
J7.7 OPEN SOURCE TECHNOLOGIES IN SCIENCE EDUCATION: WHAT'S YOUR GEEK IQ?

Stephen L. Arnold *
Allan Hancock College, Santa Maria, CA

1. INTRODUCTION

The goal of education, whether public or private, K-
12 or post-graduate, is fundamentally an altruistic one.
Obviously, a well-educated public can better come to
grips with both the environmental and technological
issues that face today's societies. Knowledge
empowers everyone, and free software (or Open
Source) technologies such as GNU/Linux and BSD
follow almost identical themes; by providing the same
robust, standards-based capabilities to everyone, they
not only foster education and cooperation, but also self-
determination. By distributing the source, users have
the freedom to fix bugs or add enhancements as their
requirements dictate. Supporting and using open
standards also helps ensure equality of access to these
technologies for everyone. The GNU General Public
License (GPL), among many other Free Software
licenses, is intended to maintain these same rights and
freedoms, by ensuring that no one individual or
organization can take control. In this way, Open Source
technologies are an ideal fit for many organizations,
most especially those in a public education setting. The
low overall life-cycle costs and flexibility are also a
significant benefit to both public and private-sector
organizations.

There are undoubtedly already many such Free
Software and Open Source technologies, as well as in-
house and commercial products, supporting various
requirements at your own institution; this paper will
present a broad overview of the how's, why's, and
what's of Linux and other open source technologies,
focusing on specific examples of both instructional and
research support in multiple settings. The Open Source
roll-your-own approach is also contrasted with 3rd-party
solutions, including internal and external resources.

The definitions used here follow those of the Free
Software Foundation (FSF), the principal organizational
sponsor of the GNU Project. In the true spirit of the
GPL, Figure 1 is made available on the GNU Project
home page, and illustrates several types of software as
defined in The Philosophy of the GNU Project
(Stallman, 2004). Additional details, as viewed by the
author, are provided in Table 1. The shareware
category had its hey-day back in the days of mail-order
CD-ROM distribution and limited Internet access, and is
not very common today. Crippleware is “free”
commercial software with some serious limitation (i.e., a
time-limit on usage or restricted feature set), and seems
to act as a marketing loss-leader.

In contrast to the majority of commercial software
licenses, whether or not the software is freely available,
the GNU definition of “free software” embodies four
basic freedoms: a) the freedom to run the program, for

any purpose, b) the freedom to study how the program
works, adapt it to meet user requirements, and fix bugs,
c) the freedom to redistribute copies as desired, and d)
the freedom to change the program, and release these
changes to the public, so that the whole community can
benefit.

Figure 1. Definitions of Free and Non-Free
Software (from gnu.org)

Freedoms b) and d) above obviously require
access to the source code, thus, the GPL requires
distribution of the source when software released under
the GPL is used or modified and released again. Note,
simply using or modifying GPL'd software internally
does not require distribution or release of internal code,
nor the release of any proprietary information or
intellectual property. Only when software based on
GPL'd code is released to the public are the source
code and any associated changes required to be
released as well.

The above principles, as defined in the GPL, are
inherently compatible with the mission of public
institutions, regardless of purpose (i.e., public software
for public education). The same freedoms apply to any
individual or organization who so choose to avail
themselves of the technology, as well as the related
communities of developers, users, and commercial
consulting support.

Both education and the scientific process itself are
dependent on freely shared and open ideas, including
those expressed as program source code. In fact,
without access to the source code, scientific verifiability
becomes increasingly difficult, if not impossible
(Gazelter, 1999). Releasing software under the GPL

helps ensure the ideas and their implementation in
software are preserved and made available to all, in the
same way that books preserve the ideas of past
generations.

Open standards are the second key to making
modern technology available to all. Only a public
infrastructure can serve the needs of the public, and our
modern infrastructure is based on protocol standards
such as those developed by the Internet Engineering
Task Force (IETF). Open standards, whether for
software, network protocols, or file formats, serve to
mitigate or prevent outside vendor control over others
(i.e., vendor lock-in). As an example, the IETF requires
demonstrated interoperability for any Internet standard
specification proposed for public use. Without such
open and publicly controlled standards, communication
and data sharing between different brands or models of
computer would be virtually impossible. For the Linux
community, the Free Standards Group helps develop
and promote a common set of behavioral specifications,
tools and ABIs across Linux platforms.

