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1. INTRODUCTION

In this study several approaches for obtaining more ac-
curate background error covariances for atmospheric data
assimilation are explored. Experiments are conducted
by replacing the covariances in the operational three-
dimensional variational analysis system (3D-var) at the
Canadian Meteorological Centre. In the current system,
these covariances are computed using the so-called NMC
method that is known to suffer from several deficiencies.
The background error correlations are also assumed to be
horizontally homogeneous and isotropic.

For this study, random samples of background error are
generated by simulating (using a Monte Carlo approach)
the error generated at each stage of the forecast-analysis
process. The 3D-var is used to perform the analyses using
perturbed observations and background field and conse-
quently the approach is termed the “perturbed 3D-var”.
As part of the approach two different methods for sim-
ulating model error are examined: (1) additive random
error drawn from a specified Gaussian distribution and
(2) random perturbations to the tendencies of the physi-
cal parametrizations of the forecast model. For both ap-
proaches a simple adaptive tuning procedure is employed
to ensure the simulated background error variances are
consistent with observation error variances and innovation
variances.

One of several strategies for estimating the full covari-
ance matrix from a relatively small number of error sam-
ples is then employed. Approaches include the use of a
wavelet representation and a spatially localized ensemble
representation of the correlations. Both allow the usual
assumptions of homogeneity and isotropy to be relaxed to
some extent.

Finally, a simple approach for the on-line tuning of the
background error variances is employed. This is similar to
the approach used to tune the model error variances in the
perturbed 3D-var, except that the tuning is applied directly
within the main analysis system without the need to run a
parallel perturbed forecast-analysis cycle. The result is a
slowly varying estimate of the background error variances
obtained from the innovation variances computed at each
analysis time.

*Corresponding author address: Meteorological Service of Canada,
2121 TransCanada Hwy, Dorval, Quebec, Canada, HO9P 1J3; e-mail:
mark.buehner @ec.gc.ca

2. PERTURBED 3D-VAR

The extended Kalman filter provides a means of contin-
ually evolving the error covariances of the estimated state
in a sequential forecast-analysis system. According to the
extended Kalman filter, the background error covariances
are given by

B=MP*M? +Q, (1)

where B is the background error covariance matrix, M is
the linearized forecast model, P* is the covariance matrix
for the error in the previous analysis and Q is the model
error covariance matrix that accounts for the additional
error induced by errors in the forecast model. An accurate
statistical description of the model error is not available
and remains a major challenge for most data assimilation
approaches (Dee 1995). The analysis error covariances
are given by

P® = (I - KH)B. )
where K = BH” (HBH” +R) ™" is the Kalman gain
matrix. For realistic problems, the solution of Eq. (1)
and (2) is computationally infeasible due to the high di-
mensionality of the problem. Instead of manipulating the
full covariance matrices, one common approach is to ap-
proximate the probability distributions by an ensemble of
random samples drawn from the distribution. This is the
approach taken for the ensemble Kalman filter (EnKF). A
simpler approach based on Monte Carlo simulation and
similar to that described by Houtekamer et al. (1996) was
recently used to recompute the stationary background er-
ror covariances in the variational analysis system at the
European Centre for Medium-Range Weather Forecasts
(Fisher and Andersson 2001). For the present study a sim-
ilar approach, the perturbed 3D-var, is employed and is
compared with the NMC method as currently used in the
operational system.

In the perturbed 3D-var approach, as in the EnKF, an
ensemble of forecast-analysis experiments are conducted
with perturbed observations and background states, but
with the analyses performed using the 3D-var with the
operational background error covariances. Also, instead
of attempting to compute flow-dependent error statistics,
the approach is used to estimate the stationary component
of the error statistics over a period of several weeks. Due
to the pooling of samples over time, only a small number
of perturbed forecast-analysis experiments are required in



addition to an unperturbed experiment. Differences be-
tween the 6 hour forecasts from the perturbed and unper-
turbed experiments are then computed and used to repre-
sent samples of background error. The specification of the
model error covariances used to compute perturbations to
the background states remains the biggest challenge. To
partially overcome this difficulty, an adaptive tuning pro-
cedure is used. The tuning approach is based on a com-
parison between the innovation statistics from the unper-
turbed experiment and the simulated innovations from the
perturbed experiment. The approach is simpler than that
proposed by Dee (1995) and examined by Mitchell and
Houtekamer (2000) in the EnKF context. The simplifica-
tion is attained by assuming the model error covariances
are proportional to the current operational background er-
ror covariances and therefore only the scaling factors ap-
plied to these covariances must be determined (as sug-
gested by Mitchell and Houtekamer 2000). The scaling
factors for wind components and temperature are com-
puted independently for each of the model’s 28 vertical
levels and for each of three latitude bands. The tuning
procedure guarantees that the horizontally averaged inno-
vation variances simulated by the perturbed experiment
equal the true innovation variances. An alternative ap-
proach of representing the model error by randomly per-
turbing the tendencies from the physical parametrizations
is also currently begin explored.

