1.218
B, Morning persistence 1.294
B; Mean dewpoint depression, surface-500 hPa -0.212
B, Height of the 1000 hPa level -0.037
Bs Mean u-component, 850-700 hPa 1.575
d) August Model Threshold = 0.56

Predictor Coefficient
Bo Intercept 8.844
B Previous day’s persistence 0.717
B, Mean u-component, 1000-700 hPa 0.142
Bs Surface dewpoint -0.679
B4 Mean relative humidity, 600-400 hPa 0.027
Bs Mean dewpoint depression, 800-600 hPa -0.186
Bs Wet bulb zero level -0.002
B- Temperature at 900 hPa 0.574
Bs Temperature at the equilibrium level -0.078
e) September Model Threshold = 0.50

Predictor Coefficient
Bo Intercept -0.881
B, Morning persistence 1.129
B, Previous day’s persistence 0.774
B; K index 0.072
B4 Sine of the wind direction at 950 hPa -1.007
Bs Mean wind speed, surface-850 hPa -0.116

The predictors and their coefficients
(Table 5) display some variation from month to
month. And, the threshold values also vary, not
always being 0.5 as before. This is expected
because we are seeking to maximize the
predictive skill of the BLR model for each month.
The fact that each of the models is somewhat
different supports our reasoning that forecasts for
each month can be improved by deriving separate
models.

The multiple wind, moisture, and stability
parameters comprising the original fifty-six
potential predictors (Table 1) describe these
physical quantities at different levels and layers in
the atmosphere. Thus, they are not completely
independent. Although a given monthly model
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may contain more than one wind term or more
than one moisture term, it is important to note that
each of the selected parameters is significant at at
least the 95% test level, as determined by the p-
value (not shown).

Since the August model consists of eight
terms, more than any other model, it deserves a
brief discussion. We sought to have the most
parsimonious model possible. Therefore, a model
consisting of only three terms first was considered,
containing both persistence predictors and the u
wind component in the 1000-700 hPa layer. This
simple model forecast days with lightning very well
(~95% correct, not shown). However, the percent
of correctly forecast days with no lightning was
only 32%. By incorporating additional terms into



the model, we increased the skill of correctly
forecasting days with no lightning to approximately
52%, while correctly forecasting days with
lightning suffered only minimally.  Specifically,
POD, which is analogous to the percent of
correctly forecast days with lightning, only fell from
95% to 93%. On the other hand, the three
remaining evaluation statistics improved. For
example, CSI increased from 79% to 82% by
using the extra terms.

By applying each of the monthly models to
the dependent data from which they were derived,
we could evaluate the performance of the
separate monthly models against the full warm
season model derived in the previous section.

Table 6 is similar to Table 4, but represents the
combined statistics from the five monthly models
for Miami-Dade County. Similar results were
obtained for Broward County (not shown).
Comparing Table 6 to Table 4, it is clear that there
is improvement in correctly forecasting days with
lightning, days without lightning, and all days
combined.  The greatest improvement is in
correctly forecasting days without lightning, where
the accuracy increases 3.5%. The four evaluation
statistics also improve, with the CSI and FAR
showing the greatest improvements. Thus,
forecast skill is enhanced by deriving separate
monthly models for both counties.

Table 6. 2 x 2 contingency table for the combination of the five monthly models for Miami-Dade
County. Evaluation statistics and percent correctly forecast days are included.

Model Forecast Statistic/ Model

Observed Yes No Forecast Performance
Yes 1034 140 Csli 74.7%
FAR 16.9%
POD 88.1%

No 211 489 Bias 1.06
No lightning 69.9%
Lightning days 88.1%
All days 81.3%

5. CROSS VALIDATION PROCEDURES

Regression equations used for weather
forecasting usually are tested on an independent
data set that has been held back during the model
development phase (Wilks 1995). During the
development of the models discussed previously,
no independent data set was excluded for testing
the models. Instead, all available data were used
to achieve as much predictive skill in the final
models as possible. To perform independent
testing from a dependent data set, we employed a
cross-validation procedure.

