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Abstract 

 
The Colorado Basin River Forecast Center (NOAA/NWS-CBRFC) is the office responsible for 
providing operational daily and weekly river forecasts and seasonal streamflow volumes for Lake 
Powell in the Upper Colorado River Basin (UCRB).  The Lake Powell forecast is extremely important 
to the USBR, States, Mexico and other water users.  During the past 15 years the April through July 
runoff into Lake Powell has experienced two protracted dry periods, 1988-1992 and 2000-2004.  
During the most recent drought, the lake level in Lake Powell has dropped to the lowest level since 
the lake was filled in 1980.  Users are asking for earlier than usual outlooks of streamflow. There is 
more emphasis being placed on creative ways of utilizing climate variability (forecasts and indices) in 
the forecast process.  More detailed analysis of the affects of starting watershed conditions is being 
investigated.  All of this provides interesting challenges for an operational forecast center.  The 
CBRFC utilizes two classes of models to provide outlooks and forecasts for seasonal volumes into 
Lake Powell.   One model uses multiple linear and non-linear regressions using various types of 
variables regressed against historical observed flow.  This model has been used since the late forties.  
The Ensemble Streamflow Prediction System, part of the NWS River Forecast System (NWSRFS) is 
the second model.  It incorporates a conceptual soil-moisture model, capabilities for pre-adjustment of 
input (precipitation and temperature ensembles) and post adjustment of output (streamflow) 
ensembles using climate forecasts and a variety of climate indices.  Several other techniques such as 
Holt-Winters Analysis and statistical analogs have also been investigated for early outlooks made in 
the late summer and early fall.  The paper will discuss the main ‘drivers’ for making an early season 
outlook and show how the NWSRFS ESP accounts for these drivers. An analysis of ESP reforecasts 
for Lake Powell is provided.  
 
The main conclusions are: 

(1) A skill level of 16% (over climatology) can be obtained for a November 1 outlook using the   
     NWSRFS Ensemble Streamflow Prediction System. 
(2) Initial watershed conditions have a significant impact on seasonal runoff volumes and  
     must be accounted for by a soil moisture accounting model.  
(3) The variability of seasonal volumes is higher in wetter periods than drier periods. 
(4) Post weighting of streamflow traces/volumes using climate indices show no increase in  
     skill in the UCRB.  It is suggested that the preferred method to incorporate climate  
     variability is to use the pre-adjustment technique of adjusting the atmospheric inputs  
     (ensembles of precipitation and temperature) rather than post weight the runoff traces  
     (which can be influenced by initial watershed conditions).  

 
 
1.0 Introduction 
 
Runoff resulting from a winter snowpack is the 
main supply of water in the intermountain 
west.  As population and water use increases 
water managers are relying more upon 
forecasts of seasonal streamflow volumes for 

planning and operations.  Water managers are 
not only expecting higher quality forecasts as 
the season progresses, but earlier ‘outlooks’ 
with increasing lead times. Research in 
climate variability, a better understanding of 
telleconnections and their affect on 
precipitation and runoff, and ways to account 
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for initial watershed conditions (e.g. soil 
moisture) is providing more information for 
water forecasters.  This is true when a strong 
ENSO pattern exists that could affect the 
winter/spring precipitation.  During these 
conditions it is expected that an ‘outlook’ for 
the upcoming runoff season be made in early 
Fall.    
 
The CBRFC has produced forecasts of 
seasonal ‘spring’ runoff volumes since 1947 
(jointly with the NRCS for some basins).  The 
first ‘official’ forecast for an upcoming spring 
runoff season has routinely been issued in 
early January, with subsequent updated 
forecasts issued in Feb, March, April, May and 
June.   These forecasts have historically 
consisted of the ‘most probable’ (50%) value 
along with statistical bounds at the 10% and 
90% level.  Since the 1998 ENSO water users 
have requested that ‘early-bird’ outlooks be 
issued prior to the ‘official’ January forecast.   
 
 
Fig 1 shows a time-line for an outlook, 
forecast, and target seasonal volume. 
 
2.0 Models and Techniques  
 
The CBRFC uses two main forecast models to 
produce outlooks and forecasts: (1) Statistical 
Multiple Linear (and Non Linear) Regression 
and (2) Ensemble Streamflow Prediction 
(ESP) which is a component of the NWSRFS. 
Other techniques such as statistical analogs 
and relationships, time series analysis 
investigating cycles, and neural networks 
using a variety of variables have been 
investigated.  In a recent internal investigation 
of model techniques available to the NWS it 
has been found that the NWSRFS ESP 
system on the average does as well or better 
than the other techniques mentioned above in 
producing early season outlooks (Brandon). 
 
This paper will focus on the NWSRFS ESP 
System.  It is the most complete operational 
model available to the CBRFC and accounts 
for the ‘drivers’ of a seasonal outlook. 
 

 
Fig. 1: Time-Line For Outlooks, Forecasts And 
Seasonal Volumes 
 
3.0 Drivers For A Seasonal Outlook 
 
There are four main components that ‘drive’ 
an early seasonal outlook.  A water-supply 
forecast system at a minimum should possess 
capabilities to model or account for these 
drivers. There is uncertainty in all of these 
drivers. Figs 1 and 2 
 

 
Fig. 2:  Four Drivers For A Seasonal Outlook 
 
A general discussion of the drivers, an 
introduction to the NWSRFS ESP System and 
a discussion of how the ESP system accounts 
for each of the drivers follow.  
 
