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1. INTRODUCTION 
 

Air pollution models can be divided into 
two primary categories: receptor models and 
dispersion models. Receptor models are 
formulated to begin with pollutant information 
monitored at a receptor and to look backward, 
using data on several species and information 
about relative concentrations of those species 
from possible sources, to apportion the 
pollutant to the sources. (Miller, et al 2002) In 
contrast, chemical transport, or dispersion 
models start with the source characteristics 
and use physics, mathematical, and chemical 
calculations to predict pollutant concentration 
at some distance from the source. Important 
input for those dispersion models includes 
information about the emissions from the 
source, the local atmospheric conditions, and 
some geographical characterization. Both 
types of models have been highly developed 
and forms of them are widely used for 
prediction and diagnosis of events. (EPA 
2003) 

 
Combining the current technology of the 

forward-looking transport and dispersion 
models with backward-looking receptor 
models would enable the apportionment of 
monitored data to their sources and estimate 
the uncertainty involved. Such a coupled 
model would combine the physical basis of the 
dispersion calculations with actual monitored 
pollutant concentrations. In previous work, we 
coupled a simple dispersion model with a 
chemical mass balance (CMB) receptor model 
using a genetic algorithm to optimize source 
apportionment factors in order to determine 
the sources of monitored pollutant (Haupt and 
Haupt 2004, Haupt 2004a,b).  
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A few investigators have previously used 

information on dispersion or chemical 
transport in computing source apportionment. 
Qin and Oduyemi (2003) began apportioning 
sources of PM 10  with a receptor model, then 
augmented it with dispersion model 
predictions from vehicle emission sources. 
Cartwright and Harris (1993) used a genetic 
algorithm (GA) to apportion sources to 
pollutant data at receptors. The work of 
Loughlin, et al (2000) coupled an air quality 
model with receptor principles using a GA to 
design better control strategies to meet 
attainment of the ozone standard while 
minimizing total cost of controls at over 1000 
sources. This current work goes beyond these 
prior efforts by using dispersion equations to 
predict potential pollutant concentration, then 
optimizing the apportionment factors to best 
match monitored data. Using artificial 
intelligence techniques, in this case a genetic 
algorithm, is the key to successfully computing 
the apportionment factors. 
 

In the prior work (Haupt and Haupt 2004, 
Haupt 2004a,b) we saw that for circularly 
symmetric source/receptor configurations, a 
coupled model can correctly identify a single 
source. It is also proficient in identifying some 
combination of sources contributing to the total 
pollutant monitored at a receptor. In those 
studies the synthetic data was created using 
the same dispersion model and meteorological 
data as used in the coupled model for source 
apportionment. In addition, for an actual 
source/receptor configuration run with 
synthetic emissions and meteorological data, 
the coupled model did well at identifying a 
single source. There is more difficulty, 
however, in correctly identifying multiple 
sources. It is easy to misidentify sources at a 
significant distance from the receptor or when 
several sources are at the same angle upwind 
of the receptor. Here we seek to further 



validate this coupled approach through careful 
analysis with synthetic data and a bootstrap 
technique to define error bars and confidence 
intervals. The synthetic data is constructed to 
examine the issue of accuracy in the presence 
of noise and the variation of accuracy with 
distance between the source and receptor. 
 
 
2. PROBLEM FORMULATION 
 

The chemical mass balance (CMB) 
receptor model is often used to apportion 
monitored concentrations received at 
receptors to the potential sources. It requires 
receptor data of different monitored species 
and known emission fractions for each of 
those species from a number of sources. The 
CMB model can be written as:  
 

