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1. INTRODUCTION 
 
During 2001, NOAA and NASA conducted 
the joint Hurricanes at Landfall (HAL) and 
CAMEX-IV.  The most comprehensive 
datasets obtained were during two 
consecutive days during Hurricane 
Humberto (Feuer et al., 2002).  During these 
two sets of missions, centered on nominal 
times of 0000 UTC 24 and 25 September, 
operational synoptic surveillance missions 
were conducted with the G-IV.  The 
dropwindsonde data gathered during these 
missions led to substantial track forecast 
improvements in both of the leading 
operational dynamical forecast models (AVN 
and GFDL) at the nominal times of the 
missions.  In addition to improving forecasts 
from these operational models, the data 
from the surveillance missions provided an 
opportunity to test an ensemble-based 
Kalman filter data assimilation technique.   
 
The Ensemble Transform Kalman Filter (ET 
KF) (Bishop et al., 2001) is currently used at 
the National Centers for Environmental 
Prediction (NCEP) to select flight tracks for 
dropwindsonde equipped weather 
reconnaissance aircraft in winter storms 
(Szunyogh et al., 2000, 2002, Majumdar et 
al. 2002), and is being tested in tropical 
cyclone surveillance flight track selection. In 
order to select target sites, the ET KF 
calculates an estimate of uncertainty of the 
model forecast.  The ET KF estimates error 
covariance matrices in terms of the outer 
product of a matrix containing transformed 
ensemble perturbations. The transformation 
coefficients are obtained by repeatedly 
solving the Kalman filter error statistics 
equations within the ensemble subspace 
(Bishop et al., 2001).  
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Data assimilation, the optimal blending of 
observations with a model forecast field to 
produce an analysis of the atmosphere, 
requires error statistics for both the 
observational data as well as the model first 
guess field.  The same error statistics used 
for targeting, which measure the uncertainty 
of the model forecast, can be applied to data 
assimilation.   
 
Ensemble-based error statistics have flow 
dependent characteristics, such as one-
point error correlation patterns that stretch 
out along fronts.  In contrast, the time-
invariant one-point error correlation patterns 
used for data assimilation at operational 
centers such as NCEP (Parrish and Derber, 
1992) and (until recently) the European 
Center for Medium range Weather 
Forecasting, ECMWF (Courtier et al., 1998, 
which was superceded by Rabier et al. 
2000) and those run by the National 
Aeronautic and Space Administration, NASA 
(Cohn et al., 1998) and by the U.S. Navy 
(Daley and Barker, 2001), are generally 
horizontally isotropic and temporally 
invariant.  Given that tropical cyclones are 
not systems with a discrete, isotropic 
structure, flow dependent error statistics 
have the potential to perform better than 
time-invariant, spatially isotropic error 
statistics.   
 
2. METHODS 
 
The Ensemble Kalman Filter (EnKF) is an 
approach to data assimilation that uses 
ensembles to determine the error statistics 
associated with a model first guess field.  
Approaches for ensemble-based data 
assimilation include those presented in 
Evensen (1994), Evensen and van Leeuwen 
(1996), Burgers et al. (1998), Houtekamer 
and Mitchell (1998), Anderson and 
Anderson (1999), Hamill and Snyder (2000), 
Keppenne (2000), Anderson(2001), Pham 
(2001), and Whitaker and Hamill (2002) and 
Mitchell et al. (2002). The ET KF (Bishop et 
al., 2001) uses the differences between 



 
 

ensemble members to calculate the 
correlations of errors as a covariance matrix, 
and then produces an eigenvector 
decomposition of the ensemble-based 
covariance matrix.   
 
As given in Cohn (1997), the minimum 
analysis error variance increment  

 
xa - xf

  = PfHT(HPfHT+R)-1(y-Hxf), (1) 
 
where y are the observations, xf is the first 
guess field, xa is the new analysis, H is the 
observation operator translating variables 
from observation to model space, R is the 
observation error covariance matrix 
providing the error statistics of the 
observational data, and Pf is the prediction 
error covariance matrix providing information 
about how errors of each analysis variable 
at each grid point correlate with all others.  
The innovation vector, (y-Hxf), is equal to 
the difference between the observation and 
the first guess at the observation locations.  
If observational errors are assumed to be 
uncorrelated, R is diagonal, with the 
diagonal elements equal to the error 
variance associated with each observation.  
Equation 1 is solved so that the analysis 
error variance is minimized. 
  
One approach to creating Pf commonly used 
in operational centers in 3D- and 4D-Var 
schemes is to produce a parameterized, 
time-invariant matrix in which the impact of 
each observation decays isotropically away 
from the observation location.  One example 
is given in Daley (1991, Eq. 4.3.21): 
 
f(r) = exp(ln[0.1](r/D)2),   (2) 
 
where r is the distance between the analysis 
and observation locations, and D is a 
correlation length scale at which the impact 
of the observation is 0.1 of the impact at the 
observation location.  This correlation 
function has been used in Bishop et al. 
(2001) and Etherton and Bishop (2004) to 
construct covariance matrices for use 
assimilating data into a simple barotropic 
vorticity model. 
 
