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1. INTRODUCTION1 

 
It has become increasingly apparent that 

extreme weather events, as well as extreme 
short- term climate variability, are at least as 
important to arctic residents and ecosystems as 
changes in the means of climate variables (Arctic 
Climate Impact Assessment [ACIA], 2004).  It is 
also apparent that extreme events such as heavy 
rains, dry spells, strong cyclones and winds, and 
extreme temperatures have received little 
attention in the Arctic assessment and modeling 
communities.  In this paper, we conduct 
simulations of an Arctic extreme rain event by a 
regional numerical weather prediction (NWP) 
modeling system, the fifth generation Penn State 
University/National Center for Atmospheric 
Research (PSU/NCAR) mesoscale model (MM5, 
Stauffer and Seaman, 1990), and the three-
dimensional variational (3DVAR) data assimilation 
system developed by NCAR (Barker et al., 2004). 

In numerical weather prediction and 
simulation studies, data assimilation systems are 
often used to provide a best estimate of the 
atmospheric state—the analysis—at a given time 
from a range of observation systems, 
supplemented with information from previous 
forecasts or analyses, error statistics, and laws of 
physics.  The variational approach to data 
assimilation has the advantage of assimilating 
observations while satisfying dynamic and 
thermodynamic constraints, either through a set of 
independent balance equations (in 3DVAR, e.g., 
Rogers et al., 1996; Courtier et al., 1998; Lorenc 
et al., 2000) or the numerical forecast model itself 
(in 4DVAR, e.g., Kalnay, 2003).  The data 
assimilation component plays a particularly 
important role over regions where conventional 
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observations are sparse, such as the Arctic or 
Antarctic.   

The MM5/3DVAR assimilation system is 
applied in this simulation study to attempt to 
address: 1) the performance of the MM5/3DVAR 
system for high latitude extreme events; 2) the 
impacts of horizontal resolution on the simulation 
of extreme events, which generally involve strong 
interactions between large- and local- scale 
characteristics. 

Other studies (e.g., Mass et al., 2002) have 
addressed the impact of horizontal grid resolution 
on mesoscale weather prediction and found it that 
resolution can sometimes have significant impacts 
on the structure and evolution of mesoscale 
systems. For example, Mass et al. (2002) showed 
that a decrease of grid spacing from 36 to 12 km 
clearly improved the forecast in precipitation, 10-
m wind, 2-m temperature, and sea level pressure.  
However, a similar decrease in grid spacing to 4 
km showed only small improvements and a limited 
impact on traditional objective verification scores, 
though increased mesoscale detail was evident in 
the forecasts. In applying the MM5 model 
simultaneously with the NCAR 3DVAR system 
over the high latitude areas for mesoscale 
weather studies, it is important to understand the 
extent and the nature of the impacts of horizontal 
resolution on both the 3DVAR analysis and the 
subsequent MM5 forecast.  In this study, we 
examine the impacts of horizontal resolution on 
the simulation of an extreme rain event over 
Alaska.  We utilize domains with 45 km and 15 km 
grid spacings, covering the area shown in Figure 
1.  Figure 1 also shows the available surface 
observations and soundings utilized in the 3DVAR 
assimilation process. 

 
2. SUMMARY OF THE EXTREME RAIN EVENT 

 
The month of July 2003 was characterized by 

record  or  near-record  precipitation  over much of  



Figure 1  Model domain of 45 km resolution, with terrain 
in color shades, and locations of surface observations 
(plus signs) and soundings (solid red circles). 

 
 

Interior Alaska.  For example, the total rainfall for 
the month in the Fairbanks area was close to 6 
inches,  the heaviest July precipitation in nearly 
100 years of record, and over 300% of normal 
(NWS/ACRC, 2003).  Most of the precipitation in 
Interior Alaska during the month fell in association 
with two strong cold frontal passages; one 
passage occurred in mid-July while the second 
occurred during the final week of the month. 

We have chosen the second period, namely 
July 25-28, 2003, for this study.  As shown in the 
plot of 500 hPa geopotential heights for 12 UTC 
26 July 2003 (Figure 2), the surface cold frontal 
passage was accompanied by a relatively (for the 
season) deep trough aloft, which was moving 
eastward into Interior Alaska.  Ahead of both the 
upper trough and surface cold front, a rather 
strong southerly flow of warm and moist air from 
the Pacific is present, penetrating into Interior 
Alaska.  As the frontal system moved slowly 
through Interior Alaska, it caused heavy rainfall 
during the following two days. 