RSC =•                              (1) 
 
where C  is the source concentration matrix, 
which denotes the fractional emission of each 
species from a given source; R  is the 
concentration of each species measured at a 
given receptor, and S  is the unknown 
apportionment vector. A fit to the data 
produces the fraction contribution from each 
source, S .  Our coupled approach replaces 
the emission fractions in C  with 
concentrations predicted by a transport model 
for multiple time periods. Similarly, R  now 
represents the monitored concentrations for 
those same time periods. Note that these time 
periods are often averages of multiple shorter 
time periods. Thus S  becomes a calibration 
factor linking the dispersed emissions as 
predicted by the transport model for an 
ensemble of time periods with the actual 
concentrations monitored at the receptor. The 
modeled concentrations are time dependent, 
on a timescale that matches the 
meteorological variations. The receptor data is 
also time dependent, but on a timescale that 
matches the monitoring sample length. The 
source calibration vector ( S ) must be 
optimized to account for the time varying 
weather and emission rates. In addition, a 
large number of sources of error creep into 
both the predicted and monitored data. All of 
these errors will become part of the calibration 
factor. 
 

For pollutant at N sources dispersed over 
M time periods, matrix equation (1) can be 
shown in expanded form: 
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where: mnC = the modeled contribution of  
          source n at time period m 

nS = the unknown calibration factor for  
          source n  

mR = the monitored particulate  
         concentration at the receptor for  
         time period m 

As long asM N≥ , S  can be computed by 
standard techniques (matrix inversion if 
M N= or optimization otherwise). However, 
as demonstrated in the following section, it is 
not unusual for the matrix equation to become 
poorly conditioned, thus requiring more 
complex solution techniques. 

 
For a simple demonstration of the coupling 

technique, the dispersion model used to 
compute the elements in the modeled 
concentration matrix C  will be Gaussian 
plume dispersion: 
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where: mnC = concentration of emissions from  
           source n over time period m at 
                       a receptor 
 ( , , rx y z ) = Cartesian coordinates of  
                       the receptor in the downwind  
                       direction from the source.  
 mnQ  = emission rate from source n  
                       over time period m 



 u   = wind speed 
 eH = effective height of the plume  
                     centerline above ground 
 ,y zσ σ  = standard deviations of the  
                      concentration distribution in  
                      the y and z directions,  
                      respectively.  
 

For our simple example, we’ll compute the 
standard deviations following Beychok (1994). 
 

2exp (ln( ) (ln( ))I J x K xσ  = + +         (4) 

 
where x  is the downwind distance (in km) and 

,  ,  and I J K are empirical coefficients 
dependent on the Pasquill Stability Class, 
which depends on wind speed, direction, and 
insolation and can be looked up in tables 
(Beychok 1994). The concentrations 
computed in this manner from each source 
form the mnC  in equation (2).  

 
The source calibration factor serves to 

maximize agreement between the transport 
model and the receptor observations. When 
multiplied by the source contribution predicted 
by the transport model, it serves to attribute a 
certain percentage of the monitored 
concentration to that source. That factor can 
also be interpreted as an error or uncertainty 
in the modeling process in comparison to the 
monitored data. This uncertainty comes from 
the input data and from the modeling process 
itself. The primary sources of error could be 
characterized as: 1. the source emission rate; 
2. the accuracy and representativeness of the 
meteorological input, both in terms of directly 
measured variables such as wind speed and 
direction, as well as in derived quantities such 
as mixing height (representing the boundary 
layer depth) and atmospheric stability 
characterization; 3. the model’s 
characterization of the atmospheric dispersion 
and chemical transformations; 4. not correctly 
modeling the stochastic fluctuations due to 
turbulence; and 5. errors in the monitoring 
data. 