Two perturbed 3D-var experiments were run over the
period November 25, 2003 to December 31, 2003 to ob-
tain a total of 136 error samples. With these error samples
a new bhackground error covariance matrix was computed
using the same method to model the correlations as in the
operational system. Results from an assimilation cycle
experiment using these newly computed background er-
ror covariances over the same period produce 6 hour fore-
casts of significantly improved quality over the Northern
extra-tropics as compared to using the operational back-
ground error covariances (Fig. 1). These statistics were
computed versus the radiosonde observations over the pe-
riod December 3-25, 2003 at 12 hour increments (total of
45 cases). Verification of forecasts of up to 5 days and
initialized with the analyses of each experiment will be
shown in the conference presentation.

3. CORRELATION MODELING

In the currently operational analysis system the hori-
zontal correlations are homogeneous and isotropic and the
vertical correlations are horizontally homogeneous for the
independent variables: ¥, x', T", log(Q) and p!, (primes
represent unbalanced components). Latitudinal depen-
dencies in the geostrophic and Ekman balance operators
do allow some spatial variations in the correlations for the
“full” variables, but these are quite limited. Consequently,
several alternative approaches are being examined for es-
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Figure 1: Standard deviation of the difference between 6 h
forecasts and radiosonde observations (solid curves) and
between the analyses and observations (dashed curves) for
the Northern extra-tropics for (a) wind components, (b)
temperature, (c) dew-point depression. Results are shown
for the control experiment using the currently operational
background error covariances, the experiment using co-
variances computed from the perturbed 3D-var error sam-
ples, and the experiment using the operational covariances
with variances that are tuned on-line.

timating the full correlation matrix from the O(100) sam-
ples of background error obtained with the perturbed 3D-
var approach. It is possible to use the simple sample es-
timate, however it quickly becomes evident that a much



larger number of error samples must be used to reduce the
estimation error to an acceptable level and to be able to
fit the observations (Buehner 2004). Two approaches that
reduce estimation error without increasing the number of
error samples are now described.
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Figure 2: Vertical covariances for zonal wind at 460 hPa,
180° longitude and (a) 60° N or (b) at the equator. The
covariances are normalize to have a maximum value of 1.

H.l. denotes the homogeneous and isotropic representa-
tion of the correlations used in the operational system.

3.1 Sample Estimate with Localization

The most obvious problem with using the sample es-
timate for the correlations is the presence of large spuri-
ous correlations at very large separation distances where
the correlations are expected to be small. To overcome
this problem, a procedure for spatially localizing the cor-
relations was proposed by Gaspari and Cohn (1999) and
examined in the context of an EnKF by Houtekamer and
Mitchell (2001) and Hamill et al. (2001). An efficient
approach for implementing horizontal and vertical local-
ization in a variational context with preconditioning is
described by Buehner (2004). This approach attempts
to leave the correlations corresponding to relatively short

a
@
0.8
8 06
g
= 04
g
o 0.2
o
) o{-- - - T
-0.2
-0.4
500 1000 1500 2000 2500
distance (km)
1 (b) — Raw
—— Local
08 —— Wavelet
S 06 —— H.L
c
©
IS
>
(o]
o
-]

500 1000 1500 2000 2500

distance (km)

Figure 3: Covariances in the zonal direction for zonal
wind at 460 hPa, 180° longitude and (a) 60° N or (b) at
the equator. The covariances are normalize to have a max-
imum value of 1.

separation distances unaffected, while suppressing those
for large separation distances.

3.2 Wavelet Expansion

An approach based on a non-orthogonal wavelet ex-
pansion on the sphere was introduced by Fisher and An-
dersson (2001). The wavelet functions are both band-
limited in spectral space and spatially localized in grid-
point space. Using the wavelets as a set of basis func-
tions, the error samples are first transformed into wavelet
space. This gives a measure of the error associated with
the range of horizontal scales represented by a particu-
lar wavelet for the region surrounding each grid-point.
Therefore, the correlations depend on both horizontal
scale and spatial location. By assuming zero correla-
tions between the error for different wavelets and between
horizontal grid-points, an efficient representation of the
full correlation matrix can be obtained. The bandwidth
for each wavelet is usually specified so that in grid-point
space the basis functions for each range of scales is sim-
ply a dilated version of a mother wavelet. However, for



the largest scales the wavelets have global coverage and
therefore global scale correlations appear due to the dif-
ficulty in estimating such correlations. To obtain more
localized correlations it is simply necessary to impose
a minimum bandwidth when defining the wavelet func-
tions. The wavelet expansion used for the present study
span the spectral bands centered about the total wavenum-
bers 0,2,4,8,12,16,20,24,36,52,75,108. Note that the con-
stant bandwidth for scales between wavenumber 4 and 24
means that the correlations for these scales will have a
similar horizontal localization. This has a similar effect
on the correlations as the use of the localization procedure
described in Section 3.1.

