
 1. INTRODUCTION
Clouds play an important role in the Arctic climate,

especially in the ice-albedo and cloud-radiation feedback
mechanisms. Those feedbacks are believed to be
responsible for the polar amplification of global warming,
and make the Arctic the most sensitive area to the global
climate change. Some of the changes observed during
recent decades in the oceanic and terrestrial northern
high-latitudes are summarized in Serreze et al. (2000).
There is significant warming in the central Arctic,
downward trends in sea-ice cover, and negative snow
anomalies over both continents. Arctic cloudiness has
also changed in the last two decades based on the
satellite derived data sets (Wang and Key, 2003; Comiso,
2003; and Schweiger, 2004).

Our understanding of the cloud-radiation interactions
and feedbacks in the Arctic is, however, still limited by
data sparsity and/or by poor spatial and temporal
sampling. Recently available Arctic data from Surface
Heat Budget of the Arctic Ocean (SHEBA) project offer
new opportunities to evaluate the relationships between
cloud properties and radiative forcing (Shupe and Intrieri,
2004). Even though the record length and spatial
representation are limited, these observations are
believed to be the most accurate and comprehensive
measurements with a high temporal resolution in the
Arctic.

In this study, we use the SHEBA data set to discuss
the relationships between cloud parameters and
longwave cloud radiative forcing obtained from a neural
network (NN). The variables used here are cloud fraction
(CLD), cloud base height (CBH), cloud base temperature
(CBT), liquid water path (LWP) and longwave cloud
radiative forcing (CFLW). The preliminary results are
presented briefly in this paper. Our NN derived
sensitivities between CFLW and other cloud parameters
are compared with those from Shupe and Intrieri (2004).
These sensitivities are the controlling factors for
feedbacks. Quantified relationships will help us to
improve our understanding of future climate change. The
principal objective of this study is to examine the
sensitivity between longwave cloud forcing and cloud
parameters and to quantify some of these relationships.

2. Methodology

Neural network model is a powerful statistical model
which is widely used in classification, pattern recognition
and other scientific areas. Most applications, however,

have focused on the direct output of the NN. In this study,
we are looking at the Jacobian matrix within the neural
network, which contains the first derivatives of a given
output variable with respect to a given input variable.
This, by definition, can be interpreted as the sensitivity of
longwave cloud forcing (output variable) to cloud
parameters (input variables).

The advantage of this neural Jacobian is that it gives a
direct statistical evaluation of the multivariate and
nonlinear sensitivities, which depends on each situation
of input and output variables (Aires and Rossow, 2003).
To estimate the sensitivities of CFLW with respect to a
given cloud parameter, we use a neural network model
with one hidden layer.

3. RESULTS

In this section we present the relationships between
each pair of CFLW and other cloud parameters. In Figure
1, the histograms of the Jacobians from a NN with CFLW
as output and one of CLD, LWP, CBH, CBT as input are
plotted. A distinguishable bimodal distribution of the
sensitivities characterizes the relationships between
each pair of the variables.

The mean sensitivity is indicated by the number inside
a box in each histogram plot. For example, mean dCFLW/
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Fig. 1 Jacobian histograms from left to right, top to bottom:
CFLW with respect to CLD, LWP, CBH and CBT.
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dCLD is 0.7 W m-2 %-1 (i.e. each percent change in
cloud fraction corresponds to a 0.7 W m-2 change in
longwave cloud radiative forcing). The bimodal
distribution, however, indicates that this mean state does
not exist very often.

The characteristics of each peak in the histogram are
examined by looking at the distribution of data points in
terms of the time of a year and of the absolute values of
the input variable. The peak with low sensitivity near zero
in the relation between CFLW and LWP corresponds to a
high liquid water path regime mainly occurring during the
warm season (Fig. 2 top panel). The minimum value of
LWP in this regime is 55 g m-2. The peak with high
sensitivities is related to a low liquid water path regime
during winter and spring seasons (Fig. 2 bottom panel).
The negative values in LWP are due to calculation error.
These two regimes with different sensitivities are
consistent with the results in Shupe and Intrieri (2004).
When liquid water path is high (> 55 g m-2), clouds
behave as blackbodies, and additional changes in LWP
have little effect on longwave cloud forcing any more. On
the other hand, however, the sensitivity is high when
liquid water path is low, i.e. not saturated, and increases
as liquid water path increases.

Similarly two distinct regimes are found in the
relationships for the other three pairs of variables
(Figures not shown). In general, clouds with low base
height (< 1 km) and medium range of base temperature
(-35 °C ~ -15 °C) has large impacts on longwave cloud
radiative forcing. When clouds are high and cold,

changes in those two cloud parameters do not affect
CFLW much. Another group of cloud, those with high
base temperature (-8 °C ~ 2 °C) mainly occurring in
summer, also has a near zero sensitivity. We suspect
that this is related to conditions in summer in which the
lower 1~2 km atmosphere a nearly isothermal or at least
neutrally stable, and low water cloud is the dominant
cloud type.
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Fig. 2. Data point distributions for the peak with
low sensitivity (top panel) and the peak with high
sensitivity (bottom panel) corresponding to
histogram of dCFLW/dLWP in Fig. 1.