3.1 Historical Observations/Climatology 
 
An analysis and understanding of the historical 
observations when making outlooks should 
not be underestimated.  The properties of the 
historical distribution provide a useful context, 
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especially when making outlooks/forecasts 
many months into the future.  The distribution 
of observations provides an important 
statistical driver.  In a tongue and cheek 
description, the historical distribution is the 
trivial, ‘forecast for dummies’.  If one new 
nothing else besides the historical distribution 
it would be a good first guess of what could 
happen in the future.  Besides providing a 
context to a forecast, it provides the base 
‘trivial forecast’ to ‘beat’ (add skill). If you can’t 
improve over the historical distribution 
(climatology), your model has no skill. 
 
3.2 Initial Conditions Of The Watershed 
 
There are several initial conditions that must 
be accounted for.  They are the 
antecedent/current flow, the state of the soil 
moisture, snowpack states, and current 
reservoir information (if regulated forecasts 
are required). 
 
 
 
3.2.1 Antecedent Flow 
 
It has been shown that there is some 
correlation between the antecedent 
streamflow (Fall in this case) and the seasonal 
(spring-summer) volume.  There is a rational 
reason for this correlation.  The fall flow is an 
indicator of the baseflow carryover in a basin.  
This is especially true in larger basins.  The 
water supply forecasters in the CBRFC have 
noticed this correlation in other basins as well.  
If snowmelt basins in the Upper Colorado 
River Basin (UCRB) begin the water year with 
higher (lower) baseflows, there is a tendency 
to have higher (lower) runoff in the spring.  
This driver can be considered as an indicator 
of persistence: if high (or low) baseflow 
already exist therefore it will persist into the 
future.  It will set the starting point (initial 
condition) and can condition the future 
forecast. 
 
3.2.2 Soil Moisture 
 
The initial state of soil moisture represents 
how wet or dry the upper and lower soil 

conditions are in each sub-basin.  From an 
intuitive sense it is easy to reason that if soil 
moisture at the start of the water year is high 
(low) there is a greater chance that the 
subsequent runoff will be high (low). 
 
A historical way of handling soil moisture in 
typical regression models was to include a 
variable that represented late summer and/or 
fall precipitation.  Although this method has 
some merit, it has problems reflecting long 
protracted wet or dry periods where deficits 
(surpluses) can build up over several years. 
 
Another problem in accounting and 
understanding the physical connection of 
spring runoff to antecedent soil moisture is 
that there is no spatially widespread network 
of soil moisture observing sensors (over the 
UCRB).  The NRCS has begun to install a 
limited amount of soil moisture sensors 
collocated with SNOTEL sites.  This network 
shows promise, but a historical record will be 
needed for a more thorough analysis can be 
made. 
 
Another way of accounting for soil moisture is 
to utilize a soil-moisture accounting model.  
Various soil moisture models exist in the 
literature and have been used in river and 
water forecast systems.  The soil accounting 
model should attempt to account for moisture 
in the topsoil mantel as well as lower zone 
moisture which reflect in the longer ‘carryover’ 
between years.  This will be discussed in 
detail in following sections. 
 
3.2.3 Snow States/Reservoir Status 
 
For early season outlooks significant 
snowpacks have usually not begun to form 
and are not a large factor.  They become more 
important as the winter season progresses 
and must be accounted for in later period 
forecasts. 
 
Initial reservoir conditions are only needed if 
outlooks/forecasts are for ‘regulated’ flow.   
This paper and application assumes ‘un-
regulated flow’. 
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3.3 Future Weather/Climate Variability 
 
The third driver is the most important of all, 
and if you can get it ‘right’ your skill will greatly 
improve.  Unfortunately it is the most difficult 
to ‘get right’.  This driver reflects ‘what’ the 
future weather will be in the upcoming water 
year (introducing climate variability).  It has a 
definite bearing on the precipitation, snowpack 
and melt response.   

 
Even though there can be a large error in long 
range climate/weather forecasting, increases 
in skill (over climatology) have been shown in 
certain parts of the country for certain 
atmospheric/oceanic states and should be 
accounted for in a forecast system.  Global 
climate forecast models also show some 
promise for introducing climate variability and 
will increase in use in the decades to come. 

 
Various indices implying telleconnections have 
been examined by many researchers.  Some 
of the more widely used indices have been the 
SOI, MEI, Nino3.4 SST, PDO and the ONI.  
The historical way of handling climate 
variability in a typical regression model is to 
include a ‘variable’ that represented the ENSO 
state of the equatorial pacific (or other areas).   
 
The NWSRFS-ESP model uses various pre 
and post weighting techniques of the input 
and/or output traces.  These pre and post 
weights are obtained from the climate indices. 
ESP can ingest ensembles of meteorological 
inputs produced by any method (e.g. statistical 
resampling. Climate Forecast Systems).  The 
pre-adjustment technique weights (or adjusts) 
the meteorological inputs before the model is 
executed.  The post-adjustment technique first 
executes the model, and then weights (or 
adjusts) the output flow traces. 
 