3.3 Horizontal and Vertical Structure

To demonstrate the effect of using the different ap-
proaches for modeling the correlations, the results from
a series of single observation experiments are pre-
sented. First the vertical covariances for zonal wind is
shown in Fig. 2 for a zonal wind observation located at
180° longitude and either on the equator (Fig. 2a) or at
60°N (Fig. 2a). As expected, the covariances are similar
for the two locations when the homogeneous and isotropic
correlations are employed (they are not identical due to
meridional variations in the background error variances
for ¥ and x). The effect of the vertical localization is
evident by comparing the unmodified sample estimate of
the correlations (Raw) and the localized correlations (Lo-
cal). Both of these covariance functions exhibit a gen-
erally broader structure at the extra-tropical location and
a sharper structure at the tropical location as compared to
the homogeneous and isotropic correlations. The wavelet-
based correlations (Wavelet) exhibit a similar, but less
marked, difference when compared to the homogeneous
correlations.

Similarly, the horizontal correlations (zonal direction
only) for zonal wind are shown in Fig. 3 for the same
two locations. In the horizontal the sample estimate and
localized correlations are sharper at the extra-tropical lo-
cation and broader at the tropical location as compared
with the homogeneous and isotropic correlations. Again,
the wavelet-based correlations exhibit a structure that is
somewhat in between the others, but at the tropical loca-
tion exhibits more larger correlations than the localized
or homogeneous and isotropic correlations beyond about
1000 km.

4. ON-LINE TUNING OF BACKGROUND ERROR
VARIANCES

A simple approach for efficiently tuning the back-
ground error variances was developed for the operational
3D-var analysis system. The approach is similar to that
used for tuning the model error variances in the perturbed

3D-var experiments described above. By making the as-
sumption that the observation error variances are correct,
it becomes straightforward to compute the background er-
ror variances as

2 _ 2 2
Op =0q — 0y,

®)
where o2 is the background error variance projected into
the space of the observations, o7 is the innovation vari-
ance and o2 is the observation error variance. In the first
tests, only radiosondes data are used since the observa-
tion error variances are probably most accurate for this
data type and the observed quantities have close corre-
spondence with the analysis variables (i.e. winds, tem-
perature, and humidity). Because the spatial distribution
of the radiosonde network is sparse and not uniform the
variances are computed over only three regions: North-
ern extra-tropics, Southern extra-tropics and the tropics.
In addition, to obtain background error variances that are
vertically and temporally smooth additional filtering was
performed on the variances. Figure 4 shows the time-
mean vertical profile and vertical-mean time series of the
scaling coefficients.

Currently, we are exploring how to use TOVS bright-
ness temperature observations for this tuning since they
have better global coverage. However, first a new estimate
for the TOVS observation error variances must be com-
puted since currently the observation error variances and
corresponding background error variances (projected into
brightness temperature space using a randomization ap-
proach) are grossly inconsistent with the innovation vari-
ances for several channels. The approach of Desroziers
and Ivanov (2001) is now being considered to recompute
the TOV'S observation error variances.

This approach was applied in an assimilation experi-
ment using the operational background error covariances
over the same period defined in Section 2. The prelimi-
nary results for the Northern extra-tropics show a signifi-
cantimpact from the tuning on the fit of the analyses to the
data (Fig. 1, dashed curves, Control vs. Tuned). The effect
of fitting the observations less closely in the troposphere
and more closely above about 100 hPa is consistent with
the computed tuning coefficients that are shown in Fig. 4.
Figure 1 also shows the impact on the fit of the 6 hour
forecasts to the observations (solid curves). This shows a
slightimprovement from the tuning in the troposphere and
some degradation in forecast quality in the stratosphere.
The reasons for this difference are still under investiga-
tion. Overall, the impact on the 6 hour forecasts of wind
and temperature is less than the positive impact from us-
ing the background error covariances estimated from the
perturbed 3D-var error samples discussed in Section 2.

More detailed results will be shown during the confer-
ence presentation including the impact of this tuning pro-
cedure on the resulting 5 day forecasts.
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Figure 4: Tuning coefficients for the background error variances computed from innovation and observations error
variances. The coefficient are shown as a vertical profile of the time-mean for (a) winds and (b) temperature and as
a time series of the vertical mean for (c) winds and (d) temperature. They are also computed separately for the two

extra-tropical regions and the tropics.

5. CONCLUSIONS

The preliminary results presented here suggest that im-
provements to the currently operational 3D-var analysis
system can be obtained by replacing the background er-
ror covariances with covariances computed using the per-
turbed 3D-var approach. The examination of alternative
approaches for modeling background error correlations
in order to relax the assumptions of homogeneity and
isotropy are continuing.
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