2. FREE AND OPEN SOURCE SOFTWARE

As attractive as the above ideas are, there are
many more compelling reasons to examine free
software alternatives. One such topic is described in a
report from the National Research Council entitled
“Being Fluent with Information Technology (NRC,
1999). In it, the authors ask the question “Why know
about information technology?”, focusing on what an
individual must know and understand about information
technology in order to use it effectively and productively
for their own purposes. The rationale motivating an
understanding of information technology spans at least
4 broad categories: personal, workforce, educational,
and societal, all of which are intimately connected with
our educational system, impacting our economy and
society as a whole.

Only through increased exposure at all educational
levels can our students become truly fluent with
information technology, and this exposure must be
more than a single vendor's black-box wizards.
GNU/Linux and other free and open source software
provide the only way to truly look “under the hood” and
learn core concepts, as well as get real hands-on
experience without incurring any license fees or legal
repercussions.

 2.1 Example: Python
One such example technology is the programming

environment and object oriented language known as
Python. Python is an excellent scripting language and
wrapper interface to libraries and legacy codes, as well
as a full-featured Object Oriented Programming (OOP)
language. At its simplest, Python is an interactive
environment with intuitive variable types (i.e., a weakly-
typed language) and built-in high level data structures
such as lists, dictionaries (hashes), and tuples. Python
is said to come with “the batteries included” which is a

reference to the extensive set of included libraries for
everything from network services to mathematics.
Python was designed for ease of use, and, as
evidenced in Kirby Urner's excellent essay “Python in
the Mathematics Curriculum” (Urner, 2004), is truly the
programming language for everyone (even K-12
students).

Python itself is available in both source and binary
forms for a variety of platforms, along with a large
library of documentation and tutorials. Python software
is available for a variety of tasks, from web application
platforms such as Zope, to scientific and numerical
analysis (ScientificPython).

2.2. A Cornucopia of Software
Personal experience includes document production

in multiple formats (HTML, PDF, DOC), course data and
student data management, web server administration
and application development, curriculum development,
and communication with both students, faculty and the
administration.

The office productivity suite from OpenOffice.org is
used for production of documents and presentation
materials in various formats, as well as management of
student information and grades. Course delivery
outside the classroom, as well as in, makes extensive
use of the Zope web application framework for both on-
line documents and interactive applications (e.g., the
GeoZone discussion forum).

Future geography course plans include MapServer,
an OpenSource development environment for building
spatially enabled Internet applications. The MapServer
software builds upon other popular GNU and Open
Source systems such as Shapelib, FreeType, Proj.4,
GDAL/OGR and others. The MapServer system also
includes MapScript which allows popular scripting
languages such as Python, PHP, Perl, and soon even
Java, to access the MapServer C API. Zmapserver is a
Zope product (essentially a plug-in) that provides an
interface to MapServer within Zope.

The ad-hoc categories and examples shown in
Table 2 give a glimpse into the depth and breadth of
available technologies, as an exhaustive list is well
beyond the scope of this paper. Such static lists are
also in contrast to the fluid nature of modern digital
media and communications; witness the popularity of
news and software sites such as SlashDot and
FreshMeat.

As the World Wide Web is really the definitive
source for the latest information, the following short list
of software sites is current as of this writing:

● Python: http://www.python.org

● GNU Project: http://www.gnu.org

● Open Standards: http://www.freestandards.org/

● Gentoo Linux: http://www.gentoo.org

● CentOS & cAos Linux: http://www.caosity.org

● Zope: http://www.zope.org

● MapServer: http://mapserver.gis.umn.edu/

● OpenOffice: http://www.openoffice.org

● UCAR: http://my.unidata.ucar.edu/content/software/

● The author's geography course materials and web
applications: http://arnolds.dhs.org/geography

● Short Example List of Earth Science Software:
http://arnolds.dhs.org/geography/software

● The author's Gentoo ebuilds and RPM packages:
http://arnolds.dhs.org/software

Although all major Linux distributions, e.g., RedHat,
Debian, SuSe, and CentOS, include a large selection of
major software packages, the Gentoo Linux distribution
provides the largest selection of additional packages,
from scientific applications to obscure programming
languages (in addition to the same core packages as
above). The Gentoo portage tree (the available
packages) currently contains 7941 ebuilds (although
this includes multiple versions / revisions of individual
packages).

