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1. Introduction 

Most of the attention given to retrieval of 
geophysical parameters from passive microwave (PM)  
observations has focused on surface rainfall estimation 
(e.g., Kummerow et al, 2001).  Diagnosis of convective /  
stratiform (C/S) state and vertically integrated 
hydrometeor content (VIHC) have also been performed 
(Hong et al, 1999; Grecu and Anagnostou, 2001).  The 
techniques employed have either been blended 
physical/statistical (essentially generating a brightness 
temperature Bayesian “lookup table” from ensembles of 
Cloud Resolving Model [CRM] runs) or 
empirical/parametric, fitting linear or mildly nonlinear 
parameterizations using a subset of the available 
brightness temperature frequency / polarization 
observation ensemble (typically at or near 10H/V GHz, 
19H/V, 21V, 37H/V and 85 H/V on prior, current and 
planned suborbital and orbital passive microwave 
sensors (DMSP/SSM-I, TRMM/TMI, Aqua/AMSR-E, 
NPOESS/CRiM, GPM/TMI).  In the CRM/Bayesian 
approach, diagnosed profiles cloud water, cloud ice, 
precipitation water and precipitation ice content are also 
retrieved (Kummerow et al, 2001).   These retrievals are 
only “as good” as the CRM physics, representativeness 
of the modeled CRM ensemble, and knowledge of 
confounding variates such as surface emissivity.  We 
hypothesize that significantly more comprehensive and 
accurate estimation of geophysical parameters related 
to vertical structure is possible using a purely empirical 
retrieval with highly multivariate inputs (all available 
frequency / polarization pairs, texture variates, and 
nonlinear transformations  of these such as VIHC 
estimates) and given ample degrees of freedom and 
nonlinear “capability”.   

Classification and regression neural networks (NNs) 
(essentially, multivariate, nonlinear categorical and 
continuous regressions with highly “flexible” basis 
functions) are empirical models that may provide the 
versatility needed to empirically extract subtle vertical 
structure information from PM observations.  As 
(potentially) highly nonlinear models, they are 
susceptible to overfitting, unless a sufficiently large 
training / validation (T/V) dataset is available, and 
unless proper steps are taken to ensure regularization 
(excessive growth of nonlinearity in the models, and 

hence overfitting).  The Tropical Rainfall Measuring 
Mission (TRMM) provides precisely the sort of T/V 
dataset needed for this purpose, if we choose co-
located TRMM Microwave Imager (TMI) PM  
observations (and derived parameters) as model inputs 
and Precipitation Radar (PR)-derived quantities as 
outputs (targets).  The available T/V dataset from the 
first 3 mission years alone is several times larger than 
current computational capacity (e.g., from a high-end 
desktop workstation) can utilize in NN fitting.  Using the 
first 8 months of data from 1998 (as we do here), we are 
able to fit models with O(10^3) free parameters with 
several hundred training observations per free 
parameter, and still have ample unused co-located data 
to reserve for validation.   As a bonus, co-located 
lightning observations from the Lightning Imaging 
Sensor (LIS) can be used as additional inputs to the 
neural networks, and the incremental benefit in retrieval 
from their inclusion can be assessed. 

Fitting PM (and optionally lightning) observations to 
radar-derived parameters differs from the conventional 
technique of retrieval of “pure” geophysical state 
variables (such as rainfall or latent heating).  However, 
there are compelling reasons to estimate radar-like 
parameters.  These are already the “lingua franca” for 
many existing applications, such as forecast Data 
Assimilation (DA) (where assimilation modules already 
exist to ingest radar data) and end-user Decision 
Support Systems (DSS), e.g., in aviation.   For both DA 
and DSS applications, absolute geophysical calibration 
is not necessarily critical (e.g., in some DSS’ employing 
fuzzy logic / expert systems, the key step is to create an 
input which captures the salient geophysical variability, 
which is later transformed by an ad-hoc membership 
function anyway). 