 
 

 
 
 

3. SOLUTION METHOD 
 
3.1 Justification 
 

The remaining issue is how to best optimize 
the fit between the modeled dispersion and 
the monitored receptor data. This fit involves 
computing the best calibration factor, S . For 
square matrices, we should be able to solve 
the matrix problem directly. Our experience, 
however, indicates that the matrices are often 
poorly conditioned. Because there are often 
more meteorological conditions available, it 
makes sense to use M>N where possible to 
aid the optimization. In such cases, least 
square optimization solutions are possible. We 
find that such solutions are not always 
accurate due to the poor conditioning of the 
matrices. For example, let’s consider a 
scenario using the geometry for Cache Valley, 
Utah (see Haupt 2004a,b) combined with 
synthetic equal emission rates for each of 16 
sources. Synthetic receptor data was created 
assuming 64 independent meteorological 
conditions representing 16 different wind 
directions (every 22.5 degrees) and four 
different wind speeds. The synthetic receptor 
data was created assuming a source 
apportionment matrix composed of a 1. for the 
first source and 0. for all remaining sources. 
The resulting dispersion matrix, C , is poorly 
conditioned with a condition number of 

262.561 10−× .  Given that the data is 
synthetic, we know the actual solution, and 
can compute the root mean square (RMS) 
difference from the known solution. For this 
scenario, the least squares results are rather 
disappointing, showing an RMS error of 8.26.  
Thus, a more robust technique is required. 
Here we choose to use a genetic algorithm to 
optimize the linear system. For this synthetic 
scenario, a GA was run 100 times to observe 
the typical range of solutions expected. The 
minimum RMS error was 0.39, with the 
average RMS error of the 100 runs being 0.60. 
Thus, for such difficult scenarios the GA is 
more robust at finding the correct solution. 

 
Another issue in deciding the optimization 

method used here is the consideration of 
future uses of this methodology. One use is 
expected to be identifying sources of 
uncertainty. To do that will require a technique 
that can handle IF,THEN constructs in the cost 
(or objective) function. The AI methods are 



formulated to be oblivious to the intricacies of 
the cost function and tend to be quite robust at 
finding an optimal solution. The remaining 
applications presented here all use genetic 
algorithms (GAs) to perform the optimization.  

 
GAs are well suited to many optimization 

problems where more traditional methods fail. 
Some of the advantages of the GA for this 
problem include that they 
• Don’t require derivative information, 
• Simultaneously search from a wide 

sampling of the objective function surface, 
• Deal with a large number of parameters, 
• Are well suited for parallel computers, 
• Optimize parameters with extremely 

complex objective function surfaces, 
Such advantages outweigh the GAs’ lack of 
rigorous convergence proofs and speed. In 
addition, since the GA is based on generating 
random numbers, each solution will be slightly 
different. Thus, the GA is run repeatedly to 
gather statistics on the solution. The best 
solution of repeated runs is often chosen. 
Other practitioners prefer to report the mean 
solution of an ensemble of GA runs. 
 
3.2 The Continuous Genetic Algorithm 
 

The many breeds of GA are discussed in 
detail in Haupt and Haupt (2004). Here we 
apply a continuous parameter GA, that is, one 
in which the parameters are real numbers. 
The flow chart in Figure 1 provides a “big 
picture'' overview of a continuous GA.  The 
parameters are the genes which are strung 
together in a one-dimensional array known as 
a chromosome.  The GA begins with a 
population of chromosomes which are fed to 
the cost function for evaluation.  The fittest 
chromosomes survive while the highest cost 
ones die off. This process mimics natural 
selection in the natural world.  The lowest cost 
survivors mate.  The mating process combines 
information from the two parents to produce 
two offspring. Some of the population 
experiences mutations.  

 
As seen in the figure, the first step of a 

continuous parameter genetic algorithm is 
creating the population of chromosomes.  
First, the real parameters are concatenated 
together into a chromosome as:  
 

[ ]
parNppppchromosome "" α21=     (5) 

where the ip  are the parameters and there 

are a total of parN parameters. The 
parameters are simply floating point numbers.  
The encoding function needs only keep track 
of which digits represent which parameters 
and to make sure they are within given 
bounds.  A population of such chromosomes 
is created using a random number generator 
so that the chromosome arrays are gathered 
together in a two dimensional matrix. Once the 
chromosomes have been created, their cost or 
fitness must be evaluated.  This is done by the 
cost or objective function, which is very 
problem specific.  The lowest cost 
chromosomes ( keepN ) remain in the 
population while the higher cost ones are 
deemed less fit and die off.  The reduced 
population is then the portion of the population 
available for mating. 
 