3.4 Model Bias Correction 
 
Very few conceptual models are free from 
bias.  Even if the future boundary conditions, 
such as quantitative precipitation and 
temperature forecasts, are known, hydrologic 
prediction is still subject to errors due to 
uncertainties in the initial conditions, observed 

boundary conditions, and model errors. A 
more reliable forecast may be obtained if the 
forecast can be corrected for any systematic 
bias that may exist in the uncertainties. It 
could be argued whether this should be 
considered a ‘driver’, but the forecast system 
should be able to examine for bias and be 
capable of adjusting the output.  This is 
especially true for probabilistic forecast 
distributions where bias may exist in different 
part of the distribution.  
 
4.0 Introduction To The NWSRFS ESP 
System 
 
The NWSRFS ESP system is described in 
some detail in other publications.  A short 
primer may be useful to understand how it 
handles the ‘drivers’. 
The NWSRFS consists of three 
interconnected components. 

(1)  Operational Forecast System  
(2)  Calibration System  
(3)  Ensemble Streamflow Prediction 
System.  

 
The NWSRFS system allows a forecaster to 
produce streamflow forecasts in a time scale 
from hours to years.   A main point is that all 
components are ‘linked’ together through 
calibration so that compatibility is retained, 
e.g., between initial conditions or states of soil 
moisture, snow, and flow over the spatial and 
temporal domain.   
 
The ESP system is the component, which 
provides the capability of making long-range 
probabilistic forecasts of streamflow.  ESP 
uses conceptual hydrologic/hydraulic models 
to forecast future streamflow using the current 
soil moisture, flow, and reservoir conditions 
with historical meteorological data (or data 
generated from other techniques).  The ESP 
procedure assumes that meteorological 
events that occurred in the past are 
representative of events that may occur in the 
future.  Each year of historical meteorological 
data is assumed to be a possible 
representation of the future and is used to 
simulate a streamflow trace.  The simulated 
streamflow traces can be analyzed for a 
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number of variables for a period in the future.  
ESP produces a probabilistic forecast for each 
variable and period of record. There are 
possible variations available in ESP to account 
for climate variability and future weather using 
the pre or post adjustment techniques.  See 
Fig’s 3,4,5,6. 
 
There are two key points:  (1)  simulated flows 
are ‘conditioned’ by the initial state variables, 
including the antecedent flow and soil-
moisture conditions,  (2) the parameters used 
in the forecast model are the same ones used 
in the calibration system to produce the 
simulated spaghetti plots (which was 
calibrated using the same set of historical 
years). 
 
 
 

 
Fig. 3:  Steps In ESP Trace Generation 
 
 
 

 
Fig. 4: Components of ESP Analysis 

 

 
Fig. 5:  Making the Traces Using ESP 
 
 
 

 
Fig. 6: Analyzing The Trace Window From 
ESP 
 
 
 
 
 
 
5.0 How ESP Accounts For the Drivers  
      An Example Using Lake Powell  
 
5.1 Historical Observations/Climatology 
 
ESP ‘by its nature’ includes historical 
climatology by using historical meteorological 
inputs both in calibration and forecasting.   
The hydrologic models within the NWSRFS 
OFS and ESP are calibrated with historical 
temperature and precipitation.  Thus, it will 
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reflect realistic historical patterns.  Second, 
when ESP is run the meteorological inputs are 
historical representations of the past.  This is 
the case even if the inputs are weighted or 
produced from a resampling technique.  Even 
though the forecast distributions may be a 
result of pre-adjusted inputs or post adjusted 
outputs (using weighting techniques), they will 
still ‘reflect’ characteristics of the historical 
distributions.  The last PDF graph in Appendix 
A shows the distribution of historical observed 
APR-JUL Volumes (unregulated) into Lake 
Powell for 1977-2002.  It is you first ‘best 
guess for a forecast’ if you knew nothing else. 
 
5.2 Initial Conditions Of The Watershed 
 
The two most important initial watershed 
conditions are the antecedent flow and the soil 
moisture states. 
 
5.2.1 Antecedent Flow 
 
The antecedent flow is simply the observed 
flow in the river when ESP is executed.  A 
correlation of 0.56 exists between average 
monthly streamflow in October and 
subsequent spring runoff volume into Lake 
Powell (Fig 7).  Note that there exists 
significant variability when the October flows 
are in the lower tercile. 
 
 

  
Fig. 7:  Correlation Plot Between October 
Streamflow and Seasonal Volume Into Lake 
Powell 
 

Figure 8 shows the average October flow, 
prior to the beginning of the water year for 
historical years.  Note the va riability of flows 
from slightly over 200,000 AF (Acre-Feet) to 
over one million AF.  This will have an affect 
on the starting point for ESP.  It is indicative 
and usually relates to the overall soil moisture 
carryover of the basin. 
 

 
Fig. 8:  Historical Plot of October Volumetric 
Flow Entering Lake Powell 
 
5.2.2 Soil Moisture 
 
ESP has the capability to use one of two types 
of continuous conceptual soil-moisture 
accounting models: (1) Sacramento Soil 
Moisture Accounting Model (SAC-SMA used 
by most NWS River Forecast Centers) and (2) 
the Continuous API model.  The discussion in 
this paper uses the SAC-SMA.    
 
