
1.1                           ON GENETIC ALGORITHMS AND DISCRETE 
PERFORMANCE MEASURES 

 
 

  Caren Marzban* 
Center for Analysis and Prediction of Storms 

University of Oklahoma, Norman, OK  
Department of Statistics, University of Washington, Seattle, WA 

Applied Physics Laboratory, University of Washington, Seattle, WA 
 

Sue Ellen Haupt  
Applied Research Laboratory 

The Pennsylvania State University, State College, PA 
 

 
 
Abstract  
 
     A relation exists between the manner in 
which a statistical model is developed and the 
measure employed for gauging its 
performance.  Often the model is developed 
by optimizing some continuous measure of 
performance, while its final performance is 
assessed in terms of some discrete measure. 
The question then arises as to whether a 
model based on the direct optimization of the 
discrete measure may be superior to or 
significantly different from the model based on 
the optimization of continuous measure.  
Some Artificial Intelligence parameter 
estimation techniques allow the optimization of 
discrete measures. Genetic Algorithms 
constitute one such technique, and therefore, 
allow for an examination of this question. 
Here, one type of genetic algorithm is 
employed to optimize three discrete 
performance measures of a parametric model 
for the prediction of hail. A more conventional 
technique is then employed to optimize the 
same discrete measures. The former 
outperforms the latter. In other words, the 
direct optimization of three discrete measures 
via genetic algorithms yields better fits to the 
data than alternatives requiring the 
intermediate step of optimizing a continuous 
measure. 
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1. INTRODUCTION 
 
     There is a relationship between how a 
statistical model is developed and the 
measure used for gauging its performance. 
This is due to the fact that the estimation of 
the parameters of a statistical model almost 
always involves the optimization of some 
quantity, such as likelihood or mean squared 
error. Often the model is developed by 
optimizing one measure of performance, while 
its final performance is assessed in terms of 
another measure. For example, in 
meteorology a model is often developed by 
first minimizing a ``continuous" measure such 
as mean squared error, and then its final 
performance is gauged in terms of some 
``discrete" measure such as the critical 
success index. The question then arises as to 
whether a model based on the direct 
optimization of the discrete index may be 
superior to or significantly different from the 
model based on the optimization of mean 
squared error. This question is difficult to 
address, because most optimization methods 
require the measure of performance to be 
continuous and differentiable in the 
parameters (e.g., mean squared error), while 
many performance measures common in 
meteorology (e.g., the critical success index) 
do not satisfy these conditions. However, 
some Artificial Intelligence parameter 
estimation techniques do not require either of 
these constraints. Genetic Algorithms (GAs) 
constitute one such technique, and therefore, 
allow for an examination of this question. 
Here, one type of genetic algorithm is 
employed to optimize three discrete 
performance measures of a parametric model 
for the prediction of hail. A more conventional 



technique is then employed to optimize the 
same discrete measures. The former 
outperforms the latter. In other words, the 
direct optimization of three discrete measures 
via genetic algorithms yields better fits to the 
data than alternatives requiring the 
intermediate step of optimizing a continuous 
measure. 
 
     A parametric statistical model consists of 
two specifications: 1) The precise parametric 
form of the model, and 2) the distribution of 
the errors. For example, a simple linear 
regression model relating N observations on 
two variables, ix  and iy , 1,2, ,i N= , can 
be written as  
 

i i iy xα β ε= + +                        (1) 
 
where α  and β  are parameters that must be 
estimated from the data on x and y. However, 
the estimated values depend on the 
distribution of the errors, iε . Ordinarily, one 
seeks the most likely values of the parameters 
given the data. These estimates are called the 
maximum likelihood estimates. It can be 
shown that the maximum likelihood estimates 
are equivalent to those arrived at by the 
minimization of the mean square error (MSE)  
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with respect to α and β , if the distribution of 
ε  is Gaussian (Draper and Smith 1981). It is 
this fact - that the resulting parameter 
estimates are maximum likelihood estimates - 
which underlies the ubiquitous use of MSE in 
a wide range of problems.  
 
     The connection between maximum 
likelihood estimates and the mean square 
error is one of many such relations between 
the choice of model parameters and the 
choice of the error function. As a result, it has 
become common practice in model building to 
simply optimize some error function without 
consideration of the likelihood of the estimated 
parameters. This practice has been historically 
successful in that models developed by the 
optimization of some error function (usually 
MSE) often perform well on independent data.  