Figure 1. Flowchart of continuous 
parameter genetic algorithm. 

 
 There are a variety of methods to pair the 

chromosomes for mating.  Some popular 
methods are reviewed by Haupt and Haupt 
(2004).  Here, we choose to pair the 
chromosomes according to numerical rank.  
After the cost function evaluation, the 
chromosomes are sorted in order from lowest 
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cost to highest.  That is, the nth chromosome 
will have a probability of mating of: 

 

∑
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The cumulative probabilities are used for 
selecting which chromosomes mate. 

 
Once two parents are chosen, some 

method must be devised to produce offspring 
that are some combination of these parents. 
Many different approaches have been tried for 
crossing over in continuous parameter genetic 
algorithms (Adwuya 1996, Haupt and Haupt 
2004). 

 
The method used here is a combination of 

an extrapolation method with a crossover 
method. It begins by randomly selecting a 
parameter in the first pair of parents to be the 
crossover point.  

 
{ }parNrandomroundup ×=α           (7) 

 
Wel let  
 [ ]

[ ]
par

par

dNddd

mNmmm

ppppparent

ppppparent

""

""

α

α

212

211

=

=
       (8) 

 
where the m and d subscripts discriminate 
between the mom and the dad parent. Then 
the selected parameters are combined to form 
new parameters that will appear in the 
children: 
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where β  is also a random value between 0 
and 1. The final step is to complete the 
crossover with the rest of the chromosome as 
before: 

 [ ]
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If the first parameter of the chromosomes is 

selected, then only the parameters to right of 
the selected parameter are swapped. If the 

last parameter of the chromosomes is 
selected, then only the parameters to the left 
of the selected parameter are swapped. This 
method does not allow offspring parameters 
outside the bounds set by the parent unless 
β  is greater than one.  In this way, 
information from the two parent chromosomes 
is combined a way that mimics the crossover 
process during meiosis. 

 
     If care is not taken, the genetic algorithm 
converges too quickly into one region of the 
cost surface. If this area is in the region of the 
global minimum, that is good. Some functions, 
however, have many local minima and the 
algorithm could get stuck in a local well. If we 
do nothing to solve this tendency to converge 
quickly, we could end up in a local rather than 
a global minimum. To avoid this problem of 
overly fast convergence, we force the routine 
to explore other areas of the cost surface by 
randomly introducing changes, or mutations, 
in some of the parameters. A mutated 
parameter is replaced by a new random 
parameter. 
 
3.3 Application to Coupled Model 
 

The cost function for coupling a receptor 
model with a dispersion model was formulated 
to minimize the difference between the two 
sides of (1), summed over the total number of 
meteorological periods considered. This 
normalized residual is: 
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where M is the total number of meteorological 
periods. Note that each meteorological period 
might be composed of averages over many 
shorter periods. Thus, the GA evaluates the 
summation cost function for each random 
chromosome of parameters for each iteration. 
In spite of the large number of cost function 
evaluations, CPU time remains modest. 
Moreover, for the poorly conditioned problems 
we often encounter in real data, we have 
found that the GA works better at minimizing 
the matrix equation than competing 
techniques. This cost is also the metric used 



below to compare the performance for 
different cases. 
 

To run the GA in our 100-run Monte Carlo 
set most efficiently, we must carefully choose 
the best GA parameters. The most commonly 
tuned parameters are the crossover rate, 
population size, and mutation rate. The 
population size and mutation rate, in 
particular, can make a huge difference in the 
number of cost function evaluations required, 
and thus the CPU time. Prior experience 
indicates relatively low population sizes 
combined with a high mutation rate tend to 
minimize required CPU time to convergence 
(Haupt and Haupt 2000, 2004). The runs 
reported here use population sizes of 8, 
mutation rate of 0.20 and a crossover rate of 
0.5. The calibration factors are assumed to fall 
in the range of 0 through 5. Note that these 
values are easy to vary in actual situations 
and have been chosen to allow reasonable 
exploration of the solution space applicable for 
the synthetically generated data of this study. 
The number of iterations used and 
convergence are discussed below. 
 