The SAC-SMA has been well documented in 
other resources. It is a conceptual ‘tank’ model 
that accounts for the upper zone soil mantel 
as well as the lower zones.  It is a non-linear 
response model with infiltration and 
percolation dependent upon the current 
amount of the water in all of the ‘tanks’.  
Evaportranspiration is also accounted for.  The 
size of the ‘tanks’, percolation rates, withdraw 
rates, and impervious areas are determined by 
the calibration component of the NWSRFS.  
Two schematics of the SAC-SMA are shown 
in Figs. 9,10. 
 
(Figs. 9, 10 Courtesy of Riverside Technology, 
INC.) 
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Fig. 9:  Schematic Diagram of the SAC-SMA 

 
Fig. 10:  More Detailed Flowchart of SAC-SMA 
 
The five tanks in the SAC-SMA are: 
Upper Zone Tension  
Upper Zone Free  
Lower Zone Tension  
Lower Zone Supplemental 
Lower Zone Primary 
 
At any time step the contents of these tanks 
provide an indication of the ‘state’ of the soil 
moisture.  The ‘upper tanks’ mimic the first 
couple of inches in the soil mantel.  The ‘lower 
tanks’ represent deeper areas, accounting for 
basin recharge, and longer term supplemental 
and base flow.  The interaction between 
available water at the surface, infiltration, 
percolation, evaporation, and movement of 
water between tanks is complicated.  The 
accuracy of the physical process is directly 
related to the quality of the calibration and 
parameterization. 
 

The CBRFC recently developed a daily history 
for that past 30 years of all five tanks for many 
sub-basins in the UCRB.  From this history, 
variability and averages were determined and 
analyzed.  A total basin ‘virtual’ soil moisture 
index was developed that is simply the 
summation of the contents of all of the tanks at 
a daily time steps.  By comparing the index for 
each day and/or month to the averages and 
standard deviation one can deduce a fairly 
strong quantitative representation of the state 
of the soil moisture, especially as an 
antecedent condition at the start of the water 
year.   
 
It is not the purpose of this paper to provide 
intricate details on the workings of the SAC-
SMA model.   It is useful to present a few 
graphs to show how ESP interacts with the 
SAC-SMA and how soil moisture surplus and 
deficits may affect the ESP forecasts.  These 
graphs follow. 
 
Fig.11 shows a correlation plot between the 
total a soil moisture index in the UCRB 
(average of 8 sub-basins) in late October and 
the spring runoff volume.   
 

 
 
Fig. 11:  Correlation Plot Between the SAC-
SMA Basin Index and Seasonal Volume 
 
To show how the SAC-SMA reflects the soil 
infiltration process several plots of soil 
moisture are: one in the northern part of the 
basin (Green River @ Warren Bridge, WY) 
and one in the southern basin (San Juan River 
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@ Pagosa Springs, CO).   Figures 12 and 13 
provide plots of the total soil moisture (sum of 
all five tanks) for three different years:  
 
1984 wettest in recent history,  
2004 recent past year  
2005 current year  
 
The black line represents the average soil 
moisture state for each day (26 years of 
record).  The ‘Max’ line at the top is the 
theoretical maximum that the total of all tanks 
together could hold (however it will never 
reach this level do to the way the model 
works).  The black arrow located just after 
March points to rapid rise that occurred in 
1984.  This reflects the rapid infiltration of 
water that occurred during one of the warmest 
March’s on record.  Note the 2005 (short blue 
line) at Pagosa Springs.  It is higher than last 
year at this time and reflects the high 
precipitation and recharge that occurred in 
October 2005 (Water Year) over the San Juan 
Basin. 
 
 

 
Fig. 12 

 
Fig.  13 
Total Soil Moisture from the SAC-SMA for 
Warren Bridge and Pagosa Springs for 
Selected Years 
 
The graphs of total soil moisture index provide 
an overall current ‘state’ of the basin in relation 
to soil moisture   It is interesting and useful to 
examine the components of the total index 
(i.e., contents of each of the five tanks).  This 
is done for the two basins in Figs. 14 and 15.   
 
The two graphs show the model states of each 
of the five ‘tanks’ for 1984 as the year 
progresses on a daily time step.  Notice the 
relative size of each tank, where the lower 
tanks are sized larger and hold more than 
those in the upper area.  The upper zone free 
water does not usually come into play until the 
peak of the melt season, as is shown in the 
graphs in April-June.  There is basin recharge 
in the lower zone tension even from the start 
of the water year at Warren Bridge.   The 
lower zone tension dramatically recharges 
beginning in May when the melt accelerates. 
The lower zone primary line shows a decrease 
from October to April indicating some withdraw 
(although water can still be percolating into 
this tank).   
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Fig. 14   SAC-SMA Components for 1984 for 
the Green River @ Warren Bridge, WY 
 
 
 
 

 
Fig. 15: SAC-SMA Components for 1984 for 
the San Juan @ Pagosa Springs, CO 
 
 
 
 
The soil moisture surplus and deficits for both 
basins are shown in Figs: 16-19.  The 
surplus/deficit values are measured from 
either side of the average for the month.  
There are two plots for each site.  One graph 
is detailed and shows values for each month.  
The second graph shows only the 
surplus/deficit at the beginning of the water 
year (October).  The wet (surplus) and dry 
(deficit) periods are clearly shown.  These 
watershed conditions will affect the runoff and 
the forecasts from ESP. 