     Another common practice is to use an error 
function that is continuous and differentiable in 
the parameters. The reason for this practice is 
that most traditional optimization techniques 
(or training algorithms) rely on the computation 
of the gradient of the error function. Examples 
include Gradient decent, Newton's method, 
Conjugate Gradient, Levenberg-Marquardt 
(Press et al. 1999).  
 
     Generally, many regression models 
minimize MSE, and many classification 
models are based on the minimization of 
cross-entropy (Bishop 1986). This is because 
the former assume that the predictand is 
unbounded (with Gaussian errors), while the 
latter assume that the predictand is a 
probability (of belonging to a class). As 
mentioned previously, both of these measures 
are continuous and differentiable in model 
parameters. However, most common 
measures of classification performance are 
based on the contingency table, rather than 
MSE or cross-entropy. The critical success 
index is one example which is common in 
meteorology; numerous others are discussed 
by Marzban (1998). Because, they are based 
on a discrete table - the contingency table – 
they are neither continuous nor differentiable 
in the model parameters. This is why they are 
referred to as discrete measures. Given that 
the final model is to be assessed in terms of 
such discrete measures, it is natural to 
optimize them directly. 
 
      Recent advances in Artificial Intelligence 
have led to numerous optimization techniques 
which do not require continuity or 
differentiability of the error function. This 
allows for the possibility of directly optimizing 
discrete measures of performance based on 
the contingency table. One family of such 
techniques is referred to as Genetic 
Algorithms (Holland 1975; Haupt and Haupt 
1998, 2004).  
 
     In this article, a number of such measures 
are optimized directly using GAs, and the 
results are compared to the more traditional 
approach of first minimizing cross entropy, 
followed by the optimization of a discrete 
performance measure. One may interpret this 
task as equivalent to the comparison of two 
parameter estimation (or training) algorithms - 
one capable of optimizing discrete measures, 
the other not. It should be noted that, strictly 



speaking, the latter is not an optimization 
algorithm because it is a 2-stage procedure 
with different measures optimized at each 
stage. 
 
     The next section will delve further into the 
methodology of the study. It is followed by 
results, and a discussion thereof. It will be 
shown that direct optimization with a genetic 
algorithm yields a model that outperforms 
models based on the 2-stage procedure, 
where performance is gauged in terms of 
three discrete measures - the fraction correct, 
the critical success index, and the Heidke Skill 
Statistic.  
 
 
2. METHODOLOGY 
 
     This study is inherently empirical in that the 
findings are specific to the data set examined.  
This is true of most studies dealing with 
performance measures since one cannot 
separate properties of different performance 
measures from properties of data. The data 
set  consists of over 21,000 cases with every 
case including three predictors and one 
predictand. The predictors are related to both 
Doppler radar-derived parameters and 
parameters representing the near-storm 
environment. The predictand is a binary 
number labeling the occurrence or 
nonoccurrence of hail. This data set has been 
used in the development of a neural networks 
to aid the National Severe Storms' Hail 
Detection Algorithm in detecting hail and 
estimating hail size (Marzban and Witt 2000, 
2001). The neural network for predicting the 
occurrence of hail was trained by minimizing 
cross-entropy, and that for predicting the size 
of hail was based on the minimization of MSE. 
As mentioned above, both of these measures 
are continuous and differentiable. Given that 
the latter network is a classifier, its 
performance was assessed in terms of 
discrete measures - specifically, the Critical 
Success Index (CSI) and the Heidke Skill 
Statistic (HSS). As such, its development was 
a 2-stage process involving the maximization 
of cross-entropy followed by the maximization 
of the discrete measures. The discrete 
measures were computed from the 
contingency table, which in turn was formed 
by placing a threshold on the probability (of 
hail) produced by the network. As such, the 
maximization of the discrete measure (at the 

second stage) is tantamount to identifying the 
threshold which yields that highest 
performance.  In addition to CSI and HSS, one 
other measure will be employed here - The 
fraction correct (FRC). 
 