Wilks (1995, p. 194) defines cross-
validation in the following manner. “Cross-
validation is carried out using developmental data
sets of size n — 1, and verification data ‘sets’
containing the remaining single observation of the
predictand. In this case there are n distinct
partitions of the data. The regression model is

recalculated for each of these partitions. The
result is n similar forecast equations, each
computed without one of the observations of the
predictand.”

Applying this cross-validation procedure
to the current study, fourteen partitions of the data
set were used, one for each year in the study
period. First, we excluded data from 1989 and re-
derived the BLR model using the remaining
thirteen years of data. During the re-derivation,
the entire process described in Section 3 was
repeated. This was done to allow the best model
to be chosen as each year is excluded as the
independent data set. Each resulting model then
was compared to the original 14-year model to
assess differences in the predictors and
coefficients. Next, data from 1990 were excluded,
and the model was re-derived and compared to
the original. This process continued until each of
the fourteen years had been excluded, and
fourteen separate models had been rederived.



This was done for each of the ten monthly models
listed in Table 5.

If the original models (Table 5) are stable,
there should be little variation in the predictors and
their coefficients chosen during the cross-
validation. However, some variation is expected
because the “new” model is derived from a
different data set. Results (not shown) indicate
that our original models were stable, i.e., there
was little change in the various sets of chosen
predictors and their coefficients (not shown). And,
there was little difference between them and the
original monthly models. In nearly every case, the
same wind, moisture, and stability parameters
appeared in the cross-validated models.
Exceptions included an extra term sometimes
being included, one of the original terms being

a) May

excluded, or a slight variation in one of the terms
from the original model, e.g., the mean u wind
component in the 1000-700 hPa layer instead of
the sine of the mean direction in the same layer.

Each of the fourteen model versions for
each month was applied to the year that was
withheld during the cross-validation. That process
allowed all of the dependent data (each month) to
be tested as independent data, providing a better
evaluation of forecast skill. Evaluation statistics
were computed from these “independent” tests.
Figure 5 graphs these statistics by month for
eastern Miami-Dade County. Since no lightning
was observed during May 1992 in eastern Miami-
Dade County, none of the statistics could be
computed. This was the only month when this
occurred.

May Model, Miami-Dade County -- Each Year Has Been Tested
as an Independent Dataset

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

\ —e—CSI -B—FAR

—A—POD —e—BIAS

Figure 5. Plots of evaluation statistics for each cross-validation run for each of the monthly models in

eastern Miami-Dade County.
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b) June

June Model, Miami-Dade County -- Each Year Has Been
Tested as an Independent Dataset
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c) July

July Model, Miami-Dade County -- Each Year Has Been
Tested as an Independent Dataset
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Figure 5. Continued
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d) August

August Model, Miami-Dade County -- Each Year Has Been
Tested as an Independent Dataset
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e) September

September Model, Miami-Dade County -- Each Year Has Been
Tested as an Independent Dataset
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Figure 5. Continued
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Figure 5 reveals considerable variation in
the range of the statistics between months and
between years (i.e., the independent tests).
Within each monthly model, some years exhibit
good forecasting skill while other years are worse.
Table 7 contains contingency tables for the
combination of the fourteen different cross-
validated models for each month in eastern Miami-
Dade County. The worst forecast statistics (i.e.,
CSI, FAR, and POD) occur during May, while the
best results are obtained during July and August.
This is supported by Fig. 5 which shows the
largest year to year variations in the statistics
during that month. Conversely, the plots of CSI,
FAR, and POD exhibit the smallest range during
July and August. After May, September is the
next most difficult month to forecast. As an
example, typical CSI values range between 0.4
and 0.8 during May (Fig. 5a), with a smaller range
of approximately 0.6 to 0.9 during July, and
August. In general, the magnitude of this statistic
also increases from May to July and August.