In this proof-of-concept study, we retrieve the 
following radar parameters.  Wherever possible, we 
attempt to adhere to either “standard” NEXRAD 
parameter definitions, or “standard” TRMM PR 2A23 / 
2A25 definitions:   (1) Convective / stratiform state 
(2A23), (2) Bright band detection (2A23), (3) 
Overhanging anvil state (2A23 “other” category), (4) 
Surface rainfall (2A25), (5) Vertically Integrated Liquid 
(NEXRAD), (6) Ice Water Content (colder than 12C; 
Petersen and Rutledge, 2001), (7) 20 dBZ Echo Tops, 
(8) Probability of Hail / 45 dBZ altitude above 0C 
(NEXRAD), (9) Severe Hail Index (Witt, 1998), (10) 
Vertical Profile Type (Boccippio et al, 2005), (11) Full 
vertical reflectivity profile.   At the time of this preprint’s 
authorship, models retrieving (1)-(10) had been 
completed for both land and ocean, and models 
retrieving (11) were in the process of being trained. 
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2. Methodology 
 

The retrieval methodology is motivated by the 
following hypotheses:   (1) Significant “untapped” 
capacity to explain variability exists in the “full” (highly 
multivariate) PM observation ensemble and derived 
parameter dataset, (2) since PM observations are path-
integrated measurements weighted by hydrometeor type 
and altitude (temperature), optimal extraction of 
variability may depend on isolation of “residual” signals 
between “primary” observations which often covary 
strongly, (3) the highly multivariate dataspace contains 
important subregions which must be identified (such as 
bright band effects, high frequency emission effects of 
supercooled liquid water, unique signatures from 
overhanging anvils, etc). 

The retrieval process is thus stepwise.  As a first 
step, a Principal Components Analysis (PCA) is 
performed on 33 available inputs (9 PM brightness 
temperature frequency / polarization pairs, 15 texture 
variables, 8 nonlinear transformations such as VIHC, 
and a composite lightning metric from LIS).  This helps 
filter highly covarying inputs and reduce the 
dimensionality of the problem.  25 principal components 
(PCs) are used as the primary NN inputs.  This is 
significantly more than are conventionally retained after 
PCA; however, pairwise analysis of radar profile vertical 
structure (using the profile typing scheme of Boccippio 
et al, 2005) reveals residual covariance of vertical 
structure with PCs as high as 20-25.  Training data are 
“oversampled”” (multiple PR pixels per larger TMI 85 
GHz pixel are included in the training sample), allowing 
the regressions to perform their own resolution blurring. 

The next step is to identify important subregions of 
the highly multidimensional input parameter space.  This 
is achieve by fitting classification neural networks to 
parameters (1)-(3) above (C/S, BB and Anvil state) and 
to binary classifiers for Hail Probability > (0, 50, 100%) 
and for Severe Hail Index > (1, 10).  In principle, these 
classifiers help describe regions of important variations 
in physics within the dataspace.  Once fitted, these 8 
parameters are included with the the original 25 PCs as 
new input parameters (33 total) to the third step. 

The third step is retrieval (via regression neural 
networks) of integrated and boundary parameters (4)-(9) 
(R, VIL, IWC, Tops, P(H), SHI), as the “next most 
complicated”.  Once retrieved, these 6 parameters are 
included with the original PCs and 3 state classifiers 
(P(H) and SHI replacing the binary predictors), yielding 
a new set of 34 inputs to the 4th step.  This successive 
refinement of input parameters is conceptually no 
different from applying a physically-based nonlinear 
transformation to input variates in “conventional” (non-
NN) regression.  To indulge in an anthropomorphization, 
the physically-based transformations make it “easier” for 
NN’s to correctly navigate the multidimensional input 
data space and find physically-based local minima 
closer to the “correct” global minimum (a challenge in 
any nonlinear optimization). 

The fourth step is prediction of radar vertical profile 
type, using the scheme of Boccippio et al (2005) (a 
cluster analysis of 3 years of TRMM PR column data, 
which identified 25 total [9 convective, 7 stratiform, 2 
mixed and 6 anvil] “archetypal” vertical profile types).   
The output of this retrieval is probability of membership 
in each of the 25 type categories.  Since each type 
corresponds to a Probability Distribution Function (PDF) 
of radar vertical reflectivity profiles in the full PR dataset, 
the 25 predictions can be combined to provide a “first 
guess” at the full vertical reflectivity profile (extracted at 
40 temperature levels).   