 
4. MODEL VALIDATION  
 
4.1  Synthetic Data on a Circle 

 
The coupled receptor/dispersion model 

technique is validated here by testing it on 
carefully constructed synthetic data. The initial 
test cases place a receptor at the origin and 
16 sources in a circle of radius 500 m spaced 
every 22.5 degrees (see Figure 2). The source 
numbering system assigns number 1 to the 
source 22.5° east of north and proceeds 
clockwise to source 16 directly north of the 
receptor. Synthetic receptor data is created 
using the same dispersion model (3) used for 
the coupled model optimization. To fit data for 
16 sources, we need at least 16 independent 
meteorological periods. Meteorological data 
were created to represent wind directions from 
16 points of the wind rose and representative 
wind speeds. All results shown here use 
stability D for ease of comparison. The 
dispersion model was run using one hour 
averaging over the meteorological data and 
using assumed calibration factors, S, that we 
hope to match with the coupled model.  
 

     The coupled receptor/dispersion model 
was then run with the synthetically generated 
data. The genetic algorithm, when run with a 
sufficient number of iterations, will gravitate 
toward the correct solution. For this problem, 
the number of iterations determine the 
smallness of the residual. An initial GA 
population is based on random numbers, 
therefore the solution is slightly different for 
every run. The number of iterations allowed in 
a run controls how closely the final solution 
matches the actual solution. Figure 3 
demonstrates the GA convergence over 
200,000 iterations. We see that the GA 
continues to minimize the residual throughout 
the run. Because our routines with a very 
simple Gaussian dispersion model take little 
CPU time, the remainder of the paper reports 
GA runs with 20,000 iterations, roughly where 
the cost function reaches 210−  in Figure 3. To 
obtain another order of magnitude in accuracy 
would require roughly an order of magnitude 
additional CPU time.  
 

Figure 2. Configuration for circular 
synthetic data. Sources are denoted by “X” 

and the receptor as “٭”. 
 

An initial set of numerical experiments 
sets the calibration factor, S to a vector of 16 
ones. This known vector is used to compute 
synthetic receptor data. The GA is then run to 
determine how close it gets to this known 
solution. Note that the cost function (11) does 
not presuppose the known solution, rather it 
acts to minimize the residual of the difference 
of the two sides of equation (1). A single run of 
a GA is typically sufficient to estimate the 
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actual calibration factor to within 2 significant 
digits for this case. 
 

 
Figure 3. Genetic algorithm convergence 

for 200,000 iterations. The upper green line 
denotes the mean error (normalized 

residual) while the blue lower line is the 
minimum error denoting the best solution. 
The minimum error continues to improve 

throughout the run. 
 

 
To further analyze the uncertainty of the 

GA solution methodology, a Monte Carlo 
technique is used. The GA is run on the same 
problem 100 times with different initial random 
seeds. Then we are able to draw error bars 
and evaluate the accuracy by statistical 
methods. Figure 4 shows the mean calibration 
factor at each source found by the GA plus 
error bars. The inner error bars represent one 
standard deviation. The outer bars denote the 
90% confidence interval; that is, 5% of the 
solutions are above the highest bar and 5% 
are below the lowest. We see that we are 90% 
confident that solutions range between 0.97 
and 1.03 for each source.  

 
The mean of 100 cases ranges between 

0.9976 for source number 1 through 1.003 for 
source 11. Thus, the mean value computed 
from 100 runs is even more reliable than the 
already good solutions from a single GA run. 