Figure 3 shows the observed 24-hour 
accumulated rainfall distribution valid at 12 UTC 
28 July 2003.  The rainfall shown in Figure 3 is an 
analysis of station observations utilizing a 
successive correction approach following 
Cressman (1959).  The heaviest rainfall shown on 
Figure 3 exceeded a rate of 50 mm/day. 

 
3. MODELING SYSTEM CONFIGURATION 

 
The standard MM5 modeling system 

accommodates four-dimensional data assimilation 
(FDDA)   via   a   Newtonian    nudging   approach  

Figure 2  500 hPa geopotential heights (solid black 
lines), temperature (color shades), horizontal wind 
vectors (white wind barbs), and trough (thick solid 
brown line), valid at 12 Z July 26, 2003. 

 
 

(Stauffer and Seaman, 1990). Simulations can be 
“nudged” or “relaxed” towards either observations 
or a gridded analysis.  All the simulations in this 
study use the Grell et al. (1994) cumulus 
parameterization and the Reisner et al. (1998) 
explicit microphysics scheme without graupel.  
The NOAH land surface model (e.g., Chen and 
Dudhia, 2001), Hong and Pan (1996) planetary 
boundary layer (PBL) scheme, and Dudhia (1989) 
2-stream radiative transfer formulation are also 
used.  Initial atmospheric conditions are obtained 
from the NCAR/NCEP reanalysis, and are 
enhanced by surface and upper-air observations 
through objective analysis using the standard 
suite of MM5 Little_r preprocessing programs 
(denoted as ‘Anal’ hereafter). 

 
 

Figure 3 Station observed 24 hr rainfall (mm), 
interpolated onto model grids using Cressman (1959) 
method for 12 UTC July 28, 2003. 



In this study, background error covariances 
needed by 3DVAR are provided from a file 
generated via the so-called “NMC Method” 
(Parrish and Derber 1992) applied to forecasts 
generated by a near-global MM5 domain (e.g., 
Dudhia and Bresch, 2002).  According to NCAR 
Technical Note by Barker et al. (2003) on the 
3DVAR use with the MM5, there is a set of 
tunable parameters within the 3DVAR system.  
For its application in this study, two parameters 
have been tuned and are discussed below. 

The background error covariance scaling 
factors are adjusted from the default 1.0 to 0.5.  
The rationale for this adjustment is as follows: 1) 
the global background error covariances are 
calculated from the NMC method considering 12-
hour forecast differences as an approximation to 
the model forecast error; however, in this study 
we are focusing on 6-hour forecast cycles 
between 3DVAR analyses; 2) The global 
background error was calculated from coarse 
resolution global model outputs, however, our 
modeling resolution is at a relatively higher 
horizontal resolution (15-45 km grid spacing).  
With this adjustment, the background error is 
reduced and more weight is given to the forecast 
model component within the 3DVAR analysis.   

The correlation length-scale scaling 
parameters have been tuned for use in our case 
study.  The scaling parameters have been 
reduced from the default value 0.25 to 0.15 based 
on a series of single observation tests.  The 
original value 0.25 leads to an excessively large 
area of impact from each observation.  The tuned 
value reduced the impacts of an observation on its 
adjacent observation locations. 

These adjustments will not be necessary 
when model background error covariance and 
length-scale are calculated from the output of the 

same model as used for 3DVAR analysis. 
In this study, only the conventional surface 

and upper-air observations (Figure 1) are 
assimilated.  However, the data is assimilated at 
two different horizontal resolutions in order to 
investigate the impacts of horizontal resolution on 
the 3DVAR analysis and MM5 forecasts more 
rigorously.  The simulation time period extends 
from 12 UTC 25 July 2003 to 12 UTC 28 July 
2003. Forty-one terrain-following sigma coordinate 
levels are used in the vertical. 