 3 VIEW FROM THE TRENCHES

It all starts on the desktop, thus all course
materials, including but not limited to, course outlines,
schedules & calendars, course notes & handouts,
exams, web pages, and software, are produced on a
Gentoo Linux desktop (typically Gnome). Other
components such as Zope require a dedicated network
server for maximum benefit, along with sufficient
network bandwidth (although Zope can still be run on a
local desktop if desired). The following software is
central to a well-equipped educator's desktop:

● Gnome Desktop Environment: Integrated desktop
applications with modern features such as drag-'n-
drop, dynamic menus, auto-mounted removable
media, etc. Includes Nautilus file-manager and
utilities for graphics, text, archiving, etc. A lighter-
weight alternative (i.e.,, smaller memory footprint,
fewer core processes and package dependencies),
either for an older machine with minimal resources,
or perhaps a sub-notebook, would be Xfce-4.

● Desktop Document production: OpenOffice is used
to generate all formats from master text documents.
Student information and course data is maintained
using spreadsheet documents, and lecture
presentation slide-shows as well.

● Data Analysis and Graphics: Octave and gnuplot
provide equivalent functionality, and even m-file
compatibility with the basic Matlab(TM) package.
Other scientific and statistical packages exist, as
well as discipline-specific models and databases for
everything from mesoscale meteorological analysis
and forecasting to bio-informatics.

● Web Services: The Zope web application framework
is used to serve course content and other
information (schedules, etc), as well as host
interactive applications such as the discussion
forum, and web applets such as pymetar, zweather,
and zmapserver.

● Third-Party Services: Other providers, such as
Blackboard and Prentice Hall, have been evaluated
with limited success. The textbook companion web
sites have provided limited utility as optional
assignments, while additional topical sites are used
on an ad-hoc basis.

● Real-time Chat and Conferencing: Internet Relay
Chat (IRC) was recently introduced as Virtual Office
Hours, however, students have not yet utilized this
resource. Video conferencing with GnomeMeeting
is also an option, especially for distance learning.

 Gentoo Linux is seen to be an almost perfect
match between free software and education / research
needs. Gentoo supports scientific & high performance
computing, as well as general education, with a huge
collection of cutting-edge applications, all optimized to
extract the maximum performance from a given
processor.

The main difference between Gentoo Linux and
most other distributions is that Gentoo is designed to be
built from the latest stable source packages, as
opposed to a pre-built set of binary packages. When
configuring and building a Gentoo Linux system, the
user gets to specify his or her own set of compiler
optimizations, so everything is built against their own
processor and hardware architecture. Each package is
also built using user-specified flags that control how
each one is built, which optional features are supported,
and which other library/package dependencies are built.

When performing a Stage 1 installation, the system
contains only the build tools and basic system
components required to run the system (i.e. a kernel,
system logger, and basic system administration tools).
At this point, the system requirements can dictate
additional functionality and tools. The end result is a
highly optimized system running the latest stable
version of each package, and only the required
packages. In many ways, Gentoo is still a standard
Linux system, although some key characteristics are
different from other Linux systems:

● A Gentoo system is always current; syncing and
updating the system brings it to the current baseline
(so there's no such thing as a “system upgrade”).

● Only what's needed is built (as determined by the
build configuration) and everything is optimized for
the host processor (as opposed to generic i386
binaries).

● Everything from installation to system configuration
to deployment and maintenance is up to the user
and not the distribution vendor, yielding one of the
most flexible Linux systems available today.

