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1. INTRODUCTION 
 

Ensemble data assimilation 
(EnsDA) approaches offer a great potential 
for addressing state-of-the-art problems of 
data assimilation and ensemble forecasting 
(e. g., Evensen 1994; Houtekamer and 
Mitchell 1998; Hamill and Snyder 2000; 
Keppenne 2000; Mitchell and Houtekamer 
2000; Anderson 2001; Bishop et al. 2001; 
van Leeuwen 2001; Reichle et al. 2002; 
Whitaker and Hamill 2002; Ott et al. 2004; 
Tippett et al. 2003; Zupanski 2004; Zupanski 
and Zupanski 2004). The research in this 
area is, however, mostly limited to idealized 
cases, employing simplified models and a 
relatively small number of observations.  
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The emergence of next generation 
GOES satellites, beginning with GOES-R, 
poses a serious challenge to data 
assimilation in general. One of the most 
critical issues to be resolved in EnsDA 
approaches is how to handle many degrees 
of freedom of numerous observations and 
complex atmospheric models, while keeping 
the ensemble size relatively small. This 
paper employs the estimation theory (e. g., 
Jazwinski 1970) in order to define a balance 
between the number of observations and the 
ensemble size.   
 
2. METODOLOGY 
 

According to the estimation theory, 
the information content of the observations y 
is defined by the observability or information 
matrix C, defined as 
 

HMRHM -1TT=C ,   (1) 
 
where M and H are linearizations of a 
forecast model M and an observation 
operator H, respectively, and R is an 
observation error covariance matrix.  

Motivated by definition (1) we use a 
symmetric Nens x Nens matrix A (Nens being 

ensemble size), as a measure of the 
information content of the observations in 
the ensemble subspace. This matrix is 
defined as 
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where 2/1

fP is the square root of the forecast 
error covariance matrix, obtained via 
ensemble forecasting. Eq. (2) is applicable 
to both an ensemble filter and an ensemble 
smoother. In case of an ensemble filter, as 
in this study, M=I (I is an identity matrix) is 
used in (2). Matrix A is also used to define 
the analysis error covariance 2/1

aP  in EnsDA 
(e. g., Bishop et al. 2001; Zupanski 2004; 
Zupanski and Zupanski 2004): 
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According to (2) and (3) the 
observations, with potentially many degrees 
of freedom, are being projected onto the 
ensemble sub-space with Nens degrees of 
freedom. This could be a serious problem 
when dealing with satellite data, since the 
number of observations can outnumber the 
ensemble size by several orders of 
magnitude. In such cases a strategy for 
dealing with numerous observations is 
needed. 
 The approach taken in this study is 
to divide the observation vector y into 
groups {y1, y2, …, yk} and process each 
group of observations yi separately. The 
analysis obtained as a result of the 
assimilation of current observations (yi) is 
used as a guess for the next group of 
observations (yi+1).  
 The ideas of processing 
observations in separate groups, or 
processing one observation at a time, have 
also been used in the previous studies (e. 
g., Anderson 2001; Bishop et al. 2001; Ott et 



al. 2004). The new aspect proposed here is 
to use the information matrix A, defined in 
ensemble subspace, to determine the 
appropriate balance between the 
observation number and the ensemble size.  

 
3. EXPERIMENTAL RESULTS 
 

EnsDA algorithm used in this study 
is the Maximum Likelihood Ensemble Filter 
(MLEF), developed at Colorado State 
University (Zupanski 2004; Zupanski and 
Zupanski 2004). The MLEF is applied to a 
non-hydrostatic atmospheric model: 
Regional Atmospheric Modeling System 
(RAMS). The case chosen for this 
experiment is hurricane Lili, which occurred 
from 21 September 2002 to 04 October 
2002. Data assimilation results, valid at 08 
UTC 01 October 2002, are examined here. 

Data assimilation experiments 
presented here are performed over 139 
consecutive sub-cycles. In each sub-cycle 
50 observations are used, all valid at 08 
UTC 01 October 2002. This time 
corresponds to the end of a 1-hour data 
assimilation interval. Observations are 
defined by imposing random perturbations 
on the true state, obtained by RAMS 
integration. Each group of 50 “observations” 
includes each component of the wind vector 
(u, v, w), perturbation Exner function (π), ice-
liquid water potential temperature (θ ), and 
total-water mixing ratio (r_total), and they 
are all evenly distributed over the integration 
domain. The observation error magnitude 
varies with each variable and each model 
level. The integration domain is centered 
over the Gulf of Mexico and includes 
75x55x35 grid points, with the horizontal grid 
distance of 60 km. The control variable of 
the data assimilation problem includes the 
same six components as the observations 
(u, v, w, π, θ , and r_total). The size of the 
control variable is 866250 (=75x55x35x6) 
and the ensemble size is Nens=50. Data 
assimilation experiments are performed 
assuming a perfect model; that is, the model 
error is neglected. Preliminary experimental 
results are given in Figures 1 and 2.  