An alternative formulation of the error 
covariance matrix associated with the model 
first guess field is an ensemble generated 
covariance matrix.  Using an EnKF, the 

matrix Pf is represented as the outer product 
of a matrix Z, where each column of Z is a 
perturbation from the ensemble mean: 
 
Pf = ZZT                                 (3) 
 
A third alternative for the prediction error 
covariance matrix is a hybrid scheme that 
approximates the forecast error covariance 
matrix Pf with a mix of parameterized 
covariances, Bf, such as given in Eq. 2, and 
flow dependent, ensemble-based 
covariances, Ff, such as that in Eq. 3.  The 
forecast error covariance matrix Pf from 
Hamill and Snyder (2000) is given by: 
 
Pf = (1-α)Ff +αBf,                (4) 
 
With α � equal to 1, Pf is Bf, the 3D-Var 
correlation matrix. With α between zero and 
one, Pf

 is a mixture of flow dependent and 
time invariant error statistics.  For a further 
discussion of ensemble-based versus 
isotropic covariance matrices, see Bishop et 
al. (2001). 
 
The first guess field xf, (equation 1) was the 
VICBAR ensemble mean forecast at the 
nominal observation time at 1 degree 
latitude/longitude resolution within a domain 
spanning from 5 to 45 degrees north, 105 to 
45 degrees west.  The value of D (equation 
2) is set so that the distance at which 
correlations decay to 0.1 of the value at the 
observing site is 5 degrees latitude.  To 
produce an increment to the first guess field, 
covariance matrices Pf and R were 
computed.  Since 0.5 ms-1 is the expected 
error of a dropwindsonde wind observation 
(Hock and Franklin 1999) the diagonal 
elements of R were set to 0.25 m2s-2. The 
average error of the first guess field was 
assumed to be 2 ms-1, so the diagonal 
elements of Bf for the 3D-Var technique 
were set to 4 m2s-2.  Ff was calculated taking 
the product of the matrix of VICBAR 
ensemble perturbations as per equation 3.  
The traces of the covariance matrices Bf 
and Ff are re-scaled using equation 5.  
Increments to the ensemble mean were 
calculated for alpha values of 0.0, 0.5, and 
1.0, a 3D-Var, hybrid, and ET KF increment.  
Adding the ensemble mean to each of these 
increments produced 3 distinct initial 
conditions for the VICBAR model.  These 



 
 

fields were truncated to a 2.5 degree 
resolution. 
 
3. RESULTS 
 
The assimilation of the dropwindsonde data 
at nominal time 0000 UTC 24 September 
illustrates the differences between 
ensemble-based and conventional data 
assimilation.  Figure 1a shows the ensemble 
mean 12-h forecast VICBAR DLM wind field 
valid at the nominal time.  This wind field 
serves as the first guess state of the 
atmosphere for the data assimilation.  Figure 
1b shows the vector difference between the 
DLM dropwindsonde observation and the 
first guess field at the observation sites.  The 
largest differences, or innovations, are to the 
north and east of Humberto.  Figures 1c and 
1d show that the largest increments to the 
first guess are also in this region.  However, 
the use of the different error statistics results 
in greatly different increments. 
 
A circulation center in the subtropical ridge 
is evident in the first guess field (Fig. 1a) 
near 32ºN 59ºW.  The 3D-Var data 
assimilation does not significantly modify 
this feature since it is far from observation 
locations (Figs. 1c, 1d).  The ensemble-
based scheme weakens this feature and 
moves it eastward.  Other important 
differences are seen in the 
anticyclonic/cyclonic pair to the southwest of 
Humberto, and over Florida.  These features 
combined to provide an improved VICBAR 
forecast than in the more conventional data 
assimilation (Fig. 2). 
 
4. CONCLUSIONS 
 
The data from the surveillance missions 
provided an opportunity to test an ensemble-
based Kalman filter data assimilation 
technique in a barotropic hurricane track 
forecast model, VICBAR, using a 41-
member modified bred mode ensemble 
forecasting system.  An isotropic 
assimilation scheme such as 3D-Var is only 
able to impact the initial conditions in a 
region surrounding each data point.  
However, the ETKF is able to make 
modifications based upon the unique “flow of 
the day” such that meaningful initial 
increments to the first guess field are 
created.  This has led to further 

improvements to track forecasts in the 
model than possible with currently 
operational data assimilation schemes. 
 
Clearly, further tests of both these targeting 
and data assimilation schemes must be 
made before any meaningful and statistically 
significant results may be found.  Such tests 
are currently being conducted, and may 
potentially be used in the upcoming 
NOAA/NASA experiment in the Eastern 
Pacific basin.  The current results suggest 
that the ETKF has promise as a targeting 
and data assimilation technique for tropical 
cyclones. 
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Figure 1: 
 

      
Figure 1.  The VICBAR DLM wind (a) ensemble 
mean and (b) innovations (differences between 
the observations and the first guess) for 00Z 24 
September 2001. The increments to the VICBAR 

DLM wind field first guess obtained using (c) 
isotropic and (d) ensemble-based error statistics 
at 00Z 24 September 2001. 
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Figure 2.  Track forecast errors for the 0000 UTC 
24 September 2001 VICBAR runs with the 
various data assimilation schemes.  Errors are in 
units of kilometers. 
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