The majority of the author's home systems currently
run Gentoo (in both desktop and server roles), including
all family member's PCs. In addition to standard
network services, such as DNS, WWW, and email, a
Gentoo server allows me to build, deploy, and maintain
a small network of more than a dozen machines with
minimum time and hassle. After many years of Linux
experience with at least 2 dozen different distributions,
Gentoo has shown itself to be an excellent learning tool,
as well as an extremely functional desktop and
manageable server platform.

 4 RESULTS AND DISCUSSION

Overall, none of the results discussed here nor
even the production of typical course support materials,
would have been possible without GNU tools and other
open source software packages. The cost of a
commercial office suite, including the ability to create
PDF documents, easily exceeds the cost of building two
Linux machines, so the reader is invited to draw their
own conclusions.

Beyond the basics, however, open source software
brings many other benefits such as the ability to learn
from the source code, extend its functionality, fix bugs,
and generally make use of the software as discussed in
Section 1 above.

In addition to sharable document formats such as
PDF, all other documents (spreadsheets, presentations,
etc) have transferred easily to campus computers, both
Macs (as are used in the smart podiums) and Windows
PCs. Minor formatting errors, mostly font-related, have
been observed, but even repeated translations seem to
cause no problems.

The ease of creation and management of course
web sites is directly related to the modular Zope
architecture and built-in management interface for both
content and users. Creating and configuring a
Squishdot discussion forum takes less than 5 minutes;
the new site is then ready to add users and custom
topic icons (finding the right icons takes longer than
creating a new site).

4.1. Assessment: Student Scores
Current assessment methods used include a

variety of exams, in-class group activities, individual
homework assignments, and web applications. The
majority of assignments are required; open-book
exams, group and individual assignments and activities,
and a semester project (e.g., contributing relevant
articles and comments on the web-based discussion
forum). Optional or extra-credit points are available
through the web-based quizzes and exercises provided
by the textbook publisher (in the example of the
discussion forum project, additional articles or
comments beyond the minimum are also accepted).

The student scores shown in Table 3 are from
several evening geography courses, taught over the
last 5 years (early data was lost in a proprietary data

format). Although each data set is small (due to class
size), and includes a different set of projects and
assignments, there is still something of value to be
learned. Outliers (informal drop-outs) have been
removed.

The first and second rows of data (for Fall '01 and
'02) show the results using standard exam questions
(drawn from the publisher's “test data bank”) and the
textbook companion web site for weekly required
assignments. Participation rates were marginal, with
only 25% of the class submitting at least 75% of the
homework, and scores were corresponding low (as
were previous semesters).

The third row of data (for Spring '02) shows the
results of introducing the Squishdot discussion forum as
the required semester project (one topical article
posting per week, plus two comments on other articles).
The participation rate jumped to almost 100% (all but
one student completed 100% of the assignments),
which may illustrate the importance of peer-interaction
and real-life issues (recall that previous web-based
assignments were apparently less attractive).

The Spring '03 semester (shown in the fourth row)
introduced open-book exams, to replace the canned
materials used previously, for a Human Geography
course. The discussion forum project was replaced with
a new semester project requiring students to research
both the histories and migration routes of one or more
family members, using any and all references (i.e.,
Internet resources, family members, letters, etc).

Subsequent semesters retained the open-book
exam format for all courses, and allow the use of the
textbook web site (if available) to obtain extra-credit
points. The Squishdot discussion project is again
underway for the Physical Geography course as of this
writing; planned future enhancements include an
article/author rating system.

Since the discussion forum functions are limited to
one type of interaction only, in this case web “Blog”
publishing, the next logical step would be a web portal
environment (this is currently under evaluation on the
author's web site).

The student data is relatively coarse and under-
sampled, and was not intended to be strictly controlled
from one semester to the next, since new project ideas,
exam questions, and supporting technologies are
continuously introduced. The data suggest, however,
that one of the most promising components is the
concept of “environment”, i.e., the discussion forum only
allows students to post (although anyone can browse).
The community environment is also one of the key
factors in the success of community-driven open source
projects such as Gentoo Linux, so this is not without
precedent.