     The parametric form of the model 
examined here is motivated by the above 
mentioned neural network. Specifically, it is  
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where the ω 's and θ 's are all parameters to 
be estimated from data. It is the estimates of 
these parameters (analogous to those in 
equation 1) which is the subject of this study. 
For clarity, the index i=1,2,...,N, referring to the 
data case is not shown. inN  refers to the 
number of predictors, and H is a parameter 
that gauges the nonlinearity of the function. 
Note that H is analogous to the order of a 
polynomial. Although there are techniques for 
estimating it from data, the optimal value for H 
is not important in the current study. It will be 
fixed at H=2, and 4. Recall that the goal of the 
study is to examine different training 
algorithms, and not to develop the ``best" 
model for hail detection. 
 
     On a related note, recall that model 
building in a nonlinear setting often calls for at 
least two data sets, called training and 
validation sets.  The combination of the two 
data sets is employed to estimate all the ω 
and θ  parameters as well as H. Such 
approaches are called resampling techniques, 
because they involve drawing many different 
training and validation sets from the given data 
set (Bishop 1996). The aim of the approach is 
to preclude overfitting the data. However, 
again, in the current study, overfitting is not of 
concern, for we are not attempting to develop 
the best model in the sense of one that 
performs best on independent data. The task 
is to compare two different training procedures 
for the purpose of identifying the one that 
yields the lowest fit error. 
 
     In short, the two procedures under 
comparison are defined as follows: 
 



A) Minimize cross-entropy to build a 
model producing a continuous 
predictand (i.e. probability). Place a 
threshold on the predictand in  order 
to construct a contingency table, and 
compute performance measures. Vary 
the threshold across the full range of 
the predictand in order to identify the 
threshold at which the maximum 
performance measure occurs. This 
maximum value is taken to represent 
optimal performance in this approach. 

 
B) Maximize the discrete measure, 

directly, by employing a genetic 
algorithm. 

 
 
2.1 Conjugate Gradient and the Genetic 

Algorithms 
 
     As mentioned above, the two models under 
comparison are essentially based on two 
different training algorithms. The minimization 
cross-entropy is performed by Conjugate 
Gradient (Press et al 1999). Details of this 
method are unimportant; suffice it to say that it 
is a gradient-based method. In fact, any of the 
above-mentioned gradient-based method 
could have been employed here. Conjugate 
Gradient (CG) is simply one of the better ones 
in terms of speed and the ability to avoid local 
minima.  
 
     Genetic algorithms (GAs) are an artificial 
intelligence technique based on the biological 
concepts of genetic combination and natural 
selection. Parameters to be optimized (known 
as genes) are concatenated into data strings 
called chromosomes. The algorithm begins 
with a population of randomly generated 
chromosomes. These chromosomes undergo 
the operations of mating and mutation. Mating 
combines the information from two parent 
chromosomes to produce new individuals, 
exploiting the best of the current generation, 
while mutation, or randomly changing some of 
the parameters allows exploration into other 
regions of the solution space. Natural 
selection via a problem specific cost function 
assures that only the most fit chromosomes 
remain in the population to mate and produce 
the next generation. Upon iteration, the GA 
converges to a global solution. 
 

     Some of the advantages of GAs include 
that they can be used to find discrete or 
continuous parameters, no differentiation is 
necessary, they can simultaneously search 
different regions of the solution space, they 
work well with data from physical or numerical 
experiments, they do not get stuck in local 
minima, there is no need for a good first 
guess, and they work well on parallel 
computers. They are not known to be 
particularly fast when used on parabolic 
problems for which more traditional techniques 
are formulated; however, they are remarkably 
robust at finding solutions in highly complex 
solution spaces. 
 
     The GA used for this study is a continuous 
parameter GA. The parameters, or genes, are 
coded as real numbers. More details on the 
GA and the operators can be found in Haupt 
and Haupt (2004). 
 
     One common feature of both conjugate 
gradient and genetic algorithm is that they are 
iterative. One typically begins with a random 
set of values for the parameters, and applies 
the training algorithm until the performance 
measure converges to some optimal value. To 
assure that the training algorithms are not 
trapped in shallow local minima, both CG and 
GAs are applied to five different initial 
parameter values. 
 
     In summary, a neural network is trained by 
two different training algorithms - conjugate 
gradient and genetic algorithm. The former 
minimizes cross-entropy, which means that 
the network produces a continuous quantity 
between 0 and 1. This output is then 
dichotomized by the introduction of a 
threshold, and the discrete measure is 
optimized as a function of this threshold. The 
latter training algorithm maximizes the discrete 
measure directly. It also directly optimizes the 
threshold as part of the calculation. Finally, the 
two algorithms are compared in terms of the 
discrete measure. 
 