 
Fig 16,17 Soil Moisture Surplus/Deficits on A 
Monthly and Yearly Scale (Each October) For 
Warren Bridge 
 

 
Fig 18, 19 Soil Moisture Surplus/Deficits on A 
Monthly and Yearly Scale (Each October) For 
Pagosa Springs 
 
Note the wet periods in 1983-1988 where the 
surpluses continue from year to year.  The 
recent drought also stands out from 2001 to 
2004, especially for Pagosa Springs where the 
largest deficit for all years is indicated.    
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The starting watershed conditions can have a 
significant affect on the seasonal runoff.  It is 
not as simple to assume that greater (lesser) 
precipitation always means more (less) runoff 
in a basin.  To access and demonstrate this, a 
sensitivity analysis for the UCRB was done.   
 
Using ESP, 26 sets of initial watershed 
conditions for November 1 were saved (these 
are called carryover dates/states).  The 
meteorological ensembles for a single year 
were then run for each ‘carryover’ date/state.  
This produced a distribution of flow volumes 
for each carryover state using the same 
precipitation and temperature ensembles as 
input.  This is in effect a reverse process of 
ESP where you run many inputs for a single 
carryover state.  Figs. 20, 21 and 22 show the 
results of this analysis.  The ‘set numbers’ in 
the graphs represent the lowest average 
precipitation over the UCRB to the highest 
average precipitation.  For example, set 
number one represents the lowest 
precipitation year and the subsequent flows 
that would occur with the 26 varying initial 
watershed conditions.  Set 26 represents the 
same but for the wettest year over the basin.  
Note that the difference in the range of 
potential flows can be as much as 5 million 
AF.  What this indicates is that even if you 
know the precipitation and temperature inputs, 
you must account for initial watershed 
conditions.  Another result is that the variability 
(Standard Deviation Fig 22) of flow increases 
in the wetter years over that of the dryer years. 
A finding for water supply forecasters is that 
once you get into the wetter years, the 
variability of runoff increases and there can be 
more error in the forecasts.  Temperature 
regimes will also affect the runoff, but for this 
study they were not explicitly examined (a 
future study).  
 

R a n g e  O f  S i m u l a t e d  F l o w  F o r  D i f f e r e n t  S t a r t i n g  

Watershed  Cond i t ions  Us ing  26  Se ts  o f  Meteoro log ica l  

I n p u t s  F r o m  L o w e r  A v e r a g e  B a s i n  P r e c i p i t a t i o n  ( s e t  1 )  t o  

H i g h e r  ( s e t  2 6 )
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Standard Deviation of the Flows For 
Different Starting Watershed Conditions
(See Corresponding Graph of Ranges)
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Fig 22  See Title and Text 
5.2.3 Future Weather/Climate Variability 
 
ESP provides two flexible methods for 
incorporating future weather scenarios.  They 
are called the ‘CPC Pre-Adjustment 
Technique’ and the ‘Post Weighting 
Technique’.  They revolve around creatively 
weighting the historical meteorological inputs 
in the pre-adjustment technique and weighting 
the output flow traces for the post technique.  
A third option is for the user to provide custom  
input ensembles of meteorological variables 
from resampling techniques, statistical 
weather generators, and numerical models.   
 
In the CPC pre-adjustment technique historical 
mean-areal precipitation and temperature time 
series are adjusted relative to current 
meteorological forecasts/climate outlooks 
issued by the Climate Analysis Center 
(NOAA_CPC) before they are used as an 
input.  The adjustment is based on the 
comparison of coinciding marginal 
exceedence probabilities of historical records 

and weather forecasts at spatial scales 
corresponding to weather forecast scales 
(Internal paper-J. Schaake and S. Perica, 
NWS-Office of Hydrology).  
 
The post adjustment technique is simply a 
mechanism for a user to apply ‘weights’ to 
each year of the output flow traces.  The 
weights can be obtained in a variety of 
methods.   Werner/Brandon developed a 
distance weighting technique that can use any 
climate index.  It optimizes on the number of 
years to weight, as well as what weights to 
apply to the remaining years.  Another method 
would be to use composites where you would 
weight, e.g. ESNO years more than others.    
 
These types of techniques only have 
relevance when a significant ‘signal’ or 
relationship exists between the ocean-
atmospheric state in the late summer/fall and 
winter precipitation.  Unfortunately, for the 
UCRB this signal is difficult to ‘tune in’.  
Bandon previously showed that improvements 
in forecasting seasonal forecasts using SOI 
and MEI as climate variables were significant 
in the Green and San Juan in the UCRB and 
many basins in the Lower Colorado (below 
Lake Meade).  The middle area of the UCRB 
exhibits no clear ESNO signal (although 
Tootle/Piechota has suggested that there is 
some correlation to SSTs in the northern 
Pacific adjacent to the western U.S.). 
 