The 40-level first guess, 3 classifiers and 6 
geophysical parameters provide 49 inputs to the final 
retrieval, a regression neural network for the actual 
vertical reflectivity profile (essentially, a “correction” of 
the type-based estimate, which tends to yield median 
values and miss extrema).   [Note – at time of writing; 
this network was still being trained].  

During each major step, a different training data 
subset was extracted from an 8-month (Mar-Nov 1998) 
full data sample.  This helps prevent cumulative 
overfitting in the stepwise retrieval process.  
Furthermore, during the training of each individual 
network, an iterative process was used in which the 
training sample was split 50/50 8 times, with the first half 
used to fit model weights, and the second half used to 
diagnose overfitting.   After 8 fits, an appropriate 
“stopping point” was then estimated, and the full 100% 
subset used to estimate the final model weights.   
Finally, a small weight-decay factor was included as a 
standard regularization technique to further prevent 
overfitting (excessive nonlinearity).  Between the three 
techniques, we are confident that the resultant models 
are not overfitted (as confirmed by error analysis of 
predictions using the unused, or validation, dataset). 
 
3. Results 
 
Figure 1 shows the skill scores for three of the “first-
step” classifiers (C/S, BB and Anvil state).  Each NN 
outputs a 0-1 probability of membership in the given 
category (for C/S, 1.0=convective).   The left panels are 
standard Receiver Operating Characteristic (ROC) plots, 
which show the POD and FAR as a call/no-call decision 
is applied to each threshold probability from 0-1.  Dark 
solid, solid and dashed curves correspond to 
Convective, Bright Band and Anvil models, respectively.  
Curves closer to the upper left corner represent “better” 
(more robust across their entire range of output 
probability) models.  The right panels show, for the 
same range of threshold probabilities, the model Heidke 
Skill Score (HSS), with the peak score marked with a  
diamond (and with that threshold overlaid on the 
corresponding ROC curve).   Overall, C/S separation is 
easier over land than ocean.  (For comparison, but not 
shown, the ROC curves of conventional texture or 
polarization rule-based PM C/S classifiers (Hong et al, 
1999) lie very close to the diagonal, or no-skill line.)  



Conversely, bright band detection is easier over ocean.   
Anvil status can be diagnosed with fairly high POD / low 
FAR; however, the HSS curve shows this is largely due 
to the rare incidence of anvils with > 17 dBZ echo in the 
PR dataset; the actual model skill is fairly low. 
 
Note that Fig. 1 (and subsequent plots) do not formally 
show retrieval “errors”, since the models are overtrained 
/ oversampled (multiple PR pixels used for each lower 
resolution TMI pixel).   The plots show the combined 
effects of intrinsic PM resolution blurring and the 
inherent ability (or inability) of PM observations to infer 
the corresponding radar parameter. 
 
Figures 2-3 show the “errors” in retrieval of 4 of the 
integrated / boundary parameters (VIL, IWC, Echo Tops, 
P(Hail)).  The plots are standard box-and-whisker plots 
of the distribution of predicted (TMI+LIS) vs true (PR) 
values.  In general, the models tend to slightly 
overestimate parameters at the low end and 
underestimate at the high end, consistent with the 
expected effects of PM resolution degradation.  Crudely, 
model errors (based on their RMSE and / or quintile 
widths in the boxplots) are approximately 10% over the 
parameters’ dynamic range (note: VIL and IWC are in 
log [dB] units). 
 

 
 
Figure 1 – Stage 1 (C/S, BB, Anvil state classifier) 
retrieval performance. 
 
Prediction of the radar vertical profile type (using the 25-
category classification scheme of Boccippio et al, 2005) 
is illustrated with several sample.   Figure 4 shows two 
TRMM orbit PR swaths, with radar truth shown in the left 
columns and PM/lightning retrievals shown in the right 
columns.  Recall that vertical profile types are predicted 

probabilistically; i.e., the probability of membership in 
each of the 25 type categories is predicted.  As such, 
the entries in the profile type color table are weighted by 
these probabilities and combined for the TMI/LIS 
retrieval type subplot panel.  For reference, the C 
convective categories correspond to warm (C1), mixed-
phase tops (C2), deep (C3), and very deep / wet growth 
(C4) profiles, and the S stratiform categories correspond 
to warm (S1), cold with bright band (S2) and “MCS-type” 
deep with bright band (S3).  Clearly the overall 
agreement of the results in these cases demonstrates 
that the retrievals are suitable, e.g., for inclusion as 
interest fields in an expert-system based DSS.  