During each month there are some years
when the lightning guidance models perform
poorly and others when they perform very well.
One reason the model can perform poorly is that
some individual years contain only a very small
number of days with lightning (often occurring in
May) or without lightning (often occurring in July
and August). If the model forecast some of these
days incorrectly, the evaluation statistics are
greatly affected. An example is May 1993 when
lightning was observed on only three days. Two of
these days were incorrectly forecast, causing CSl,
FAR, and POD to be very poor (Fig. 5a). On the
other hand, during July 1995 (Fig. 5c) there were
only two days when lightning was not observed.
In this case the model correctly forecast these two
days in addition to every other day when lightning
was observed, i.e., all days were -correctly
forecast. The result was perfect scores (i.e., CSl =
1, FAR = 0, POD = 1, and Bias = 1).

Table 7. 2 x 2 contingency tables for cross-validation of the five monthly models for Miami-Dade
County. Evaluation statistics and percent correctly forecast days are included.

a) May model
Model Forecast Statistic/ Model
Observed Yes No Forecast Performance
Yes 79 39 CSl 52.7%
FAR 28.8%
POD 66.9%
No 32 174 Bias 0.941
No lightning 84.5%
Lightning days 66.9%
All days 78.1%
b) June model
Model Forecast Statistic/ Model
Observed Yes No Forecast Performance
Yes 213 32 Csl 72.0%
FAR 19.3%
POD 86.9%
No 51 79 Bias 1.08
No lightning 60.8%
Lightning days 86.9%
All days 77.9%




c¢) July model

Model Forecast Statistic/ Model
Observed Yes No Forecast Performance
Yes 235 30 CSl 78.1%
FAR 13.3%
POD 88.7%
No 36 64 Bias 1.02
No lightning 64.0%
Lightning days 88.7%
All days 81.9%
d) August model
Model Forecast Statistic/ Model
Observed Yes No Forecast Performance
Yes 279 35 CSl 75.0%
FAR 15.6%
POD 88.8%
No 58 33 Bias 1.07
No lightning 36.3%
Lightning days 88.8%
All days 77.0%
e) September model
Model Forecast Statistic/ Model
Observed Yes No Forecast Performance
Yes 189 43 CSl 65.2%
FAR 23.5%
POD 81.5%
No 58 98 Bias 1.06
No lightning 62.8%
Lightning days 81.5%
All days 74.0%

Poor performance was not due solely to too few
days with or without lightning. In some cases, the
model simply did a poor job of forecasting lightning
during an individual month. For example, during
May 1999 there were an adequate number of days
with and without lightning, but some of our worst
evaluation scores occurred during this month (CSI
~ 0.1, FAR = 0.3, POD = 0.1, Bias =0.2). On the
other hand, during May of the next year, these
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same statistics were the best for this month (Fig.
5a).

Poor performance of the model during the
cross-validation procedure also occurs during the
“best” months of July and August. July 1996 and
August 2001 were the two years during their
respective months when the evaluation statistics
were the poorest. This was not due to a lack of
days with no lightning; the model simply handled



these years poorly, probably because synoptic
conditions were atypical of those during the
training period.

Table 8 gives the 2 x 2 contingency tables
and evaluation statistics for eastern Miami-Dade
County. These statistics are based on the
independent testing using the cross-validation
procedure discussed above. Thus, they constitute

the final evaluation of model performance. CSl is
approximately 71%, while FAR is 19%.
Approximately two-thirds of the days without
lightning and 85% of days with lightning are
correctly forecast. Finally, more than 75% of all
days are correctly forecast. As expected, these
results are slightly worse than those cited earlier,
based on the dependent data (Table 6).

Table 8. 2 x 2 contingency tables for the combined cross-validated five monthly models for Miami-
Dade County. Evaluation statistics and percent correctly forecast days are included.