Figure 23 shows that the greatest percentage 
of wet El Nino winters occur in southern and 
western Arizona, whereas the greatest 
percentages of dry El Nino winters occur in the 
northern UCRB.  

Southern Arizona occurs about twice as often 
as dry winters, in sharp contrast with the 
northern UCRB.   
 
Fig 24 shows ‘composites’ and indicates shifts 
in the distribution of average winter 
precipitation in five sub-basins.  The La Nina 
case leans toward wetter than average in the 
Green and White-Yampa.  It shows dry 
conditions in the San Juan.  The El Nino case 
indicates dry/neutral for the Green, White 
Yampa, and Upper Colorado and to some  

As an example of using a climate index Fig 25 
shows a very weak correlation between the 
SOI in October and spring runoff in the UCRB. 
 



 12 

 
Fig. 23: Ratio of Wet to Dry El Nino Events 

 
Fig. 24: Composites for LaNina and ElNino 
Cases 

 
Fig. 25: Correlation between SOI in October 
and Seasonal Volume 
 
When you consider the entire UCRB the 
signals are mixed at best.  They are reversed 

from the upper area (Green) to the lower area 
(San Juan), and are non-existent in between.   
 
5.2.4 Model Bias Correction 
 
The ESP system indicated a bias in over 
simulating at almost all probability levels.  The 
correction was in the 5-10 % range. 
 
 
6.0 ESP – Reforecasts/Validation 
 
The ESP Verification Software and local 
verification software written at the CBRFC 
allow ESP to be initialized, executed, and 
provide simulations (forecasts) in ‘reforecast 
mode.’  Reforecast mode is also known as 
‘Jackknifing’ and ‘Cross Validation’. This 
allows a user to reconstruct what the initial 
conditions were (e.g. soil moisture conditions 
in the model) at any date, and to produce 
spaghetti plots of flow conditioned by the 
starting conditions.  Although these are not 
and cannot exactly duplicate what forecast 
would have been issued it does provide 
valuable information on how the model 
performs and sensitivity analysis on various 
drivers, input and output weighting, etc. 
 
6.1  Reforecasts - Beginning November 1 
 
The ESP verification system was initialized to 
save the carryover model states for every 
November 1, 1977 to 2002.  ESP was then run 
for every year using the precipitation and 
temperature traces from all other years 
(except the year that was being forecast).  The 
outflow traces were weighted using the post-
adjustment technique, using the August-
September-October ONI as an index.  The 
November or later indices were not used since 
they would not be available at forecast time. 
 
6.1.1 Reforecasts – Results 
 
The UCRB is a complex suite of many sub-
basins.  It consists of 184 separate basins, 
most being divided into three watershed areas 
based on elevation bands.  This is required 
since many of the basins have different 
climatic regimes at different elevations.    
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All of the basins have been calibrated using a 
similar methodology and approach.   The 
UCRB is set up to run in either ‘regulated’ or 
‘non-regulated’ mode.  Seasonal 
outlooks/forecasts are usually made for un-
regulated (near natural flow) mode.  The 
forecast is for the natural yield of the basin.  
  
The probability distributions for each year are 
shown in the ‘green’ bar graphs in Appendix A.  
The observed APR-JUL volume is plotted as a 
horizontal blue line.  All of the graphs are 
adjusted and scaled so that comparisons can 
easily be made between graphs.  If you 
consider only the most probable (50%) value 
of the distribution as a representative forecast 
of the distribution, and compare the RMSE 
with those of a climatological forecast, you 
would improve the forecast (skill) by 16% for 
the forecast period 1980-2002 (Fig. 27).  It is 
interesting to note the rapid increase in skill 
between a November 1 and December 1 
forecast indicating that the snowpack is 
showing its influence.  The error bounds are 
still quite high for an early season outlook (3.6 
MAF in Fig. 28 for Nov).  By April the errors 
improve, but are still around 2 MAF.  The light 
blue bars are statistics for the official 
published forecasts.  The ESP reforecasts 
show improvement over these, however it 
should be noted that ‘reforecasts’ and ‘real 
forecasts’ do not come from the same 
‘population’, and comparisons can be 
misleading.   
A plot of the observed seasonal volumes and 
the most probable value (50%) from the ESP 
reforecasts is in Fig.26.  ESP captures some 
of the trends, but the errors are still large 
(since it is early in the season).  
 
 

 

Fig. 26:  Most Probable Forecast from ESP 
Made on November 1 and Observed Seasonal 
Volume 
 

 
Fig. 27:  Skill (Over Climatology) of ESP 
Outlooks/Forecasts for the Most Probable 
 

 
Fig. 28:  RMSE (Forecast – Observed) of ESP  
 
A simple discrimination analysis showed that 
when low flows (lower tercile) were observed, 
that the ESP forecasts were about 20% better  
than climatology.  When high flows were 
observed (upper tercile) ESP forecasts were 
about 15% better than climatology.  A simple 
reliability analysis showed that when forecasts 
were made above average flow that ESP was 
about 19% better than climatology.  When 
forecasts were made below average forecasts 
were only 8% better than average. 
 