 
 
Figure 2 – Stage 2 retrievals of Vertically Integrated 
Liquid (NEXRAD defintion) and Ice Water Content 
above -12C (Petersen et al, 2003). 



Figure 5 shows an example of the retrieval applied 
across an entire TMI swath (759 km, compared with the 
215 km PR swath from Figure 4) and sampled at the 
native TMI 85 GHz pixel resolution (5x7 km) rather than 
oversampled at the PR pixel resolution (4x4 km). 

Figure 3 – Stage 2 retrievals of 20 dBZ Echo Tops 
and 45 dBZ echo top altitude above 0C (varies as 
Hail Probability). 
 
4. Lightning Benefit 
 
Results shown thus far are for models using both 
observed PM and lightning as inputs during their 
training.  Fortuitously, the input lightning metric is 
isolated in either one (over land) or two (over ocean) 
PC’s of the original input data (its loading on other PC’s 
is negligible).   One further regression NN is thus 

trained, a prediction of the lightning PC(s) from the non-
lightning PC’s.  (The fact that these are all principal 
components does not preclude inference of one from 
other, it simply means that a linear prediction model 
does not exist [by definition of PCA/EOF analysis].  
NN’s, on the other hand, are intrinsically nonlinear 
models).  The same series of trained NN’s can thus be 
used either with observed lightning as inputs, or 
predicted lightning.  By comparing these, the 
incremental benefit of including actual lightning 
observations in the retrieval can be assessed.   (Note 
that this does not fully document the lightning “benefit”, 
as part of this benefit is “hard-wired” into the models’ 
weights during the original training process.) 
 
At the time of writing, this comparison has only been 
performed for the ocean retrievals, with results: 
 
P(Convective) +6% +10% 
P(Bright Band) -8% -33% 
P(Anvil) -13% -14% 
Rain -2% -1% 
VIL -1% +5% 
IWC +10% +19% 
Echo Tops +13% +13% 
P(Hail) +18% +19% 
SHI +13% +14% 
 
The value range considers either all, or only cold-
topped, profiles; % gain is computed from the models’ 
RMSE (continuous parameters) or cross-entropy 
(categorical parameters) on the validation dataset. 
 
The greatest benefit is found, expectedly, for retrieval of 
Ice Water Content, Hail Probability (45 dBZ altitude 
above 0C) and Severe Hail Index, all of which strongly 
covary, and Echo Tops.   Observed lightning also 
contributes nontrivially in convective / stratiform 
discrimination.  Interestingly, no gains are found in 
rainfall retrieval; either observed lightning does not 
provide a strong enough signal, or its benefits have 
already been incorporated during the training phase and 
the predicted lightning is “sufficient” to incorporate them.  
For two parameters (bright band and anvil probability), 
observed lightning worsens the retrievals.  To some 
extent, this is understandable; when lightning occurs in 
or extends to anvils or trailing stratiform regions, the 
NN’s attempt to “over-convectify” their predictions.   This 
effect is muted when predicted, rather than observed, 
lightning is used (the prediction “smooths out” the 
discrete, binary occurrence/non-occurrence of a single 
flash during the 83 second LIS observation window).  
 
It is useful to note that the lightning “benefit” (up to 20%) 
is comparable to the cost differential of simple optical 
orbital lightning detectors vs. passive microwave 
radiometers.  This would argue that lightning sensors 
supplementing, e.g., NPOESS constellation radiometers 
would provide a reasonable return on investment. 



  

 
 
Figure 4 – Sample retrieved orbit swaths (radar truth, left; passive microwave + lightning retrieval, right). 



 
 
Figure 5 – Full TMI-swath retrievals.  Insets show profile type, echo tops, IWC, VIL and rain, respectively. 