Model Forecast Statistic/ Model

Observed Yes No Forecast Performance
Yes 995 179 CSl 70.6%
FAR 19.1%
POD 84.7%

No 235 448 Bias 1.05
No lightning 65.6%
Lightning days 84.7%
All days 77.7%

6. COMPARISON WITH PERSISTENCE

Meteorological conditions often change
little from day to day in South Florida during the
warm season. Therefore, making a forecast for
afternoon lightning activity on the current day
based on the previous day’s activity (i.e., using
only persistence) will yield reasonably accurate
results. This assumption is supported by Table 9,
which gives the 2 x 2 contingency table, evaluation
statistics, and the percent of correctly forecast
days using persistence alone for eastern Miami-
Dade County. Comparing Tables 8 and 9, it is
clear that the guidance developed in this study
improves upon persistence alone. The CSI
improves from 64% (Table 9) with persistence
alone to 71% (Table 8) using the current models.
The FAR improves from 22% (Table 9) to 19%
(Table 8). The percent of correctly forecast days
in eastern Miami-Dade County improves from 72%
(Table 9) to 78% (Table 8). Thus, the guidance
model yields a definite improvement over
persistence. This is an important finding.
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7. ANALYSIS OF INCORRECTLY
FORECAST DAYS

It is informative to investigate days when
the guidance model produced incorrect forecasts.
The goal is to better understand the model's
strengths and weaknesses so that forecasters can
apply this information when interpreting model
results during daily operational implementation.
Two types of incorrect forecasts (“bust” days) are
discussed. The first is when no lightning is
forecast but is observed nonetheless (a “busted 0”
day). The second type of incorrect forecast is a
day on which lightning is forecast but does not
occur (a “busted 1” day).

When examining busted 0 days, the
amount of lightning observed should be
considered. The motivation, from an operational
standpoint, is that the risk of damage to power
generating facilities and transport lines increases
as more lightning occurs. Thus, a busted 0 day
when many strokes (e.g., more than 100) are
observed is worse than a busted 0 day with only a
few strokes (e.g., 5 — 10).

All days with lightning occurrence between
noon and midnight were categorized into groups
(quartiles) with approximately equal numbers of
days in each quartile. This procedure was



performed within SPSS. For eastern Miami-Dade
County there are approximately 300 days in each
quartile. The number of flashes in each quartile is

as follows: Quartile One (Q1) < 7, Quartile Two
(Q2) 8 — 40 flashes, Quartile Three (Q3) 41 — 125
flashes, and Quartile Four (Q4) >125 flashes.

Table 9. 2 x 2 contingency table, evaluation statistics, and percent of correctly forecast days for
Miami-Dade County using only persistence.

Model Forecast Statistic/ Model

Observed Yes No Forecast Performance
Yes 910 263 Csl 63.7%
FAR 21.9%

POD 77.6%

No 255 446 Bias 0.993

No lightning 63.6%

Lightning days 77.6%

All days 72.4%

Table 10 lists by month the percentage of
days having lightning that was not forecast (a
busted 0 day). Overall statistics are presented,
and they are subdivided by quartile. The results
from this table are encouraging. The overall
percentage of incorrectly forecast days ranges
from 22% during May to only 9% in August. Thus,
the percentage of busted 0 days decreases from
May to July and August. The greatest percentage
of busted 0 days generally occurs with Q1 events.
Conversely, the extreme Q4 days are most often
correctly forecast. The exception is May when a
higher percentage of busted 0 days occurs during
Q2 activity than during Q1 activity. The
percentage of busted Q1 days ranges from 20% in
July and August to 29% in September, while the
percentage of busted Q4 days ranges from 12% in
May to only 1% in July and August.

These results again suggest that the
models perform well, and are especially good at
forecasting days with the greatest lightning
activity. It is important to state that the goal of this
study is not to forecast the amount of afternoon
lightning, but simply its occurrence or non
occurrence. However, the fact that the fewest
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busts occur on high activity (i.e., Q4) days is
encouraging in that as thermodynamic and
kinematic conditions become optimum for high
lightning activity they are handled well by the
models via the physical predictors comprising
them.

The threshold probability for forecasting
lightning (seen earlier in Table 5) and the median
forecast probability on the busted O days is given
for each month at the bottom of Table 10.
Comparing the median probability to the threshold
value is a way of indicating how far the model was
from predicting lightning. The difference between
the threshold and median forecast probabilities
decreases from May (0.17) to August (0.06). This
indicates that even though the models have
produced busted 0 days, the forecast probabilities
during these busts are not as far from the
threshold during July and August as during May.
As noted earlier, synoptic scale forcing often
causes convection over South Florida during May,
and these situations are not handled well by the
guidance models or by the 1200 UTC soundings
that are used as input to the guidance algorithm.