In addition to the “environment” factor, the second
important point seems to be that of “connection”, i.e.,
how do the course materials and concepts connect with
the students' real lives and experiences? The response
to the above assignments suggests that both of these
factors together can at least engender a fairly high level

of both interest and participation in required course
assessments and activities.

The overall response to web applications and other
on-line content delivery mechanisms has been very
good, with most students participating in various on-line
exercises at a high level, many enthusiastically
(including some low-income and ESL students). All
web applications and content are apparently not
created equal, however, as the chapter exercises on the
textbook's “companion” web site only seem to evoke a
marginal response when used alone.

In general, the ability to submit assignments via the
web and email has been well-utilized by the majority of
students, and even critical for some students to retain
their grades, given international travel and other family
commitments (e.g., just before the winter break).
However, a handful of students, regardless of the age
group, are still somewhat hindered by a lack of
experience and have a correspondingly low self-
confidence or “comfort level” with the technology in
general (relying on hard-copy or other workarounds for
assignments).

4.2 Issues: Logistics and Training
The core issues impeding even higher participation

levels and student scores are mostly related to logistics
and technology training, including:

● Student Technology Proficiency: Medium on
average, however, with a large range and variance.
Requires additional information technology support,
however, universal freshman technology courses
are recent and not very wide-spread (still optional
for most majors).

● Basic Skills: Also medium and highly variable in all
areas, however, the Hancock enrollment population
is high in recent immigrants and other ESL students.
Requires additional math and writing support.

● Provision and Deployment of Technology: Effective
use and management of resources requires a
dedicated campus infrastructure, requiring at least a
low-end Linux server per department (including
appropriate routers and firewalls), as well as a
shared T-1 data connection at a minimum. Effective
IT support and deployment policies are also
important, if only for network stability and non-
interference with existing services. However, a
small number of courses can easily be supported on
a single machine and budget ADSL connection (i.e.,
768k/128k) at the expense of some end-user
browsing performance.

Linux-based web hosting can be a cost-effective,
scalable, and flexible alternative, the main limiting factor
being network bandwidth (depending on data and
usage requirements). High-availability configurations
and blade servers are currently popular, including
hooks for several popular database back-ends,
directory services, and authentication mechanisms
(both open source and commercial).

The author's geography courses are currently
hosted on a low-end Linux web server and home DSL
connection (a dedicated geography web server is in the
purchase order queue; total cost $600 plus build time).
Additional planned services include live meteorological
data and web-based analysis tools, as well as web-
based GIS & mapping tools (requires additional network
infrastructure and bandwidth for live data feeds).

 5 SUMMARY AND CONCLUSIONS

Traditional exams constructed from a variety of
questions provided by the text-book publisher (eg,
multiple choice, true/false, essay, etc) typically result in
the lowest scores. Additional weekly quizzes using
similar questions (actually requested by the students)
did not raise scores appreciably (Table 3, first two
rows).

Open book exams, using a variety of thought-
provoking questions, seem to promote the highest
scores, although they require more work to prepare and
grade than using the test-generation tools supplied by
the publisher (eg, the Test Manager software provided
with Prentice Hall geography texts). The students also
seem to feel like they've really accomplished
something, which is always a good thing. Effective
questions must involve core concepts (eg, geostrophic
wind, adiabatic warming and cooling) and provide for a
range of expression types, including definitions,
diagrams, essays, plotting data, and explaining the key
relationships.

Extra credit assignments, whether traditional or on-
line, and regardless of the point totals, typically help
less than 10% of the class raise their grade (e.g., 1 or 2
students would actually benefit by a letter grade
increase), and usually not those who need it the most.
To see any large-scale benefits, assignments must be
required, however, as noted earlier, electronic
submission allows for student travel and other
contingencies.