5. Discussion and Conclusions 
 
This proof-of-concept study demonstrates that direct, 
purely empirically-based retrieval of radar parameters 
(including state classifiers, geophysical integrated and 
boundary parameters, and vertical profile structure) is 
possible from passive microwave observations.  
Concurrent lightning observations can optionally be 
used to improve ice water content, hail threat and echo 
top estimation as well as convective / stratiform 
discrimination, with error reductions of up to 20%.    
 
While not shown exhaustively, retrievals are possible 
over both ocean and land.  Interestingly, the land 
retrievals make significant use of low frequency PM 
inputs, despite the fact that these are often presumed to 
too contaminated by unresolved surface characteristics 
to be useful for rainfall retrieval.  In general, land 
retrievals perform <5% worse than ocean retrievals. 
 
Retrieval quality appears to be adequate for use in Data 
Assimilation applications (where ad-hoc nudging 
schemes must be applied to the data anyway) or 
Decision Support Systems (where, e.g., in fuzzy logic-
based systems, ad-hoc membership functions must be 
applied to the data anyway).  Predictors for important 
vertical structure characteristics such as bright band 
existence or high supercooled liquid water contents (via 
the hail predictors) may also be useful inputs to blended 
physical/statistical rainfall retrievals.   
 
The capability of generating a moderate-quality “virtual 
radar” retrieval from Low Earth Orbit passive microwave 
observations may be useful over the next 20 years.   
While orbital radars such as the TRMM PR are rare (the 
PR itself, and a possible Global Precipitation Mission 
follow-on), passive microwave radiometers have been 
deployed operationally for over 20 years (DMSP/SSM-I), 
are experimentally deployed now (Aqua/AMSR-E) and 
in the future (GPM), and will continue to be operationally 
deployed and enhanced (NPOESS/CRiM).  Current 
NPOESS constellation plans call for significant 
improvements in passive microwave swath revisit time 
at individual ground locations.  Particularly in regions 
(coastal, offshore, deep tropics) where volumetric radar 
coverage is absent, this can significantly improve the 
usage of passive microwave observations in DA and 
DSS tools.   Retrieval of quantities as “standard” radar 
products further improves the likelihood of research-to-
operations transition, as existing assimilation modules 
or membership functions can be “re-used” to 
accommodate the virtual radar retrievals.  The 
incremental retrieval benefit of co-located lightning 
observations suggests that low-cost optical lightning 
detectors would make suitable candidates for 
supplementary sensors on operational (e.g., NPOESS) 
platforms. 
 
 

6. References 
 
Boccippio, D.J., W.A. Petersen and D.J. Cecil, 2005:  
The tropical convective spectrum.  I: Archetypal vertical 
structures.  J. Climate, in press. 
 
Grecu, M. and E.N. Anagnostou, 2001: Overland 
precipitation estimation from TRMM passive microwave 
observations.  J. Appl. Met., 40, 1367-1380. 
 
Hong, Y., C.D. Kummerow and W.S. Olson, 1999: 
Separation of convective and stratiform precipitation 
using microwave brightness temperature.  J. Appl. Met., 
38, 1195-1213. 
 
Kummerow, C.D., Y. Hong, W.S. Olson, S. Yang, R.F. 
Adler, J. McCollum, R. Ferraro, G. Petty, D-B Shin and 
T.T. Wilheit, 2001:  The evolution of the Goddard 
Profiling Algorithm (GPROF) for rainfall estimation from 
passive microwave sensors.  J. Appl. Met., 40, 1801-
1820. 
 
Olson, W.S., Y. Hong, C.D. Kummerow and J. Turk, 
2001:  A texture-polarization method for estimating 
convective-stratiform precipitation area coverage from 
passive microwve radiometer data.  J. Appl. Met., 40, 
1577-1591. 
 
Petersen, W.A. and S.A. Rutledge, 2001:  Regional 
variability in tropical convection: Observations from 
TRMM.  J. Climate, 14, 3566-3586. 
 
Witt, A., M.D. Eilts, G.J. Stumpf, J.T. Johnson, E.D. 
Mitchell and K.W. Thomas, 1998:  An enhanced hail 
detection algorithm for the WSR-88D.  Wea. 
Forecasting, 13, 286-303. 
 
 


