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1. INTRODUCTION  

Climate simulation and prediction, even

when using physically based models, gives rise to

a non-deterministic perspective of the manifold

states of the Earth’s climate.  This requires making

estimations through multiple realizations spanning

the entire annual cycle through many years and

locations.  Ensemble averaging in this situation,

unlike that in weather prediction, can lead to an

underestimation of the climate variability and

extreme behavior.  Yet it is often the more extreme

states that are of interest to the public and that

provide the greatest potential benefit by foreseeing

their onset.  This can be achieved by estimating

both the observed and model probability

distributions establishing whether the model can

represent observed extreme values and

determining whether a shift in the model ensemble

distribution suggests a likely threat of an extreme

event.  

For nearly every location throughout the

world, particularly in inhabited ones, precipitation is

an important climate variable.  W hile at some

locations precipitation is nearly normally distributed

on an annual mean basis, as averaging periods

become shorter, distributions are almost always

non-normal.  At many other locations precipitation

remains non-normally distributed even after

several years and may require several decades

before central limit theorem conditions become

realized.  As the distribution becomes different

from normal, the use of normally based statistical

methods will converge more slowly and may never

reach any usable level of significance even with

large ensembles.  Estimating distributions of

observed precipitation are further limited by having

only one realization. 

Two methods employed more frequently to

estimate distribution are Maximum Likelihood

Estimators (MLEs) and Bayesian estimators. 

MLEs still require a larger sample size (>100) than

is often available and Bayesian estimators work best

when the underlying distribution is close to the a

priori distribution.  Otherwise the convergence rate

will probably not exceed that of MLEs.  The newer

method of L-moment estimators (Hosking and

W allis, 1997, referred hereafter as HW ), makes it

possible to obtain reasonable estimates for sample

sizes as small as 20 without any assumed

distribution.

In this study two atmospheric general

circulation models (AGCMs) will be studied: COLA

V2.2.6 and NASA Goddard Space Flight Center

(GSFC) Seasonal-to-Interannuall Prediction Project

(NSIPP) and compared with gridded Climate

Anomaly Monitoring Station (Ropelewski et al., 1985)

data for two regions in two separate months: Europe

(30°N-70°N, 10°W -40°E) in December and South

Asia (5°N-35°N, 70°E-125°E) in July.  These were

selected to give an idea of seasonal precipitation

behavior in a month where the seasonal activity is

well represented throughout the region.  The

3 4distribution of two higher L-moments (J  and J ) as

an indication of the distribution function distribution

will be presented. 

2. ANALYSIS METHOD 

2.1 L-moments

L-moments are described briefly in von

Storch and Zwiers (1999) and in more detail in HW . 

Using the uniform distribution function as its

foundation and based on shifted Legendre

polynomials, each statistical L-moment is computed

linearly (hence the L) giving a more robust estimate

for a given amount of data than other methods.  This

method relies on sorting (ordering) the data by value. 

If the i’th rank value in a sorted sample vector of

i:nlength n is denoted by X  and E is the expected

value function, then the first four L-moments are

given by:

1 1:18 =   E(X )

2 2:2 1:28 =½E(X !X )

3 3:3 2:3 1:38 =aE(X !2X +X )

4 4:4 3:4 2:4 1:48 =¼E(X !X +X !X )

The estimates of these can be computed in a

straightforward manner using combinatorics found in

the above references.

The second moment is often scaled by the
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mean so that a coefficient of variability is

determined:

2 1L-CV=J=8 /8   

Higher moments are usually scaled by the 

second moment giving:

3 3 2J =8 /8

and

4 4 2J =8 /8

3 4Unlike standard moments, J  and J  are

constrained to be between !1 and +1 and further

4 3J  is constrained by J  to be no lower that !0.25. 

Because precipitation is non-negative, J is also

constrained to range from 0 to 1.

