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1. INTRODUCTION 
 
As the number of observation platforms and 
numerical models on all scales continues to rapidly 
increase, the large amounts of data that they 
generate threaten to hamper the progress in scientific 
research and forecast improvement, or even 
overwhelm (both in time and data-space) the 
researchers and modelers that use them. The NASA 
Earth Science Enterprise (ESE) strategy and mission 
documents specifically note that one of the important 
challenges facing NASA is that of transforming vast 
quantities of data and information into products that 
can be beneficial to users, especially for economic 
and policy decision making. Pertinent examples of 
these products would be model-generated forecasts 
such as hurricane landfall, air quality, 3-day and 7-day 
weather forecasts. While the assimilation of more and 
better observations is necessary for forecast 
improvement, today’s global models and data 
assimilation systems cannot ingest and utilize all of 
the data available to them due to extremely large 
computational costs and constrained network 
bandwidth. This is not only a result of the data 
volume, but also due to issues in dealing with the 
potential impact of each additional observation type, 
as well as differences between model grid size and 
the data grid/density. For example, typical 
observational data has a horizontal resolution of 25km 
or better.  In addition, in regions where there is an 
overlap of orbital paths from different satellites the 
combined data density is much higher.  The 
crudeness of current techniques used to thin such 
data to manageable densities indicates the lack of 
viable methods for dealing with the complex problem 
of extracting the information-dense data that provides 
the best representation of the atmosphere.  
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This paper describes the development and testing of an 
automated Intelligent Data Thinning (IDT) algorithm to 
facilitate improved data assimilation schemes and forecast 
accuracies by preserving information-dense regions while 
removing redundant data points. The development of this 
algorithm is a collaborative effort involving  a team of data 
mining experts at the University of Alabama in Huntsville 
(UAH), numerical modelers at Goddard Space Flight 
Center (GSFC) and Simpson Weather Associates (SWA) . 
 

2. BACKGROUND 
 
As space-based observing systems generate ever 
increasing volumes of data, there arises the need to better 
discriminate between useful data points and data points 
which are simply redundant.  Data Assimilation Systems 
(DAS) processing times can increase by as much as the 
square of the number of observations, depending on the 
assimilation method used.  To circumvent this problem, 
most operational centers must resort to using very crude 
thinning methods to reduce data volume.  Some of the 
existing data thinning techniques used in the Earth 
science modeling and research community include 
superobing, using a single observation per grid box, using 
observations closest to the model first guess, and using 
observations furthest from the model first guess.  
Superobing is a regional averaging technique using a 
simple weighting scheme.  Data thinning using a single 
observation per grid box is similar, with the observation 
closest to the center of each box of a user-defined global 
grid kept for assimilation.   In the data thinning approach 
using observations closest to the model first guess, only 
the observation minus model first guess values that are 
smallest and within a prescribed threshold are kept for 
assimilation.  In other words, more weight is given to the 
model first guess and less to the observations.  With data 
thinning approaches using observations furthest from the 
model first guess, only the observation minus model first 
guess values that are largest and within a prescribed 
threshold are kept for assimilation. With each of these 
techniques, the number of observations can be reduced 
significantly but at the cost of considerable loss of 
atmospheric structure and information. Therefore, these 
methods eliminate large amounts of data, some useful, 



while retaining a considerable amount of useless 
information.  An example is shown in Fig. 1, where 1A 
shows all available QuikScat wind observations in a 
region surrounding Typhoon Beni.  A circulation 
center is clearly evident near 15S latitude and 161E 
longitude, the center of the typhoon.  Fig. 1B shows a 
much reduced field of QuikScat wind observations to 
which a current data thinning technique was applied.  
The rejected data are at nadir, edge, and rain-flagged 
points.  Unlike in the previous figure, no clear 
circulation is evident in this wind field. 
 

3. IDT ALGORITHM DESCRIPTION 
 
Data thinning in the computer graphics domain, 
referred to as decimation or simplification, is 
performed to reduce the number of polygons to be 
rendered so that there is minimal loss in image 
quantity.  These thinning algorithms use a recursive 
and greedy removal of “least significant” points from 
the data sets.  These algorithms are adaptive and 
support a user-specified image quality metric, 
allowing the algorithm to be controlled to meet an 
accuracy level.  These thinning algorithms are 
conceptually very simple.  The data is viewed as a 
triangulated mesh, which can be decomposed into 
hierarchical blocks with different details at every level.  
Two adjacent triangles are simplified or thinned if the 
objective measure, in this case the maximum 
perceived geometric error, is smaller than the user 
specified threshold.  This process is applied 
recursively until no further simplification is possible 
[1].  The advantage of these algorithms is that the 
thinning is not limited to a specific feature and can 
fully utilize the data.  However, the challenge in 
designing these algorithms is in determining the right 
objective measure.   
 
The IDT algorithm is based on the algorithmic 
concepts used in data decimation or simplification 
[1,2,3,4] and the pseudocode is given in Figure 2.  
The algorithm searches for regions with large 
variances and keeps all the data points within such 
regions.  For regions with low variances, the algorithm 
subsamples the region to select a representative 
point. There are two preprocessing steps performed 
before the thinning.  The data is first normalized to 
values ranging from 0 to 1 and then a global mean for 
the entire data is calculated. The IDT algorithm is 
computationally efficient, using quad-tree 
decomposition to recursively divide the data into four 
quadrants.  For each quadrant or region, the 
algorithm calculates an objective measure.  If the 
objective measure is greater than the cutoff threshold, 
the algorithm continues dividing this quadrant into four 
sub-quadrants and repeats the procedure for each of 
these sub-quadrants.  If the objective measure is less 
than the cutoff threshold, then the algorithm 
terminates that recursive path and the center data 
point of the quadrant is used as the representative 
thinned value.  The other termination condition for the 

algorithm is when the recursion reaches the lowest level 
where the quadrant contains four points.  For this 
condition, the algorithm saves all four points.   
 
