
1. INTRODUCTION

The mission of the Forecast Systems Laboratory
(FSL) is to anticipate the science and technology that
will be needed by the nation's operational atmospheric,
oceanic, and hydrologic forecasting services in the next
five to ten years. The Data Systems Group (DSG) of
the Information and Technology Services (ITS)
department within FSL is responsible for the
acquisition, processing and distribution of some 150
GBytes of data a day in support of this mission. This
ever-increasing volume coupled with the diverse
formats used to describe these data are the main
problems facing developers within DSG as they try to
reduce the cost and increase the efficiency of the
services provided. For a full description of the data and
system configurations within the Central Facility see
"Recent Advances in the FSL Central Facility Data
Systems" (Lipschutz, 2005).

By the late 1990s the legacy systems, based on
heterogeneous platforms running software developed
within FSL using a functional decomposition design
process, were becoming costly to maintain in both
license fees for the various operating systems and,
even more tellingly, software maintenance by the Data
Systems Group. A decision was made at that time to
invest in the effort of refactoring systems to achieve
two major goals. The first was to switch to open source

tools running under Linux and the second, to
redesign and implement the data handling software
using Object Oriented Analysis and Design (OOAD)
techniques in order to reduce those software
maintenance and operational costs.

The remainder of this paper concentrates on the
second element of this effort, the software architecture
changes and resulting implementation that became the

Object Data System (ODS). It will include examples
to illustrate these changes and how they have
improved a CF function within FSL.

2. REQUIREMENTS

The data requirements placed on the CF are that
for any requested dataset, it should provide timely

access (near real-time if possible) to either the original
dataset or some derived product, usually in the form of
Network Common Data Form (NetCDF)
(my.unidata.ucar.edu/content/software/netcdf). Further,
the CF is to provide a retrospective access facility that
supports requests to obtain original data or
regenerated products for some limited period. The local
archive is currently a mass store system that holds
approximately four years of data. This retrospective
element may also obtain datasets from other sources
including the national archive at the National Climatic
Data Center (NCDC), WSR-88D Level II data, for
example.

3. SYSTEM DESIGN

To support these requirements, the following design
choices were made:

� All data are to be held locally in the original receipt
form;

� All data are to be labeled with a receipt or issue
time;

� Translation of data is to be done only when
necessary;

� Metadata are to be temporally consistent.

These four choices in themselves may not seem
particularly significant, but they have led to an
implementation that is flexible enough to support both
real-time and retrospective processing within one
system. Before discussing the implementation, let us
first consider these choices in more detail.

� All data are to be held locally in the original receipt
form. While software development is subject to a
process that hopes to minimize the number of bugs,
they are unlikely to be completely eliminated. Thus
providing access to the original data format allows
the reprocessing of these data if required following
the fixing of a bug in metadata or software.

� All data are to be labeled with a receipt or issue
time. Most data handled within the CF arrive in
near real-time, and the ingest systems described
below label these data with the receipt time. This is
required because some formats do not include a full
time and date element; rather they may include only
the day of the month and not the month itself.

FSL CENTRAL FACILITY DATA SYSTEM CONCEPTS

Paul Hamer1

 NOAA Research - Forecast Systems Laboratory, Boulder, Colorado
1In collaboration with the Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State

University, Fort Collins, Colorado

18.11

*Corresponding author address: Paul Hamer,
NOAA/FSL, R/FST, 325 Broadway, Boulder, CO
80305. Paul.Hamer@noaa.gov

Therefore, in order to properly handle these data,
we need to know either the receipt or issue time.
Note that data obtained from archives outside of
FSL must provide a means of obtaining the issue
time to allow the correct handling of these data by
ODS.

� Translation of data is to be done only when
necessary. Together with the original format
decision, we avoid unnecessary processing since
much of the data are not used to derive products.

� Metadata are to be temporally consistent. When
accessing metadata in support of data processing,
we must be able to access the metadata valid at the
receipt or issue time for those data. For example, a
reporting station may be relocated and to support
the retrospective processing of data provided by
that station, we must be able to obtain the location
information valid at that time.

Figure 1: Data Ingest, Store and Notify Scheme

4. IMPLEMENTATION

The Central Facility ingests data from a number of
sources using a variety of methods. Distribution of
these data over the local network in a consistent
fashion is key to a manageable system. For this task,
DSG selected the Local Data Manager(LDM)
(my.unidata.ucar.edu/content/software/ldm), a
distributed system for event-driven data transport. LDM
comprises a suite of software to select, capture,
process, and distribute data products using a set of
network client/server programs and their shared
protocols. Available as a free distribution from Unidata

that includes the package source code, this allowed
DSG developers to extend the LDM to more fully
support data handling by the Central Facility.

LDM allows distribution and access to data through
the use of feed types and product keys. The product
key was identified as a useful element to provide
leverage within ODS; access to this element of the
product description from the LDM was most easily
obtained by mapping directly to the product queue. A
description of how this was done will help illustrate the
use of Design Patterns (Gamma, et al., 1995) within
the design and implementation process. In this case
the use of the Observer Pattern (see Fig. 2) was most
appropriate as it defines a one-to-many dependency
between objects so that when one object changes
state, all its dependents are notified and updated
automatically. This is also known as publish-subscribe.