 
Because the source positions and 

strengths, the meteorological data, and the 
model are all horizontally homogeneous, we 
can further aggregate the data from the 16 
sources over 100 runs to a pool of 1600 
values that approximate an exact value of one. 

The mean of the 1600 values is 1.0002 and  
the standard deviation becomes 0.0015109.  

 

 
Figure 4. Apportionment of the Calibration 
Factors to each of the 16 sources for the 
case of synthetic circular cylinder data. 

 
 
Are the results above dependent on the 

fact that the solution for each of the sources is 
identically one? To assess this issue, we 
studied this same geometry/meteorological 
configuration for a second calibration factor, 

[ ]0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3 TS = . 
Table 1 gives the results of 100 GA Monte 
Carlo runs for this configuration. The width of 
the error bars is consistent with those found 
for the prior case with all ones as a solution. 
Note that the solution is constrained to never 
go below 0; therefore the standard deviation 
and confidence limits for the sources with an 
actual apportionment of 0. are constrained. 

 
Table 1. Mean and standard deviations for 

each group of sources with actual 
calibration values of 0, 1, 2, and 3 

respectively in a circular geometry as 
computed for 100 runs. 

Source 
 

0 1 2 3 

Mean  0.0204    1.0007    1.9989 3.0001 
Std 
dev  

0.0014    0.0008    0.0020    0.0011 

 
 
4.2  Synthetic Data in a Spiral 
 

The circular geometry presented above 
assumed that all sources are the same 
distance from the receptor. To investigate 
relaxing that assumption, we constructed a 



second geometry of a spiral configuration, with 
the sources ranging from 250m through 
1750m from the receptor as shown in Figure 
5. The assumed calibration factor in this case 

is [ ]0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3 TS = . 
This calibration factor was used with the same 
meteorological data and constant emission 
rates to construct synthetic receptor data. 

 

 
Figure 5. Configuration for spiral  

synthetic data. Sources are denoted by “X” 
and the receptor as “٭”. 

 
The GA was used to optimize the 

calibration factors for 100 runs. Table 2 
summarizes the results. Although the standard 
deviations are generally larger than for the 
circular source geometry, they are still quite 
small.  

 
Table 2. Mean and standard deviations for 

each group of sources with actual 
calibration values of 0, 1, 2, and 3 

respectively in a spiral geometry as 
computed for 100 runs. 

Source  
 

0 1 2 3 

Mean  0.0186 0.9996 2.0014 3.0007 
Std 
dev  

0.0054 0.0013 0.0015 0.0022 

 
 
5. VALIDATION INCLUDING NOISE 
 

Although the results of the previous 
section are quite heartening, typical data does 
not have the clear signal available in our 
synthetically constructed data. Typical 
situations involve errors in the meteorological 
data, emissions data, receptor data, as well as 
the differences between the model and the 

real atmosphere. Therefore, we simulate the 
expected error by adding white noise to the 
data, then using the GA coupled model to 
optimize the calibration factor. 

 
5.1 Circular Configuration 
 

The first case is again a very simple 
geometry, the circular geometry with 
meteorological data representing 16 points of 
the wind rose. The first series of bootstrapped 
runs again use assumed source calibration 
factors of all ones to create the receptor data. 
In this case, however, white noise with a mean 
amplitude of 1 is also added to the dispersion 
model when creating the synthetic receptor 
data. Thus, the receptor data that goes into R 
in equation (1) includes as much noise as 
signal. The GA coupled model is then used to 
compute the optimal calibration factors. 

 
Figure 6 shows the mean, standard 

deviation, and 90% confidence interval for 100 
runs of the model. The lines depicting the error 
are much wider spaced than for the case with 
no noise in Figure 4. Aggregating the full 1600 
source cases (16 sources all with actual 
apportionment value of 1 over 100 runs) 
produces a mean value of 1.0066, amazingly 
close to actual value. The mean standard 
deviation of the 16 sources is 0.02595, larger 
than for the case without noise but still small 
enough to give us confidence in model 
performance with imperfect information. 