 
 

4. NUMERICAL EXPERIMENT 
 

Details of the experiment design are provided in 
Table 1.  Five experiments are performed at each 
both resolutions (15km and 45 km).  Each 
experiment intermittently re-starts every 6-hour 
from different initial conditions as stated below.  
Experiment ‘Ctrlc’ represents a free MM5 forecast 
that re-starts every 6-hour from the ‘Anal’ without 
any data assimilation, while Experiment ‘Fddac’ 
utilizes analysis nudging at 6-hour intervals.  
Experiment ‘FddaPFc’ performs a 6-hour free 
forecast after each 6-hour analysis nudging cycle 
in ‘Fddac’.  Experiments ‘3DVARc’ and ‘3DVARa’ 
apply the 3DVAR analysis in a cycling mode 
(Barker et al., 2004) at 6-hour intervals.  In this 
cycling mode, every 6-hours the MM5 model 
forecast (referred to here as ‘3DVARc’) is used as 
the first guess background analysis for the 
3DVAR assimilation process; the model forecast 
continues from the resulting 3DVAR analysis 
(referred to here as ‘3DVARa’).  In contrast to the 
cycling mode 3DVAR, experiment ‘3DVARic’ uses 
the ‘Anal’ as the first guess background for the 
3DVAR analysis, and the model starts from every 
6-hours’ 3DVAR analysis. 

  Table 1  Design of Numerical Experiments 

Model Output   Name Assimilation 
Approach 

Initial Condition/ 
Background Model integration

what Times 
  Ctrlc       -- Anal  6hr Free Forecast  6hr Free Forecast 12 
  Fddac Analysis Nudging Anal  6hr Nudging  6hr Nudging 11 

  FddaPFc Analysis Nudging Anal  6hr Nudging +      
 6hr Free Forecast  6hr Free Forecast 11 

  3DVARc 3DVAR 3DVAR Analysis*  6hr Free Forecast  6hr Free Forecast 12 
  3DVARa 3DVAR 6hr Free Forecast --  3DVAR Analysis 12 
  3DVARic 3DVAR Anal  6hr Free Forecast  6hr Free Forecast 12 
* Background for first time periods of each case uses Anal. 



5. RESULTS 
 
Here in this section, we present an illustrative 

sample of our results.  The model simulations are 
verified against station observations and are 
compared in terms of domain-wide average 
statistics, including absolute root-mean-square 
error (RMSE) and absolute bias.  Variables 
verified include 2-m temperature, relative humidity 
(RH), 10-m winds (U and V), and sea level 
pressure (SLP).  Additionally, the equitable threat 
score (ETS) and Bias statistics, both of which are 
based on a contingency table approach (Wilks 
1995; Colle 1999), are used to verify the 
precipitation forecast.  Both the ETS and Bias 
scores measure model accuracy based on the 
frequency of occurrence at or above a threshold.  
The ETS measures the skill in predicting a given 
threshold at a given location, while the Bias score 
indicates how well the model predicts the 
frequency of occurrence of a given threshold.  The 
Bias of a perfect forecast equals one.  Besides the 
ETS and Bias scores, absolute RMSE is used to 
measure the error in magnitude of precipitation.  
Spatial distribution and time series of precipitation 
at selected stations are also analyzed. 

 
5.1 Impacts of Horizontal Resolution 

 
Based on the domain-wide average of 

absolute RMSE in each experiment, the difference 
RMSE between high resolution run and low 
resolution run, for a given experiment, is 
calculated to illustrate the relative change of 
RMSE due to the change of resolution.  Figure 4 
shows the RMSE differences for 2-m temperature.  
Negative values imply a decrease of absolute 
RMSE for high resolution.  Thus, a consistent 
domain-wide improvement on 2-m temperature 
forecast is shown from the increase of horizontal 
resolution. The largest impacts are seen with 
experiment 3DVARic in terms of time-averaged 
RMSE difference, followed by, in order, 
experiments Ctrlc, 3DVARc, and fddaPFc.  
Because of the relatively small sample sizes used 
in the verification, we evaluate the statistical 
significance of these results using a Student’s t-
test.  All of these differences, including even the 
small impact on experiment Fddac, are significant 
at the 99% confidence level. 

Similar to the results from temperature, 
significant improvement resulted from the 
increase of horizontal resolution are also seen in 
the surface RH, U, and V fields.  For example, the 
Ctrlc experiment shows significance in RH, U, and 
V at confidence levels of 100%, 100%, and 90%,  

respectively (Figure not shown). 
As an exception, the increase of horizontal 

resolution has inconsistent impact on SLP. 
To verify the precipitation forecast, the ETS and 
Bias are calculated for 6-hourly accumulated 
precipitation at thresholds of 0.2, 1.0, 2.5, 5.0, and 
8.0 mm.  As an example, Figure 5 shows the 
results for the 2.5 mm threshold.  For all 
experiments, the ETS statistic indicates that the  

 

Figure 4  Difference of absolute RMSE for 2-m 
temperature in experiments Ctrlc, Fddac, FddaPFc, 
3DVARic and 3DVARc of high-resolution from those of 
low-resolution. 