Figure 2: The Observer Pattern

The observer (LdmConsumer) and subject
(LdmIngest) in this scenario are classes that
encapsulate access to the LDM product queue.
Consumers subscribe to the publisher using feed type
and product key information for required products. The
publisher will automatically update the consumer upon
each update to the product queue that matches the
subscription. The update consumers receive is another
encapsulation, this time of the LDM data structure
(LdmData) and it provides the consumer with details
useful for efficiently dealing with large quantities of
data. For example, one can discover how large a given
message is without looking into the message contents.
(As an aside, the particular implementation of this
pattern within ODS allows for access to data from a
LDM product queue without the LDM daemon actually
running.) The ODS design then uses these LDM

access abstractions to tier clients onto LDM, i.e. clients
override access functions from the LdmConsumer in
order to operate on data from the queue, such as in
handling of World Meteorological Organization (WMO)
GRIdded Binary (GRIB)
(www.wmo.ch/web/www/WDM/Guides/Guide
binary.html or (www.wmo.ch/web/www/DPS/grib
2.html) that is distributed over NOAAPORT
(www.nws.noaa.gov/noaaport/html/noaaport.shtml).

The actual handling of GRIB leads to a discussion
of two further concepts of ODS design: the generic
handling of these data and the use of Virtual
Inheritance to implement a form of Run Time Type
Identification (RTTI) that allows an encapsulation of
necessary function within a base class.

Throughout the ODS development process, an
effort has been made to support the capture of data in
such a way as to self document subsequent access to
it, i.e. to associate a minimum set of metadata with the
original data to support later analysis. Consider the
ODS handling of GRIB: we store all GRIB messages
(records) in a file that is named using the reference and
forecast time. This file, in turn, is placed in a directory
structure that is based on center, sub center, model
and grid numbers. These numbers can be mapped to
values in a lookup table that provide context. (e.g.
59/0/105/252 would map to FSL, Rapid Update Cycle
(RUC) on a 20km Grid) The important thing to note is
that the lookup values need not be known to store the
raw data in a meaningful way.

To illustrate the utility of Virtual Inheritance,
consider that while GRIB is being updated to Edition 2
of this format, this update will require some overlap
between Edition 1 and 2. The use of Virtual Inheritance
has enabled DSG to implement client software that is
free from knowledge of the specific format. Thus the
NetCDF making client for a GRIB dataset does not
need to know what edition is being used, only that it is
GRIB.

At this point it is worth mentioning that DSG
considers meteorological data to be available in four
distinct forms. These, with examples, are:

� Satellite
GOES (www.oso.noaa.gov/goes)

� Radar
Nexrad Level II (www.roc.noaa.gov)

� Point
ACARS (web.usna.navy.mil/~bruninga/acar.html),
BUFR
(www.wmo.ch/web/www/WDM/Guides/BUFRCREX
Guide-English.html), etc.

� Gridded
Forecast model results

It is the handling of the Point data types that led to
development of the OdsVar (or ODS variable) concept,
linking named values and locations. For example, the
name could be some well-known description, pressure
say, with a value expressed as a float and valid unit
(1001.3mb) at a location that consists of horizontal,
vertical and temporal coordinates. All point data types
can be reduced to a container of OdsVars when
required. Thus, point data type translation will decode
the original form into OdsVars. This generic object,
coupled to the virtual inheritance RTTI allows for the
development of clients, such as a NetCDF converter,
without having to know anything of the original dataset.

Figure 3: Point and ODS Variable Class Diagram

Of course, the use of RTTI and generic containers
are only part of the picture for the complete handling of
data within the CF. The final, and in some ways most
important, part is the management of metadata.

5. METADATA

The question of metadata is one that could
generate several additional papers for ODS in addition
to this one, so its inclusion here is to illustrate specific
implementation details.

Concentrating on the GRIB example used above,
metadata in this context refers to the GRIB lookup
tables that map center number, for example, to some
name and description. In response to the design choice
that all metadata must be temporally consistent, we
currently store all table entries with a valid time field,
namely an ISO 8601
(ftp://ftp.qsl.net/pub/g1smd/8601.pdf) time string that
gives the UTC time at which this entry becomes valid.
This requirement is the minimum required to support
retrospective processing. A full bi-temporal database
implementation (i.e. a history of histories) would be a
valuable tool in support of ODS, or any system, but
attempts to do so in-house have only been partially
successful. It is hoped that an open source tool will
soon be available so that we can resume work on this
issue.

The selection of NetCDF for many of the derived
products has allowed us to specify metadata as
attributes of the required data. This in turn has reduced

software costs since NetCDF derived products from
data forms already handled (GRIB, Point, etc.) require
only that a CDL with appropriate attributes be created,
not the writing of new software.

6. THE FUTURE

Much of the upcoming work in ODS development
will concentrate on cataloging available data to assist in
data discovery and support of ad hoc data requests. To
do this, we are looking at using the eXtensible Markup
Language (XML) (www.w3.org/XML) and schema such
as Thematic Real time Environmental Distributed Data
Services (THREDDS)
(my.unidata.ucar.edu/content/projects/THREDDS) or
the Earth Science Markup Language (ESML)
(esml.itsc.uah.edu/index.jsp) both of which could help
the CF support system interoperability.

Further, we hope to produce software tool sets to
leverage work being done that maintains a bi temporal
database for metadata. One interesting aside is that
much of the meta data used to decode GRIB or BUFR
are available as Portable Document Format (PDF)
documents published at the WMO; these could more
usefully be made available as XML.

In conclusion, the DSG at FSL has completed the
refactoring of a large legacy data system using OOAD
with Open Source and community tools. The result is
one that satisfies FSL's CF data requirements and is
"better, cheaper, faster" (Goldin, 1992).

References:

Lipschutz, R. C., C. MacDermaid, 2005: Recent
Advances in the FSL Central Facility Data Systems

Gamma, E., R. Helm, R. Johnson, J. Vlissides,
1995: Design Patterns, Elements of Reusable Object-
Oriented Software

Goldin, D., served as chief administrator of NASA
for nine years, beginning in 1992. Using the motto,
"better, cheaper, faster," he streamlined and
restructured major NASA programs.