 
2.1 The Performance Measures 
 
     In the Bayesian approach to forecasting, 
performance measures are necessary to 
translate the dependence of posterior 
probabilities on prior probablilities. We write 
the measure in terms of the rates of correct 



prediction of events and of false alarms. The 
measures are then defined in terms of a 
contingency table matrix 
 

         C
a b
c d
 
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 

                            (4) 

 
where a and d are the correct forecasts of 
nonevents and events, respectively, and b and 
c are the number of false alarms and misses, 
respectively. If we call the total number of 
nonevents (no hail occurred) 0N  and events 

(hail) 1N , then 0N a b= + and 1N c d= + .  
 
     We define three separate measures for 
comparison below: 
 
1. Fraction correct (FRC): 
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2. Critical Success index (CSI): 
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                           (6) 

 
3. Heidke’s Skill Statistic (HSS): 
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These measures are widely used as 
discussed by Marzban (1998). 
 
 
3. RESULTS 
 
     Figures 1a through 1f (end of paper) 
display the results. The horizontal lines 
correspond to the performance measures 
reached by the GA for 5 different 
initializations. They are not a function of 
threshold since the threshold is optimized 
directly by this approach. The remaining 5 
curves correspond to the performance 
measures based on the minimization of cross-
entropy by CG. It can be seen that the curves 
for all 3 measures display similar behavior, 
although they reach their peaks at somewhat 
different values of the threshold. The behavior 

of these curves is in complete agreement with 
their theoretical behavior in Gaussian models 
(Marzban 1988).  
 
     The important point of these figures is that 
the 2-stage optimization of the measures does 
not yield performance values as high as those 
obtained in their direct optimization. This is 
true of all five curves. As such, the GA has a 
(slight) advantage over the alternatives that 
require continuous and differentiable 
performance measures. 
 
     The difference between the two 
approaches, however, is rather small in that 
the curves approach and even cross some of 
the horizontal lines. The question arises as to 
whether the difference is statistically 
significant. To that end, a t-test is performed 
and 2σ confidence intervals are computed. 
Note that 2σ corresponds the a 97%  
confidence interval. The latter are displayed in 
Table 1. The t-values (not shown in table) for 
the H=2 case are in the 2.8 range, and those 
of the H=4 case are in the 2.4 range.  It can be 
seen that the differences between the two 
approaches are statistically significant. The 
slightly lower t-value of the H=4 case is 
anticipated from the larger variations between 
the 5 curves in the right figures in Fig. 1. 
 
 
Table 1. The average performance values 
and confidence intervals, for the different 
measures, and for H=2 and H=4.  
 

H = 2 
Measure GA CG 

FRC 0.92163±0.00019 0.92130±0.00006 
CSI 0.50370±0.00105 0.49970±0.00037 
HSS 0.62076±0.00266 0.61768±0.00038 

 
H = 4 

Measure GA CG 
FRC 0.92157±0.00022 0.92109±0.00018 
CSI 0.50360±0.00147 0.50208±0.00146 
HSS 0.62192±0.00158 0.61958±0.00106 

 
 
 
3. SUMMARY AND DISCUSSION 

 
     This study has demonstrated that when a 
neural network is trained directly using the 
performance measure that will be used to 
judge its success, it is somewhat more skillful 



than if trained using the traditional mean 
square error approach. To train the network 
using the discrete performance measures, 
however, requires use of an artificial 
intelligence technique that can work with 
discrete numbers. In this case we used a 
genetic algorithm and were able to 
demonstrate a reasonable level of success. 
We should note that the genetic algorithm 
does take considerably more CPU time to 
complete the optimization of the neural 
network weights than the competing 
methodology. 
 
     The results reported here are 
demonstrated with only a single data set; 
therefore, they should be considered 
preliminary until they can be confirmed with 
other data sets of differing types and sizes. 
We do expect that with more experiments we 
will be able to generalize these results to other 
cases. 
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Figure 1.  The fraction correct (top), CSI (middle), and HSS (bottom) as obtained from five different 
initializations of conjugate gradient with H=2 (left) and H=4 (right). The horizontal lines are the 
corresponding scores from GA. 