At the time of this study, the only method 
available in the ‘reforecast mode’ for 
accounting climate variability was the post 
adjustment technique.  Various attempts were 
made using ONI’s, SOI, SSTs and MEIs that 
were available before November.   
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No significant skill was detected when 
considering the entire basin.   When analyzing 
the Green by itself a 15% improvement was 
noted, depending upon the weighting scheme 
used. 
 
A grid of information used in the study is 
shown in Appendix C. 
 
7.0 Future Study 
 
Future studies include:  
(1) Analyzing affects of temperature in relation  
     to initial watershed conditions, precipitation, 
    and variability in runoff. 
(2) Incorporating and analyzing pre- 
     adjustment techniques in the reforecast  
     mode 
(3) Incorporating meteorological ensembles   
    generated from the Climate Forecast   
    System (CFS) 
(4) Analyzing other basins  
(5) More in-depth understanding of the initial  
     watershed conditions, especially the soil  
     moisture model states. 
(6) Performing more rigorous verification using  
    Rank Probability Skill Scores and analyzing  
    the entire distribution (rather than the most  
    probable). 
 
 
 
8.0 Conclusions 
 
Early season outlooks beginning in 
October/November for a basin as complicated 
and diverse as the UCRB show some but 
small skill over climatology.  Outlooks for sub-
basins within the UCRB showed improve skill, 
but large errors still exist.  If you use a model 
that attempts to account for initial watershed 

conditions, such as the NWSRFS Ensemble 
Streamflow Prediction System you can 
improve the skill to 16% over climatology.  The 
ESP forecast for Dec 1 jumps to just over 
40%, indicating the snowpack is beginning to 
influence the process. The RMSE for an ESP 
outlook made on November 1 was about 3.6 
MAF.  By April 1 it drops to 2 MAF.  A 
sensitivity analysis of initial watershed 
conditions indicated that the affect on 
seasonal runoff can be large.  Simulated 
seasonal flows ‘could’ theoretically range 
between 2-6 million AF depending upon initial 
watershed conditions and subjected to the 
same meteorological inputs.   Post adjustment 
techniques to account for climate variability 
over the entire UCRB showed no appreciable 
skill.  It is suggested that any skill that could 
be obtained in post-weighting flows is masked 
by the variability caused by the initial 
watershed states.  The pre-adjustment on the 
precipitation and temperature inputs would be 
the suggested method to incorporate climate 
signals/variability.  The model bias correction 
for the UCRB is in the range of 5-10%.   
Another result is that the variability (Standard 
Deviation Fig. 22) of flow increases in the 
wetter years over that of the dryer years. 
When years are wetter, the variability of runoff 
increases and there can be more error in the 
forecasts. 
 
 
 
Note: The volumetric flows used in this study 
and for operational ESP forecasts are 
adjusted (from observed flows) to estimate un-
regulated (more like natural flows and yields).  
These adjustments have been coordinated 
with the USBR.
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Appendix A 
 
 
Probability Density Plots Of Reforecasts For April-Jul Volume Inflow to Lake Powell 
Forecasts are Made on November 1 and Reflect Nov 1 Watershed Conditions 
Volumes are for Unregulated-Natural Flow (Adjustments Coordinated with the USBR) 
Horizontal Blue Bars are Observed 
 

Credit: Statistical Package: JMP was developed by SAS Institute Inc., Cary, NC. JMP is not a part of 
the SAS System, though portions of JMP were adapted from routines in the SAS System, particularly 
for linear algebra and probability calculations. Version 1 of JMP went into production in October 1989.  

 
 

 
 
 
Keys: 
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Appendix A - Continued 
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Appendix A - Continued 
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Appendix B 
 
Information Grid For Lake Powell – Sorted On Lowest To Highest Observed (Constructed) Flow 
Basin Precipitation Is For the Upper Colorado above Lake Powell 
Initial Watershed State Is For November 1 Prior to Runoff Season 
ONI Indices (Oceanic Nino Index) 
     ASO-ONI – August-September-October 
     SON-ONI – September-October-November 
     Source: www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.html 
Observed Apr-Jul Flow – Unregulated/Natural Flow Constructed From Coordinated Adjustments  
                                        Between the NWS and USBR 
Initial Watershed States Terciles – Obtained From Reforecasts/Analysis of ESP Runs 
 
 