Table 10. Analysis of days having lightning that was not forecast for Miami-Dade County.

May June
Lightning Observed/ 22% 1%
Not Forecast
Q1 Observed/ 23% 21%
Not Forecast
Q2 Observed/ 31% 17%
Not Forecast
Q3 Observed/ 17% 3%
Not Forecast
Q4 Observed/ 12% 4%
Not Forecast
Threshold Probability 0.47 0.5
Median Probability 0.26 0.34

on "Busted 0" Days

July August September
10% 9% 15%
20% 20% 29%
12% 12% 12%
8% 8% 8%
1% 1% 9%
0.54 0.56 0.5
0.39 0.5 0.35

Table 11 is analogous to Table 10 but for
busted 1 days. The previously mentioned
quartiles have no relevance on these days since
no lightning occurred. May exhibits the greatest
percentage of incorrect forecasts (23%), while July
has the best forecasts, again showing that results
generally improve from May to July and August.

The median forecast probability on busted 1 days
along with each month’s threshold probability also
are given. However, unlike the busted 0 days, the
median forecast probabilities do not approach the
threshold value as the warm season progresses.

Table 11. Analysis of days with no lightning although lightning had been forecast for Miami-Dade

County.
May June July August September
Lightning Forecast/ 23% 19% 13% 16% 21%
Not Observed
Threshold Probability 0.47 0.5 0.54 0.56 0.5
Median Probability 0.67 0.75 0.72 0.79 0.68

on "Busted 1" Days
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We next examined spatial plots of
lightning flashes for several cases of busted 0 and
busted 1 forecasts. These cases illustrate some
of the challenges in forecasting lightning over
small areas. Figures. 6a and 6b are busted 0
days, while Figures 6¢ and 6d are busted 1 days.
The two busted 0 days provide a stark contrast in
conditions. On July 5, 1990 (Fig. 6a) one hundred
seventeen flashes occurred in eastern Miami-
Dade County during the noon to midnight period,
while only six flashes occurred on September 22,
1993 (Fig. 6b). As mentioned previously, a busted
day when so many flashes were observed like July
5, 1990, is a more serious error because lightning
was observed across a much greater portion of
the area of interest. Conversely, on September
22, 1993 (Fig. 6b), the six observed flashes
occurred only within the extreme western portion
of the area of interest.

Figs. 6¢c and 6d are examples of busted 1

days. On May 16, 1999 (Fig. 6c) the model
a) 7/5/90 Busted 0
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forecast lightning for eastern Miami-Dade County,
but no lightning occurred in the area of interest
during the noon to midnight period. However,
there was abundant lightning activity in the
western portion of Miami-Dade County, just
outside the area of interest. A slight change in the
location of this sea breeze-induced convection
would have yielded a correct forecast. On the
other hand, on June 17, 2002 (Fig. 6d) lightning
was forecast for eastern Miami-Dade County, but
no lightning was observed anywhere near the
county. The busted forecast days of July 5, 1990
(Fig. 6a) and June 17, 2002 (Fig. 6d) were worse
busts than their counterparts in Fig. 6. On June
17" (Fig. 6d) the model forecast lightning in
eastern Miami-Dade County but there was no
lightning close to the area of interest. On July 5"
no lightning was forecast for eastern Miami-Dade
County but lightning occurred across the entire
east-west extent of the area of interest.

b) 9/22/93 Busted 0

Figure 6. Cumulative noon to midnight plots of lightning flashes for (a) July 5, 1990, (b) September
22,1993, (c) May 16, 1999, and (d) June 17, 2002. Panels (a) and (b) are busted 0 forecasts.
Panels (c) and (d) are busted 1 forecasts. All bust days are based on the area of interest in eastern

Miami-Dade County.
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c) 5/16/99