 

2.2 Modified Index-Flood Procedure 

The index-flood procedure detailed in HW

was designed for multiple stations or sites within a

sample region.  The procedure presented here is

modified for use with gridded data.  W ith gridded

data there is a possibility of some points having a

heterogenous distribution that in the original

procedure would be treated by shifting the sample

region boundaries.  As the heterogeneities cannot

be entirely removed from the gridded data, less

emphasis will be placed on achieving 

homogenous distribution estimates.  Since the

details of the procedure steps are quite lengthy,

only the changes to the procedure will be given.

In this procedure the sample region is

replaced with a moving overlay.  The overlay

consists of 9 grid points or boxes with a center

point and its 8 surrounding points.  Up to all 8

surrounding points are included with the center

point providing a better estimate of the higher L-

moments (>1) of the center point than single point

(called “at site” in HW ) calculations.  The center

point mean remains unchanged, thus retaining

some of the individual character of the center

point.  W hile points at further distance could also

be used, given the typical spatial distances in the

models and analysis used here and the greater

likelihood of decorrelation, including them seemed

harder to justify and would further complicate this

procedure.

As in HW , precipitation at each point is

viewed as a mixed distribution with exact zero

values excluded from analysis, but the probability

of zero estimated from the sample so that it is

included as part of the cumulative distribution

estimate.  From these data two screenings are

done: discordancy and heterogeneity.

2.2.1   Discordancy

Discordancy, D,  is based on a matrix of

3 4values for each point using J, J , and J  as a 3-

dimensional vector.  This was intended to screen

for suspect measurement data within the sample

region.  In this procedure no model data is

considered suspect in this regard and any observed

gridded data is assumed to have already be

screened for bad values.  This measure is retained,

but the center point is never allowed to be rejected

as being too discordant.  Instead a new simpler

Rmeasure is introduced, relative discordancy=D ,

3 4which is the vector distance between the (J, J , J ) of

the center point and each of the 8 surrounding

Rpoints.  The surrounding point with highest D  is

rejected and removed from further calculations

involving the center point whenever D becomes too

Rlarge.  D and D  are then recalculated based on the

remaining points.

2.2.2   Heterogeneity

From each of the remaining points, the L-

moments are calculated and average weighted by

the non-zero lengths to form a “regional” or overlay

average for the center point.  Heterogeneity, H,  is

calculated as in HW  based on a Monte Carlo

simulation of data having the same L-moments as

the center point overlay average but with mean 1.  H

is computed in three ways based on combinations of

the dispersion (mean squared difference) of the

3 4simulated J, J , and J  about their mean with

appropriate scaling factors.  W hen any of the three H

Rvalues becomes too large, the maximum D  point is

rejected as above and recalculation is also done.  

No more than 4 rejections are permitted. 

This prevents the matrix to compute D from

becoming singular and assures a robust if

heterogeneous distribution estimate.  The 5

remaining points are used however large D and H

remain, but the point is noted for further review.  At

this point in the procedure the estimation of the L-

moments for the center point is finished and the

selection of a suitable distribution function is done as

in HW .

3. ANALYZED DATA 

The Climate Anomaly Monitoring Station

(CAMS) precipitation data has been interpolated to

an R40 Gaussian grid (128x102) using an objective

analysis scheme (Doty, private communication). 

The data extends back several decades, but only a

more recent period of 55 years (1948-2002) has

been used.  This data is primarily over land only with

some islands included.  For comparison the model

data will be similarly focused.

The V2.2.6 COLA AGCM, a slight

modification of the model described in Schneider

(2002) was used in the Climate of the Twentieth

Century (C20C) (Folland and Kinter, 2002)

experiment with the 10 ensemble member results

saved from December 1948 through November



2002.  

The NSIPP 1 (Pegion, et al., 2000) model

was also used in the C20C experiment with 14

ensemble members, while starting in January

1902, also covered the same period as COLA

V2.2.6.

Both model results were interpolated to the

R40 grid of CAMS.  