 

Figure 5  Averaged Equitable Threat Score (ETS) and 
Bias for precipitation threshold 2.5 mm from both high 
and low resolution experiments. 
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high resolution runs have greater skill than the low 
resolution runs in predicting the occurrences of 
precipitation greater than 2.5 mm.  This 
improvement is significant at the 99% confidence 
level.  Results for the precipitation Bias indicate 
that an increase of horizontal resolution leads to 
increased prediction of precipitation of 2.5 mm or 
greater in all experiments; however, this results, 
for experiments FddaPFc and 3DVARc, in an 
over-prediction of precipitation amounts of 2.5 mm 
or greater. 

So far we have examined the impacts of 
horizontal resolution on model variables and 
precipitation on a domain-averaged basis.  
However, even better objective skill scores in a 
domain-averaged sense may not indicate a better 
forecast if the spatial distribution of the fields is 
not commensurately improved.  To consider this 
issue, we present Figure 6, which shows the 
simulated 6-hour accumulated precipitation valid 
at 12 UTC 28 July, 2003 from the high and low 
resolution runs of 3DVARc.  The high resolution 
run shows more precipitation and smaller scale 
structures than the low resolution run. 

Figure 7 shows a time series of observed and 
modeled 6-hour rainfall at Fairbanks AK, including 
all the experiments.  It is apparent that all the high 
resolution experiments (dashed lines) produced 
more precipitation than the corresponding low 
resolution runs and are generally closer to the 
observed rainfall pattern.  Specifically, we note 
that the high resolution FddaPFc experiment (free 
forecast after a nudging pre-forecast) caught the 
double peaks of the rainfall, although the first 
peak was 6-hour earlier than observed  
 

 
Figure 6  Model forecasted 6-hour accumulated 
precipitation (mm) valid at 12 UTC 28 July 2003 for low 
and high resolution experiment 3DVARc. 
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Figure 7  Observed and modeled time series of 6-hour precipitation for Fairbanks, AK 



5.2  3DVAR vs. Newtonian Nudging 
 
From the previous analysis we may also note 

differences in performance between the various 
data assimilation approaches used.  We briefly 
discuss those in this section. 

From Figure 4, it is apparent that the change 
of resolution has different impacts on the different 
experiments, though many of these differences 
are small, varying in sign and not statistically 
significant through the simulation period.  Figure 5 
indicates better skill from experiments 3DVARc 
and FddaPFc compared to experiments Fddac 
and 3DVARic.  Moreover, Figure 7 provides 
evidence that experiment Fddac produces less 
precipitation at Fairbanks for this case, while 
experiment 3DVARc produced more precipitation 
and for a longer period than the other experiments, 
while experiment FddaPFc caught both of the 
rainfall maxima. 

 
 

6. SUMMARY AND DISCUSSION 
 

The previous analysis suggests the following 
conclusions: 

• High resolution (15 km) improved the 
forecasts of surface temperature, humidity, 
and wind fields, in terms of domain-wide 
averaged statistics of absolute RMSE and 
bias, compared to the low resolution (45 
km).  For this extreme rain event, high 
resolution experiments have better skill 
with respect to the forecast of frequency 
of precipitation occurrences in terms of 
the ETS and Bias scores, and have better 
forecast in the precipitation amount 
indicated by both spatial distribution and 
station time series.  Better timing of the 
rainfall in the high resolution experiments 
is also shown from station time series. 

• Although the impacts are less significant, 
the above analysis implies some 
capability of the MM5/3DVAR system for 
performing data assimilation on the 
extreme rain event with respect to 
precipitation forecast discussed in section 
5.2., in addition to the capability of 
performing data assimilation over the 
Arctic region (as discussed in the 
companion paper of Tilley et al. 2005). 

• As discussed above, the MM5/3DVAR 
data assimilation system shows less 
significant impacts on the simulation of 
the extreme rain event, which may be due 
to the following three reasons: 1) the 

same conventional data set has already 
been used in experiments other than the 
3DVAR runs via other objective analysis 
schemes;  2) The data assimilated is still 
too sparse over the whole domain to 
introduce large improvements on the 
forecasts;  3) the background error used 
in the 3DVAR analysis is a results from 
coarse resolution global data set, and 
therefore a customized background error 
may be a critical need for further 3DVAR 
assimilation efforts.  We are working on a 
customized background error for our local 
MM5 model use instead of the global 
MM5 background error; results will be 
shown at the conference if complete. 
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