Busted 1

d) 6/17/02 Busted 1

Figure 6. Continued

The last example of a busted forecast
occurred on May 4, 1998 (Fig. 7). This day
emphasizes the point that the models are not
suited for synoptically disturbed situations. At
1200 UTC a cold front was positioned just north of
Florida. Based on the 1200 UTC Miami sounding
data, the model output suggested that no lightning
would occur on this day. The probability of
observing at least one flash was 0.28 with a
threshold of 0.47 for determining the “yes”
forecast. However, Fig. 7a-d shows the
progression of storms and lightning ahead of the
frontal boundary as it moved southward into

Florida throughout the evening. Conditions
obviously changed after 1200 UTC.
The  statistical forecast equations

developed in this study are meant to be a source
of guidance that should be used in conjunction
with other guidance products. Other guidance on
this day would have indicated the expected
frontally induced convection. As an extension to
this study, it is hoped that incorporating mesoscale
model output will improve the forecast skill of this
guidance product by capturing changes in the
meteorological conditions that sometimes occur
after the morning 1200 UTC sounding.
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8. RESULTS FOR SUMMER 2004
The lightning guidance models described
in the previous sections were run daily during
Summer 2004 to assess their effectiveness on a
totally independent data set. Results were sent to
FP&L officials by noon of each day for their
consideration. Statistics for June-August 2004 are
presented in Table 12. Results for May 2004 are
not shown since the month was very dry,
containing only two days with observed lightning
within the study area. Conversely, September
2004 was highly anomalous since Central and
South Florida were devastated by several major
hurricanes. Those highly disturbed conditions
violated the basic assumption behind our model
guidance—that the sea breeze is the major forcing
mechanism leading to convective development.
The guidance models performed well
during the 2004 period (Table 12). Results for
May were slightly worse than those derived from
cross validation (Table 7). However, during July
and August 2004, the results were somewhat
better than from cross validation. Considering the
combined three month period (Table 12-d), the
model correctly forecast 90% of the lightning days,
but only 44% of the non-lightning days, for an
overall correct score of 82%. The CSI was 80%,
the FAR was 12%, and the POD was 90%.
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Figure 7. Hourly lightning plots for the hour starting at (a) 5 PM LT, (b) 6 PM LT, (¢) 7 PM LT, and (d)
8 PM LT on May 4, 1998 as a cold front was moving southward into Florida.
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Table 12. 2 x 2 contingency table showing results for Miami-Dade County during June-August 2004.

Evaluation statistics, and percent correctly forecast days are included.

a) June Model

Model Forecast Statistic/ Model
Observed Yes No Forecast Performance
Yes 15 4 Csl 65.2%
FAR 21.1%
POD 78.9%
No 4 4 Bias 1.00
No lightning 50.0%
Lightning days 78.9%
All days 70.4%
b) July Model
Model Forecast Statistic/ Model
Observed Yes No Forecast Performance
Yes 24 2 Csli 82.8%
FAR 11.1%
POD 92.3%
No 3 2 Bias 1.04
No lightning 40.0%
Lightning days 92.3%
All days 83.9%
c) August Model
Model Forecast Statistic/ Model
Observed Yes No Forecast Performance
Yes 26 1 CSlI 89.7%
FAR 71%
POD 96.3%
No 2 1 Bias 1.04
No lightning 33.3%
Lightning days 96.3%
All days 90.0%
d) Combined June-August Results
Model Forecast Statistic/ Model
Observed Yes No Forecast Performance
Yes 63 7 Csl 80.2%
FAR 12.2%
POD 90.3%
No 9 7 Bias 1.03
No lightning 43.8%
Lightning days 90.3%
All days 81.8%
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9. SUMMARY AND CONCLUSIONS

This study has developed statistical
guidance equations to determine the probability of
noon to midnight lightning activity (the occurrence
or non occurrence of at least one flash) in eastern
Miami-Dade and Broward Counties during the
warm season (May-September). The guidance
assumes that the sea breeze provides the
dominant forcing for afternoon convective and
lightning activity. This is most often true during
June, July, and August. The guidance product
was developed to assist personnel at Florida
Power and Light Corporation (FP&L) in their
decisions concerning whether extra line crews will
be needed after normal business hours.