The eigenvalues λi of the matrix 
2/1)( −+ AI are shown in Figure 1 for sub-

cycles 1, 2, 15 and 122. Also shown are the 
eigenvalues of an experiment with 
approximately 7000 observations and 50 

ensemble members. One can immediately 
notice that the experiment with 7000 
observations has a flat eigenvalue spectrum. 
This is an indication that the number of 
ensembles is not sufficient to describe all 
degrees of freedom present in the 
observations. As a result, many more 
ensemble members are necessary to cover 
the entire interval [0,1] of possible values of 
λi. On the other hand, the eigenvalues 
obtained in the experiment with 50 
observations in the first sub-cycle are 
distributed over almost the entire interval 
[0,1]. This indicates that the ensemble size 
is appropriate. Further, as the data 
assimilation sub-cycles repeat, the 
eigenvalue spectrum changes; in particular, 
the number of eigenvalues close to the 
value of 1 increases. As a consequence, 
those eigenvalues have a negligible effect. 
For example, in the sub-cycle 1, all 50 
eigenvalues are effectively used, while only 
16-17 eigenvalues are effectively used in 
sub-cycle 15, and 11-12 in sub-cycle 122. 
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Figure 1: Eigenvalue spectrum of 2/1)−+ AI(  
calculated in the MLEF experiments with 50 
observations and 50 ensemble members in sub-cycles 
1, 2, 15 and 122. The eigenvalues from the experiment 
with 7000 observations and 50 ensemble members 
obtained in first data assimilation cycle are also shown. 
 

Based on the eigenspectrum of 
2/1)( −+ AI  a strategy for balancing the 

ensemble size with the observation number 
can be developed; for example, data groups 
that do not bring significant amount of new 
information (e. g., sub-cycle 122) could 
either be excluded, or kept. Those that are 
kept need to be augmented with more 
observations. The strategy adopted in this 
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study is to keep groups of observations 
carrying significant new information. The 
observations are considered significant if  

Analysis RMS error (50 ens, 50 obs))
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holds, where γ is the information content 
parameter and γc is a critical value (γc=0.97 
is used in the experiments presented).  

Figure 2 shows the Root Mean 
Square (RMS) errors of the analysis 
obtained in 45 successive sub-cycles, 
selected from 139 initial data groups 
according to (4), using 50 ensemble 
members and 50 observations in each sub-
cycle. The RMS errors for the u-wind and v-
wind components are shown in Figure 2a; 
the RMS errors for the total-water mixing 
ratio (r_total) are plotted in Figure 2b. The 
RMS errors are calculated with respect to 
the “truth”, obtained by running the same 
model (RAMS) from different (“true”) initial 
conditions. All model grid points are used in 
the RMS error calculations in each sub-
cycle. The maximum magnitudes of the 
observation errors for u and v are denoted 
by u_obs_err_max and v_obs_err_max, 
respectively. Likewise the minimum error 
magnitudes for u and v could be denoted by 
u_obs_err_min and v_obs_err_min, 
respectively, however, both are identical and 
are denoted by u_v_obs_err_min (Figure 
2a). Similarly r_obs_err_max, and 
r_obs_err_min are used for r_total (Figure 
2b). As Figures 2a and 2b indicate, 
assimilation of observations in successive 
groups with observation numbers 
comparable to the ensemble size (50) is 
quite effective in reducing analysis error. 
One can also observe that the magnitude of 
the error reduction decreases with the 
increasing number of sub-cycles. This 
indicates that the system is learning about 
the true state and is approaching an 
asymptotic level of errors. This is also in 
agreement with the results presented in 
Figure 1; that is, the information content of 
the data decreases with repeating sub-
cycles. One should be aware, however, that 
a perfect model is used in the experiments 
presented. In the case of an erroneous 
model, the learning process could be slower, 
or might not occur. 
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MLEF experiments over 45 sub-cycles. In each sub-
cycle 50 observations and 50 ensemble members are
used. The RMS errors for u- and v- wind, maximum 
(u_obs_err_max, v_obs_err_max) and minimum 
(u_v_obs_err_min) observation errors are given in

he RMS errors for r_total, along with maximum 
r_obs_err_max) and minimum (r_obs_err_min) 
bservation errors are given in (b). 
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 Preliminary results presented in this 

 size 

 

n 

study indicate that it is possible to effectively 
assimilate a relatively large number of 
observations even though the ensemble
is relatively small. The information content of 
the observations, calculated in the ensemble 
sub-space, is a useful measure for defining 
an appropriate balance between the number
of observations and the ensemble size. This 
is of special importance for assimilation of 
current and future satellite observations. 
Further studies are planned in the future i
applications to real observations, and 
erroneous atmospheric models. 
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