The highest participation rates in homework
assignments are seen when the projects involve the
use of conceptually-targeted assignments incorporating
both technology and human interaction. For example,
in the group discussion project, the articles are required
to be topical and course-related, as well as have some
impact on the local community (if possible). The
students are also required to read and comment on
articles posted by their classmates, which they seem to
enjoy. The first time this approach was tried,
participation went from 25% of the class completing
80% of the homework (using the text-book web site) to
92% of the class completing 100% of the above
assignments on the discussion forum. The “community
environment” of the discussion forum, as well as the
convenience of an entirely web-hosted project, appears
attractive enough to facilitate significantly more
homework volume (and participation is the first step).

The additional chapter exercises on the publisher's
course-companion web site are now used as extra-

credit assignments (graded on participation only), since
they do not seem to produce the same interest level in
the students, nor do they connect the course concepts
so directly to their own lives. On-line participation rates
in general are also significantly higher than with
traditional paper assignments (which are still used a few
times per semester class), however, the execution of
the former is still somewhat hampered by individual
student's proficiency with basic tasks such as handling
web forms, email, and electronic documents (less than
10% usually fall into this group).

Above all, the use of GNU/Linux, Zope, Python, and
other freely available open source technologies allows
the flexibility, productivity, and freedom (frpm both
license fees and the associated restrictions) to create
and deliver course content, as well as attract students
in positive and measurable ways. Some commercial
alternatives are just too expensive for students or part-
time instructors, or even many institutions in today's
budget climate, and in reality, most just aren't designed
for the kind of end-user requirements and flexibility
discussed here.

Keep in mind, without the “environment” and
“connection” factors discussed previously, the use of
technology for its own sake does not seem to
significantly enhance either interest level or participation
(nor performance, for that matter), however, when
applied in concert, the use of appropriate technology
truly allows things to happen that would otherwise be
impossible (or at least highly unlikely). The fact that
GNU/Linux and other open source technologies are
essentially free of license restrictions, as well as low in
life-cycle costs, is just the icing on the cake.

REFERENCES

Gazelter, J. Daniel, 1999: “Catalyzing Open Source
Development in Science,” paper presented at the
conference “Open Source/Open Science,”
Brookhaven National Laboratory, October 2, 1999
(slides available at
http://www.openscience.org/talks/bnl).

National Research Council, 1999: Being Fluent with
Information Technology. Report of the Committee
on Information technology Literacy, Computer
Science and Telecommunications Board,
Commission on Physical Sciences, Mathematics,
and Applications. Washington, D.C.: National
Academy Press. Available on-line at
http://books.nap.edu/books/030906399X/html/R1.ht
ml

Stallman, R.M., 2004: “The Philosophy of the GNU
Project,” Free Software Foundation (FSF),
http://www.gnu.org/philosophy/

Urner, Kirby, 2004: “Python in the Mathematics
Curriculum,” paper presented at the PyCon '04
conference, March 24-26, 2004, Washington DC
(slides available at
http://www.python.org/pycon/dc2004/papers/15/).

Type Platforms Available Main Characteristics

Historical “freeware”
Archives:

Subtypes include
“shareware” and
“crippleware”

Windows, MacOS,
OS/2, other

Format: usually binary-only.

Licensing: usually copyrighted with restricted distribution.

Quality: generally low (high variance).

Origin: mostly individual developers and small software shops,
some university and government organizations, a few larger
technology firms.

Destination: mostly dead-end and unmaintained packages for
out-dated operating systems & hardware platforms, or hardware-
specific drivers/utilities.

Examples: WUStL archives, Walnut Creek CD-ROMs.

Public Domain
Software:

Various (Linux, BSD,
commercial Unix,
Windows, Mac, other)

Format: usually source code, some binary.

Licensing: unrestricted/unprotected (no copyright).

Quality: low to high (medium variance).

Origin: mostly university and government organizations, some
students, individual developers, technology firms.

Destination: good packages tend to get conscripted by private
companies for their own gain, while the rest go stale and
unmaintained.

Examples: Various commercial Unix archives (e.g., Sunsite),
public institutions (USGS, etc). Most modern code is released as
GPL'd or other copyleft software now.

Free Software / Open
Source Software:

(covers many
different subtypes
based on license)

Mostly Linux, *BSD,
and commercial Unix
(on supported
hardware), also various
Mac and Windows
flavors

Format: most licenses require source code to be made available,
but binaries are often available for individual packages as well,
and most Linux/BSD distributions are available as binary-format
installations.