The areas of interest in both counties and
the noon to midnight forecast period were defined
by FP&L. The specific areas (east of US 27 in
Broward County and east of State Route 997 in
Miami-Dade County) contain the majority of
FP&L’s customers and service lines in these
counties. The noon to midnight period was
selected because the risk of lightning activity is
most costly to FP&L. Only results for Miami-Dade
County were presented in this paper.

Fourteen years (1989-2002) of warm
season lightning and radiosonde data were used
to develop and test the guidance equations. The
lightning data were obtained from the National
Lightning Detection Network. The 1200 UTC
Miami (West Palm Beach prior to August 1995)
sounding served as the major input to model
development. These radiosonde data were used
to calculate approximately fifty potential predictors,
including various wind, moisture, stability and
temperature parameters. Two persistence
variables (the previous day’s afternoon activity and
the current day’s morning activity) also were
included as potential predictors. Binary logistic
regression (BLR) was used to relate noon to
midnight lightning activity to the pool of potential
predictors.

A single model for the entire warm season
was derived by applying a stepwise screening
procedure to determine which of the potential
predictors were most important in describing the
observed variation in lightning activity.  The
parameters selected for this model were the
vector-averaged sine of wind direction, and wind

speed (both in the 1000-700 hPa layer),
precipitable water, LI modified for assumed
afternoon conditions, and both persistence

variables. Each of these independent variables is

26

known to be physically related to the strength and
movement of the sea breeze or to convective
initiation. This model then was applied to the
dependent data from which it was derived, and the
percent of correctly forecast days, along with
various evaluation statistics, were computed for
the individual months comprising the warm
season. Results revealed that the model
performed differently during each month.
Specifically, the evaluation statistics were worst in
May, followed by September. These two months
are the first and last months of the warm season in
South Florida, and synoptic scale influence is
more likely than during June, July, and August.
Based on these results, it was determined
that deriving a separate model for each month
would increase forecast skill compared to using
only a single model for the entire warm season.
The five monthly models for each county generally
contained similar independent variables. Once the
individual monthly models were developed, they
too were applied to the data from which they were
derived. Compared with the entire warm season
model, the evaluation statistics and percent of
correctly forecast days improved for each month.

To test the monthly models on
independent data, a cross-validation procedure
was employed. For each final model, each of the
fourteen years was removed one year at a time,
and a “new” model was re-derived from the
remaining thirteen years of data. The various
evaluation statistics and percent of correctly
forecast days varied for each individual month
within the warm season. For eastern Miami-Dade
County, the POD ranged from a low of 67% in May
to a high of 89% during July and August. The
FAR varied from 29% in May to only 13% in July,
and the CSI, which is a combination of these two
statistics, ranged from 53% in May to 78% during
July. Results were similar for Broward County.

Results from the independent tests of the
monthly models revealed that the guidance
developed in this study outperformed persistence.
This was an important achievement since
persistence is a strong predictor of lightning
activity during the warm season in South Florida.
When results for the monthly models were
combined, the CSI was 71% in eastern Miami-
Dade County, compared with 64% using
persistence alone.  Similarly, the percent of
correctly forecast days with lightning beat
persistence alone by 7% (85% versus 78%).
Additionally, the hit rate improved from 72% using



just persistence to 78% using the monthly models.
Similar results were obtained for eastern Broward
County.

Days when the models produced an
incorrect forecast (bust days) were examined. On
days when no lightning was forecast but occurred
anyway (busted 0 days), the amount of lightning
observed was considered. The amount of noon to
midnight lightning was assessed by grouping days
with lightning into quartiles. This was done to
evaluate how well the models handled days with
minimal lightning activity (e.g., Q1 days, 1-7
flashes) versus days with large lightning activity
(e.g., Q4 days, >125 flashes). Considering all
busted 0 days for eastern Miami-Dade County, the
percent of incorrect forecasts improved as the
warm season progressed, ranging from a high of
22% during May to a low of only 9% during
August. Moreover, a smaller percentage of Q4
days was incorrectly forecast than Q1 days for
each warm season month. For example, in July
and August 20% of Q1 days were incorrectly
forecast, whereas only 1% of Q4 days were busts.
This indicates that the models are best able to
forecast days when many strokes occur. On days
when no noon to midnight lightning was observed,
but had been forecast, results again showed that
the percentage of incorrectly forecast days
decreased as the warm season progressed,
ranging from 23% during May to 13% in July.