Obs Apr-
Jul Vol 

Obs Apr-
Jul Flow 

Rank 
Obs Apr-Jul 
Vol Tercile Year 

ASO-
ONI 

ASO-ONI 
State 

SON-
ONI 

SON-ONI 
State 

Average 
Basin 
Precip 

Dec-Apr 

Average 
Basin 
Precip 
Tercile 

Average 
Basin 
Precip 
Rank 

Initial Watershed State 
 Tercile 

1115 1 Lower 2002 0 N -0.1 N 3.50 Lower 2 Lower 

1286 2 Lower 1977 0.5 W 0.7 W 3.08 Lower 1 Lower 

3057 3 Lower 1981 -0.1 N 0 N 3.80 Lower 3 Mid 

3227 4 Lower 1990 -0.3 N -0.3 N 5.25 Lower 18 Lower 

3273 5 Lower 1963 -0.4 N -0.6 C 4.96 Lower 13 Unknown 

3289 6 Lower 1954 0.4 N 0.4 N 4.26 Lower 5 Unknown 

3523 7 Lower 1989 -1.3 C -1.6 C- 5.12 Lower 17 Lower 

3677 8 Lower 1961 -0.1 N -0.2 N 5.65 Mid 26 Unknown 

3767 9 Lower 1994 0.4 N 0.3 N 4.96 Lower 14 Upper 

3917 10 Lower 2003 1.1 W 1.3 W 5.36 Mid 21 Lower 

4063 11 Lower 1959 0 N 0 N 4.91 Lower 11 Unknown 

4202 12 Lower 1992 0.8 W 1 W 4.62 Lower 7 Lower 

4300 13 Lower 2001 -0.4 N -0.5 C 4.89 Lower 10 Mid 

4345 14 Lower 1955 -1.1 C -1.1 C 4.54 Lower 6 Unknown 

4367 15 Lower 2000 -1 N -1.2 C 5.79 Mid 28 Lower 

4566 16 Lower 1988 1.6 W+ 1.5 W+ 5.29 Mid 20 Lower 

4711 17 Lower 1966 1.4 W 1.5 W+ 4.22 Lower 4 Unknown 

5158 18 Lower 1991 0.3 N 0.3 N 5.08 Lower 16 Mid 

5296 19 Lower 1976 -1.6 C- -1.6 C- 4.91 Lower 12 Lower 

5493 20 Mid 1972 -0.9 C -0.9 C 4.81 Lower 9 Unknown 

5505 21 Mid 1964 0.8 W 0.9 W 5.05 Lower 15 Unknown 

5518 22 Mid 1953 -0.1 N -0.2 N 5.40 Mid 22 Unknown 

5930 23 Mid 1967 -0.2 N -0.3 N 5.52 Mid 24 Unknown 

6060 24 Mid 1960 -0.4 N -0.4 N 5.88 Mid 30 Unknown 

6215 25 Mid 1951 -0.8 C -0.8 C 5.96 Mid 34 Unknown 

6239 26 Mid 1956 -1.5 C- -1.8 C- 6.44 Upper 41 Unknown 

6914 27 Mid 1974 -1.4 C -1.7 C- 6.28 Upper 38 Unknown 

7083 28 Mid 1968 -0.4 N -0.5 C 6.14 Mid 36 Unknown 

7234 29 Mid 1996 -0.5 C -0.6 C 6.62 Upper 43 Upper 
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7337 30 Mid 1950 -0.2 N 0 N 5.89 Mid 31 Unknown 

7757 31 Mid 1987 0.7 W 0.9 W 4.68 Lower 8 Upper 

7788 32 Mid 1999 -1.1 C -1.1 C 5.73 Mid 27 Upper 

8036 33 Mid 1970 0.6 W 0.7 W 5.27 Lower 19 Unknown 

8179 34 Mid 1971 -0.8 C -0.8 C 5.47 Mid 23 Unknown 

8200 35 Mid 1969 0.2 N 0.4 N 5.91 Mid 32 Unknown 

8209 36 Mid 1982 -0.2 N -0.1 N 6.28 Mid 37 Mid 

8625 37 Mid 1998 2.3 W+ 2.4 W+ 5.63 Mid 25 Upper 

8676 38 Upper 1978 0.5 W 0.7 W 7.86 Upper 52 Lower 

9156 39 Upper 1948 -0.5 C -0.6 C 6.53 Upper 42 Unknown 

9872 40 Upper 1958 0.8 W 0.9 W 5.80 Mid 29 Unknown 

9951 41 Upper 1975 -0.5 C -0.7 C 6.72 Upper 45 Unknown 

9984 42 Upper 1993 -1 C -0.1 N 8.00 Upper 54 Mid 

10490 43 Upper 1949 -0.2 N 0 N 7.23 Upper 49 Unknown 

10605 44 Upper 1980 0.3 N 0.4 N 7.74 Upper 51 Mid 

10658 45 Upper 1962 -0.6 C -0.6 C 6.30 Upper 39 Unknown 

11102 46 Upper 1979 -0.5 C -0.4 N 7.93 Upper 53 Lower 

11261 47 Upper 1973 1.5 W+ 1.8 W+ 5.91 Mid 33 Unknown 

11320 48 Upper 1997 -0.2 N -0.2 N 7.49 Upper 50 Upper 

11345 49 Upper 1965 -1 C -1.1 C 7.11 Upper 47 Unknown 

11699 50 Upper 1985 -0.3 N -0.6 C 6.72 Upper 44 Upper 

11833 51 Upper 1995 0.7 W 0.9 W 7.20 Upper 48 Mid 

12599 52 Upper 1986 -0.4 N -0.3 N 6.00 Mid 35 Upper 

13057 53 Upper 1957 -0.9 C -0.9 C 8.40 Upper 55 Unknown 

13814 54 Upper 1952 0.6 W 0.7 W 8.93 Upper 56 Unknown 

14837 55 Upper 1983 1.5 W+ 1.9 W+ 6.40 Upper 40 Upper 

15404 56 Upper 1984 -0.5 C -0.8 C 7.04 Upper 46 Upper 
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