 
 

 
Figure 6.  Apportionment of the calibration 

factors to each of the 16 sources for the 
case of synthetic circular data and a signal 

to noise ratio of 1. 
 
 



Figure 7 depicts the performance of the 
coupled model over a range of signal to noise 
ratios (SNRs). This plot aggregates the data 
over all 16 sources. The center black line is 
the mean of the 16 sources times the 100 
runs, the solid lines on either side depict the 
standard deviation, and the dashed lines 
indicate the 90% confidence interval. We see 
that as long as the log(SNR)>1, the solutions 
are quite close to the actual solution of 1 and 
the scatter is quite small. However, as noise 
becomes greater than the signal (log(SNR)<0) 
then the computed solution diverges from the 
actual and the scatter becomes wider. Note 
that the mean of the solutions is still 1. For 
log(SNR) = 0.5, the standard deviation and 
90% confidence interval has grown. At 
log(SNR) = 0 the noise equals the signal and 
we have the case presented in Figure 6 
above. As expected, when the noise becomes 
much larger than the signal on the left side of 
the plot, the coupled model no longer 
optimizes the solution reliably. In fact, the 
mean solution tends to 2.5, which is the mean 
of the range allowed in the optimization 
routine. The standard deviation and 90% 
confidence lines approach the limits of the 
range.  

 
 

 
 

Figure 7. Calibration factors for all sources 
versus the log of the signal to noise ratio 

for a circular source configuration. 
 

A second case for analysis is the one with 
circular geometry and an actual source 
calibration vector of 

[ ]0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3 TS = . 
Table 3 lists the mean and standard deviation 
for each set of sources and an SNR of 1. It is 

clear that the mean differs from the actual by 
more than for the case with no noise (Table 2) 
and the standard deviations are higher by at 
least an order of magnitude. It is interesting to 
note, however, that the means of the cases 
with calibration factors of 2 and 3 still 
converge quite well to the actual. The cases 
with actual factors of 0. are quite far from the 
actual, with the cases for 1. being in between 
the other two. Recall that 0. is the lowest 
apportionment factor that can be found (a hard 
limit to the range in our algorithm), thus forcing 
all values to be above that. When there is 
more freedom in the higher numbers, the 
standard deviation is greater but the mean is 
closer to the actual. Figure 8 gives a graphical 
depiction of the scatter about the mean values 
for each source for the SNR of 1. Although the 
scatter about each source is unique, there is 
no systematic difference between sources. 
 
Table 3.  Mean and standard deviations for 

each group of sources with actual 
calibration values of 0, 1, 2, and 3 and for a 
circular configuration and a signal to noise 

ratio of 1. 
Source 
 

0 1 2 3 

Mean  0.3470 1.1123 1.9907 2.9944 
Std 
dev  

0.0261 0.0332 0.1460 0.0867 

 
 
 

 
Figure 8.  Apportionment of the calibration 

factors to each of the 16 sources for the 
case of synthetic circular data and a signal 

to noise ratio of 1. 
 

For this case with four differing values for 
the apportionment factor, a single plot showing 
the scatter in the apportionment as a function 



of SNR does not suffice. Instead, Figure 9 
(shown at the end of the paper) gives plots for 
4 different sources, numbers 1, 6, 11 and 16 
representing actual calibration factors of 0, 1, 
2, and 3 respectively. As for the prior case, all 
four source calibration factors are very close 
to the exact when log(SNR)>0.5 and becomes 
rather poor as the noise overshadows the 
signal. The mean value is representative for 
equal signal and noise and worsens as noise 
becomes greater. 
 