The models were run during the warm
season of 2004 to evaluate their performance on a
totally independent data set. Results showed that
the model skill during Summer 2004 was
comparable to that obtained from the cross
validated data used to develop the models.

It is encouraging that such favorable
results have been achieved by using only a single
morning radiosonde sounding together with
persistence. Since the guidance products do
improve over persistence alone, the models will
serve as useful guidance for FP&L. By
incorporating mesoscale model output to capture
spatial and temporal changes in meteorological
conditions that sometimes occur after 1200 UTC, it
is believed that the forecast skill of future guidance
equations can be improved further. That research
currently is underway.
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	Mean 1000-700 hPa wind direction            Surface wet bulb temperature
	Mean 1000-700 hPa wind speed                   Precipitable water
	Mean 1000-700 hPa u-wind component*      Mean mixing ratio in mixed layer**
	Mean 1000-700 hPa v-wind component *    K-index
	
	
	Model Forecast

	YesNo
	
	Observed
	No    C D



	The step of the screening regression that optimizes the various statistics described above is chosen as the best BLR model.  It generally is not possible to satisfy all of the above conditions.  However, the best model satisfies as many of these conditio
	
	
	
	Parameter             Coefficient



	Model ForecastStatistic/        Model

	Observed             Yes             No            Forecast   Performance
	
	
	POD86.7%
	No   235            465Bias1.07





	Predictor
	Coefficient
	Intercept
	Sine of the mean wind direction, 1000-700 hPa
	Precipitable water
	Lifted index
	Temperature at 900 hPa
	Previous day’s persistence

	Predictor
	Coefficient
	Predictor
	Coefficient
	Predictor
	Coefficient
	Mean dewpoint depression, 800-600 hPa

	Predictor
	Coefficient
	
	
	Model ForecastStatistic/        Model

	Observed             Yes             No            Forecast   Performance
	
	
	POD88.1%
	No   211            489Bias1.06


	Model ForecastStatistic/        Model

	Observed             Yes             No            Forecast   Performance
	
	
	POD66.9%
	No   32            174Bias0.941


	Model ForecastStatistic/        Model

	Observed             Yes             No            Forecast   Performance
	
	
	POD86.9%
	No   51             79Bias1.08


	Model ForecastStatistic/        Model

	Observed             Yes             No            Forecast   Performance
	
	
	POD88.7%
	No   36             64Bias1.02


	Model ForecastStatistic/        Model

	Observed             Yes             No            Forecast   Performance
	
	
	POD88.8%
	No   58             33Bias1.07


	Model ForecastStatistic/        Model

	Observed             Yes             No            Forecast   Performance
	
	
	POD81.5%
	No   58             98Bias1.06


	Model ForecastStatistic/        Model

	Observed             Yes             No            Forecast   Performance
	
	
	POD84.7%
	No   235            448Bias1.05


	Model ForecastStatistic/        Model

	Observed             Yes             No            Forecast   Performance
	
	
	POD77.6%
	No   255            446Bias0.993


	a)   June Model
	Model ForecastStatistic/        Model

	Observed             Yes             No            Forecast   Performance
	
	
	POD78.9%
	No     4               4Bias1.00


	Model ForecastStatistic/        Model

	Observed             Yes             No            Forecast   Performance
	
	
	POD92.3%
	No    3              2Bias1.04


	Model ForecastStatistic/        Model

	Observed             Yes             No            Forecast   Performance
	
	
	POD96.3%
	No      2               1Bias1.04


	Model ForecastStatistic/        Model

	Observed             Yes             No            Forecast   Performance
	
	
	POD90.3%
	No      9               7Bias1.03
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