The cutoff threshold used by the IDT to perform recursive 
splitting is based on an acceptable standard deviation 
(aStdDev) which is calculated by multiplying the user 
threshold and the global mean.  This measure describes 
the cutoff value for the variance within a region. For a 
given quadrant, a statistical F-test is performed.  The F-
test is generally used to test the hypothesis that two 
sample have different variances by rejecting the null 
hypothesis that their variances are actually consistent. The 
F-test in IDT is performed between the quadrant (sample 
1) and the hypothetical sample 2 that is represented by 
aStdDev.  The null hypothesis in this test is that: 
 
variance of sample 1 (var1) <= variance of sample 2 (var2) 

 
Since the IDT algorithm is searching for only the regions 
with high variances, the test is performed in two steps. 
Then var1 is less than var2, signifies that the region has 
lower variances than the prescribed cutoff, consequently 
the algorithm stops the recursion and subsamples the 
region to find the representative data value.  If var1 is 
greater than or equal to var2, then the algorithm calculates 
the F-Test probability using the size of the data as 
degrees of freedom. If the F-test probability is within the 
acceptable limit, then the null hypothesis holds true 
implying that samples have similar variances. Otherwise 
the samples have different variances and the region is 
further split into four quadrants. 
 

4. INITIAL RESULTS 
 
The IDT algorithm was tested on wind field data from a 
model output. The initial results from the IDT algorithm are 
extremely encouraging.  In the initial experiments, the 
algorithm was used on U component of the wind data, 
followed by the V component and the results combined at 
the end.  Two examples of the application of IDT on model 
output can be seen in Fig. 3 and 4.  Figs. 3A and 4A are 
the original wind field and Figs. 3B, 3C and 4B, 4C are the 
thinned data. To visually analyze the performance of the 
IDT algorithm, the thinned data is overlaid with confluence 
values in 3B and 4B to identify regions of convergence 
and with vorticity values in 3C and 4C to identify regions of 
circulation.  Dark regions in Figs 3B and 4B represent 
regions of convergence and similarly light colored regions 
in Figs 3C and 4C signify regions of circulation.  These 
figures clearly show that the IDT does indeed select 
regions of interest i.e., regions with high confluence and 
vorticity values.  In both cases, the algorithm thinned the 
data by a substantial amount (> 85%) while retaining 
regions of interest. 

5. SUMMARY AND FUTURE WORK 
 
An Intelligent Data Thinning algorithm was developed to 
address the needs of global data assimilation systems that 



are unable to handle the enormous volume of 
observational data due to the prohibitively large 
computational costs.  This recursive simplification 
algorithm is based on the concepts of data decimation 
or simplification used in computer graphics.  The 
algorithm uses a quad-tree decomposition to 
recursively divide the data and calculate an objective 
measure for the partitioned data.  The algorithm 
searches for regions with large variances and keeps 
all the data points within such regions.  For regions 
with low variances, the algorithm subsamples the 
region to select a representative point. The initial 
analysis of the thinned data produced by the IDT have 
been very encouraging and the algorithm is currently 
being tested against other current assimilation 
methods. 
 
A series of short regional experiments using a 
variational analysis method (VAM) are currently being 
conducted to evaluate the data thinning results of the 
IDT algorithm.  The VAM is a two-dimensional wind 
analysis scheme, developed by Hoffman [5], that has 
been used extensively within the GSFC to create a 
variety of ocean surface wind products.   Both the 
intelligently-thinned data fields and randomly-
generated wind fields, consisting of an equal number 
of data points, will be processed by the VAM.  The 
resulting analyzed fields will be compared against the 
“truth” field from which the thinned data was derived.  
Multiple analysis background fields and time periods 

will be tested.  There are plans to further test the IDT 
results using one or more GSFC global data assimilation 
systems. 
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Figure 1:  Example of original QuikScat wind data and the result from a current thinning algorithm 
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Fig 2: Pseudocode for the Intelligent Data Thinning Algorithm 

;Variables:  
;data- original data 
; ndata – thinned data 
; threshold – user specified threshold 
; endpoints – Max(X,Y) , min(X,Y) 
 
function main (data , threshold) 
{ 
 Data = Normalize(data) 
 globalMean = Mean(data) 
 thinnedData = IDT(data, ndata, globalMean, threshold, endPts) 
 return thinnedData 
} 
 
function IDT (data,ndata, globalMean, threshold, Bounds) 
{ 
 If ( size(data) == 4)  

{ 
  ndata = data 
 } 

else 
{ 

  Q1,Q2,Q3,Q4= Divide(data) //returns quadrant end points 
  Quadrant(data,ndata,globalMean,threshold,Q1) 
  Quadrant(data,ndata,globalMean,threshold,Q2) 
  Quadrant(data,ndata,globalMean,threshold,Q3) 
  Quadrant(data,ndata,globalMean,threshold,Q4) 
 } 
} 
 
function Quadrant ( data, ndata,globalMean, threshold, Q) 
{  
 aStdDev = globalMean*threshold 
 varSample = Calc_ObjectiveMeasure(data, Q) 
 if (varSample > (aStdDev*aStdDev)) 
  IDT(data,ndata,globalMean, threshold,Q) 
 else 
  ndata[midPointX,midPointY] = data[midPointX, midPointY] 
} 



 
Figure 3: A. Original Data B. Thinned data overlaid with confluences C. Thinned data overlaid with vorticity 
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Figure 4: A. Original Data B. Thinned data overlaid with confluences C. Thinned data overlaid with vorticity 
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