4. RESULTS

Figures 1, 2 and 3 show the scatter plot

3 4 3 4 distribution of t  and t  (the estimates of J  and J )

at each point for CAMS, COLA and GSFC (NSIPP)

respectively for Europe in December.  For the

models each ensemble member is shown in a

different color.  For the NSIPP model only 10 of the

14 ensemble members are shown to aid

comparison.  In addition locations of some two-

parameter distributions are shown with large filled

circles and three-parameter distributions are drawn

as curves.  The two-parameter distributions are:

Color Letter Distribution

Yellow L Logistic

Orange U Uniform

Black G Gumbel

Blue N Normal

Purple E Exponential

The three-parameter distributions are:

Color Letters Distribution

Green OLB Overall Lower Bound of all

distributions

Yellow GLO Generalized Logistic

Orange GPA Generalized Pareto

Black GEV Generalized Extreme

Value

Blue GNO Generalized Normal

Purple PE3 Pearson type III (Gamma)

Details on the properties and formulas for these

and other distributions can be found in Reiss and

Thomas (2000).  

The CAMS values are clustered near the

GEV, GNO and PE3 curves with a centroid slightly

less L-skewed than the Gumbel distribution.  Few

points are close to the normal distribution, only 3

points show negative L-skewness and no points are

near the uniform distribution.  Most points fall below

the general logistic distribution, above the

generalized Pareto distribution and have less L-

skewness than the exponential distribution.  Those

that have higher L-skewness, tend to follow one of

the above distributions.  Points with large positive

skewness indicate a distribution with a few very large

values.  

It can be seen that COLA does not come

close to the CAMS centroid of the distribution and

tends to have substantial negative skewness at

several locations suggesting that the model seldom

attains large values since precipitation itself is never

negative.  It also has many points near normal. 

Values can also get close to the uniform distribution. 

Some values become very positively skewed and

don’t align as much with the above distributions.  The

clustering overall is not as tight as CAMS and can

reach unusual values more often, such as the

generalized Pareto distribution when the L-skewness

is small.  All these problems suggest difficulty in

representing the European rainfall realistically in the

model.

  The NSIPP has fewer negative skewness

points but can have large positive skewness values

like COLA and also gets closer to the uniform

distribution (the origin) than CAMS.  It is more tightly

clustered and has its centroid closer to that of

CAMS.  It thus seems to have fewer problems than

the COLA model.

 Figures 4, 5 and 6 show the scatter plot

3 4distribution of t  and t  at each point for CAMS,

COLA and GSFC (NSIPP) respectively for South

Asia in July.  The two- and three-parameter

distributions are shown as in figures 1, 2 and 3. 

Some model points were excluded due to fewer than

15 non-zero values or low mean (<0.125 mm/day)

values.  The CAMS data had no such points.

Here the CAMS points are less tightly

clustered but have close to the same centroid as

Europe.  More negative L-skewness values are

seen, and larger positive values are reached as well. 

The uniform distribution is generally avoided, and

there are few points near normal.  However the

generalized logistic is often exceeded above and

generalized Pareto is sometimes exceeded below. 

There still seems some preference for following near

the curves at higher L-skewness.

The COLA model is closer to CAMS for 

South Asia than for Europe but still has

disproportionately too many negatively skewed

points and is not quite as tightly clustered.  W hile the

generalized logistic and generalized Pareto curves

seem to be even less of a barrier, there is a



generally matching spread of the points as L-

skewness increases.  

The NSIPP model has more problems in

this region with far more negative L-skewness

values and fewer large positive values.  The

clustering is far tighter than CAMS and suggests

too little variability in comparison to  the CAMS

distribution.  Here representing realistic rainfall is

more of a problem.

5. CONCLUSIONS

This method of employing L-moments to

estimate the distribution of model precipitation and

comparing the model’s ability to realistically

represent extreme values seems promising as yet

another evaluation tool.  Certain areas, such as

deserts, where too little precipitation falls or is too

infrequent are unsuitable for this method. 

However, many areas will have enough usable

data to obtain an estimate of their behavior, and

these are likely to have many people with a need

for realistic predictions.
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