Licensing: Various, mostly the GNU Public License (GPL/LGPL)
and others (Apache, MIT, UCAR/Unidata). Most licenses are
copyleft, i.e., copyrighted free software whose distribution terms
do not let re-distributors add any additional restrictions when they
redistribute or modify the software.

Quality: generally high (low variance).

Origin: foundations, public institutions, companies, and individual
developers.

Destination: literally everywhere, from powering the Internet and
many organizations (DNS, Email, WWW) to embedded devices
such as TiVo, to NASA's Mars rovers and NOAA's Weather
Forecast Offices.

Examples: GNU Project (Free Software Foundation), Gentoo
Linux (source-based), CentOS, Fedora Project, and RedHat Linux
(binary installation, source available), Python (Python Software
Foundation), Apache (Apache Software Foundation),
SourceForge, Savannah, Unidata, NOAA, NASA, etc.

Table 1. A Taxonomy of Free Software

Earth Sciences:

Meteorological
Analysis & Modeling

Winds On Critical Streamline Surfaces (WOCSS), Local Analysis and Prediction
System (LAPS), PSU/NCAR mesoscale model (MM5).

GIS and Mapping GRASS, GMT, iGMT, FreeGIS, GeoTools, OpenEV, proj-4, GDAL, shapelib,
MapServer, Zmapserver.

Data Transports Local Data Manager (LDM), CORBA, jabber (XML transport), standard network sockets
and protocols (e.g., FTP. HTTP), custom protocols.

General Science:

Numerical Computing ScientificPython, Octave, Scilab.

Numerical Libraries ATLAS, BLAS, LAPACK, GMP, Netlib.

Clusters / HPC Openmosix, MPI, OpenPSV (SMP kernels now standard).

Data Formats NetCDF, HDF4/5, BUFR, GRIB, ETOPO.

Analysis/Visualization Vis5D, NCAR Graphics, VTK, OpenGL, GNUPlot.

Operating Systems and
Hardware Architectures:

Linux Numerous distributions that run on x86, PPC, HPPA, MIPS, ARM, Sparc, etc.

*BSD OpenBSD / NetBSD / FreeBSD (at least x86).

Embedded Devices Sharp Zaurus, Ipaq, network devices, single-board computers. Both open source and
commercial distributions and tools are available specifically for embedded development.

Network Services:

Web Application
Server Support

Zope, Webware, Jakarta/Tomcat, PHP, cgi.

User-side Services Web applications/browsers, email, news, chat/messaging, conferencing,
security/privacy.

Sub-user Databases and data transports, firewalls and proxies, name resolution, authentication.

Distributed Computing seti@home, distcc, various forms of clustering, grid computing.

Security VPNs, SSH/SSL, NetFilter (iptables), SASL, Kerberos, Intrusion Detection, packet
monitoring.

Software Development:

Programming
Languages

Ada, Python, C, Fortran, C++, Java, Perl, Ruby, AWK, SmallTalk, Lisp (and many
more).

Development Tools GCC/GDB, SWIG, SourceNavigator, Insight Debugger, Doxygen, Emacs, bugzilla.

Configuration
Management

CVS / ViewCVS, subversion, arch.

Office Productivity and
Administrative Support:

Document production Multiple formats from a single SGML source document XML, HTML, PDF, RTF, LaTex.

Office Productivity OpenOffice, Koffice, ProjectMananger, Mozilla.

Table 2. Examples of Free & Open Source Software Useful in Academia

Semester LOW HIGH MEAN MEDIAN STD-DEV N

Fall 2001 45 84 70 76 13 16

Fall 2002 50 87 68 67 12 14

Spring 2002** 35 95 82 87 16 12

Spring 2003*,*** 35 97 84 89 16 23

Fall 2003* 82 94 90 91 7 9

Spring 2004* 61 100 90 92 17 26

Table 3. Student Geography Scores by Semester

* includes web-site extra credit

** first use of Squishdot discussion forum project

*** migration research project