5.2 Spiral Configuration 
 

As for the pure signal cases, the cases 
including noise were repeated for a spiral 
configuration of the sources as depicted in 
Figure 6 and calibration factors of 

[ ]0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3 TS = . 
Table 4 summarizes the results for a signal to 
noise ratio of 1. The mean differs from the 
exact by a larger amount than for the circular 
case of Table 3. In addition, the standard 
deviations are larger. Because there is no 
longer a consistent difference from the source, 
the scatter about the solution can become 
larger. This point is further demonstrated in 
Figure 10. That figure shows the mean, 
standard deviation and 90% confidence 
interval for each source and can be compared 
to Figure 8. The calibration factors for the 
sources nearest to the receptor are computed 
rather accurately despite the noise level. 
However, as the source/receptor distance 
increases toward source number 16, the mean 
gets further from the actual value and the 
scatter about the mean becomes larger. Note 
that the values close to 0 are much worse than 
those at 3, which is closer to the midpoint of 
the range of the search. 

 
 

Table 4.  Mean and standard deviations for 
each group of sources with actual 

calibration values of 0, 1, 2, and 3 and for a 
spiral configuration and a signal to noise 

ratio of 1. 
Source  
 

0 1 2 3 

Mean  0.5904 1.2176 2.1683 2.8523 
Std 
dev  

0.4437 0.3039 0.1830 0.1359 

 
 
 

Figure 10.  Apportionment of the 
calibration factors to each of the 16 

sources for the case of synthetic spiral 
data and a signal to noise ratio of 1. 

 
Figure 11 (at the end of the paper) is 

equivalent to Figure 9, showing the 
convergence of 100 runs for various different 
SNR values at each of 4 different sources. In 
addition to seeing the scatter about the mean 
become greater for smaller log(SNR) values, 
we can see the change with distance between 
the source and receptor. Figure 11a is for 
source 1, only 250m from the receptor. The 
agreement of the mean with the actual is quite 
good and the scatter is very small for noise 
less than or equal to the signal. As the source 
is further from the receptor, the scatter about 
the mean becomes greater for larger values of 
log(SNR). For source 16, 1750m from the 
receptor, the scatter is significant when the 
noise is only one-tenth of the signal. However, 
the mean of 100 runs is still quite reliable for 
SNRs of 1. 

 
 
6.  DISCUSSION 
 
     This study has demonstrated the ability of a 
coupled dispersion/receptor model to correctly 
optimize the source calibration factors for 
synthetic data. Although the synthetic receptor 
data was created using the same dispersion 
model used for the calibration, the coupled 
model performed well even in the presence of 
a moderate level of noise. It was 
demonstrated that even when the noise or 
geometry make the apportionment problem 
rather difficult, the mean of a larger number of 
optimization runs is still quite reliable until the 
noise becomes overwhelming. This conclusion 



provides some hope that this technique could 
prove useful for apportioning pollutant to 
potential sources when the expected error is 
small to moderate. 
 

These results assume a very simple 
dispersion model. This technique could be 
much more useful when more complex 
dispersion models are coupled to a receptor 
model. We plan to explore this option in future 
work. 

 
Other useful validation exercises could 

involve using careful field experiments where 
the concurrent emission rates of each 
surrounding source and the background are 
carefully controlled. If meteorological data is 
also known to a high level of accuracy, a 
receptor model coupled with a more accurate 
dispersion model could give a better 
understanding of our ability to model 
atmospheric dispersion. 

 
Note that one can also interpret the 

source apportionment factors as the total 
model error. If one had perfect knowledge of 
dispersion characteristics, meteorological 
conditions, source emissions information, and 
receptor data, one would expect the 
apportionment factors to be all ones. So the 
difference from one indicates the total 
uncertainty in the modeling and monitoring 
process. This implies that such a coupled 
model could also be used to estimate 
uncertainty for models. 
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Figure 9. Calibration factor as a function of SNR for a circular source configuration. Mean 

(black), standard deviation (solid), and 90% confidence interval (dashed) are shown. 



 
 

Figure 11. Calibration factor as a function of SNR for a spiral source configuration. Mean 
(black), standard deviation (solid), and 90% confidence interval (dashed) are shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




