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1. IN

One of the largest uncertainties in the climate sys-
tem is cloud feedback. Current climate models continue
to struggle to accurately model cloud feedbacks. One of
the persistent problems is the difficulty of comparing
cloud observations with climate models to the accuracy
requirement of climate sensitivity studies. Achieving a
statistically significant sampling of observing cloud
feedbacks without the influence of weather “noises”
requires a minimum of a month of data over a region,
and often up to a year. This is because significant cloud
feedbacks can result from changes in global mean cloud
properties as small as 1% per decade, or regional change
of 1% per year. Use of classic gridded monthly or
annual mean cloud data invariably includes a wide
range of atmospheric states and cloud types/conditions.
It then becomes very difficult in this time-averaged
Eulerian view to diagnose which type of cloud is being
poorly represented in climate models. This diagnosis is,
however, crucial to improve these models’ representa-
tion of cloud processes.

On the other hand, a Langragian approach, called
the “cloud object” approach, groups instantaneous satel-
lite cloud footprints by cloud-system type, independent
of where and when the cloud-system type occurs. Simu-
lation of these cloud objects is also performed, driven by
the nearly simultaneous atmospheric state data. This
approach offers two advantages: it reduces cloud vari-
ability by grouping data from the same cloud-system
type and it reduces sampling noises by combining
results from a wide range of geographic regions.
Because of its large sample size (hundred to thousand
cloud objects), the integrated observational and model-
ing results can be stratified according to some measures
of atmospheric states such as sea surface temperature
(SST) so that the partial derivatives between radiative
fluxes and atmospheric variables can be obtained to
study cloud feedbacks from observations and model
simulations. This comparison will also offer helpful

hints for further improvement of climate models. 

This study presents a statistical validation of the
fixed anvil temperature hypothesis of Hartmann and
Larson (2002) using the cloud object data. They pro-
posed that the emission temperature of anvil clouds
remains unchanged during climate change because long-
wave cooling is rapidly declined around the anvil top
due to inefficient radiative emission from water vapor
(i.e., Clausius-Clapeyron relation). 

2. A NEW METHODOLOGY

Observational data analysis and high-resolution
modeling are integrated in the new cloud object
approach to improve the understanding of cloud feed-
backs (Fig. 1). In order to reach climate accuracy, satel-
lite data from the Earth Observing System (EOS) are
analyzed to generate large ensembles of cloud objects
for different cloud-system types. The atmospheric state
is matched to each cloud object in space and in time.
Then, the grand mean statistics of observed cloud
objects, i.e., the combined probability density functions
(PDFs) over an ensemble of cloud objects, are stratified
according to some independent measures of atmospheric
states in order to derive the partial derivatives of cloud
properties vs. atmospheric states, thus cloud feedbacks 
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Fig. 1: A schematic of the approach for cloud object
observation and modeling to understand cloud feed-
backs. 



The atmospheric state is also used to drive the simu-
lations of high-resolution cloud models. The statistics of
the simulated cloud objects are vigorously compared
with those of satellite observations for large ensembles
of cloud objects so that systematic errors can be identi-
fied and further improvements to the high-resolution
cloud models can be made without the need of arbitrary
model tuning [see Eitzen and Xu (2004) for a prelimi-
nary study]. The simulated cloud feedbacks can be ana-
lyzed and compared with those from satellite cloud
object analysis to further improve the high-resolution
cloud model. Further testing of the improved cloud
models can be performed by embedding them into a glo-
bal climate model for selected seasonal and interannual
simulations. This revolutionary method of climate mod-
eling is called an “multiscale modeling framework”
(MMF; Randall et al. 2003). Once these tests are passed,
decadal climate prediction can be performed to provide
a more accurate prediction of climate change than that
obtained using a conventional climate model.

3. ANALYSIS OF CLOUD OBJECTS

A cloud object is defined as a continuous region
composed by individual cloud footprints that satisfy a
set of physically-based cloud-system selection criteria.
Due to the limited width of satellite swath and the selec-
tion criteria, a cloud object can just include part of a
cloud system. The limited width of satellite swath can
truncate a cloud system. The selection criteria can break
a large cloud system into several smaller cloud objects.
A "region-growing" strategy based on imager-derived
cloud properties is used to identify the cloud objects
within a single satellite swath (Wielicki and Welch
1986). A key part of this task is to label the boundaries
of an individual cloud object along the scan lines of sat-
ellite. Two scan lines are examined simultaneously to
identify the boundary footprints of a large continuous
cloud region. Assuming that footprints are square, a
cloud footprint is flagged as a cloud edge footprint if
one or more of its sides is adjacent to a clear footprint. A
cloud object is uniquely determined if no cloud edge
footprints are adjacent to another cloud object. Please
refer to Xu et al. (2004) for further details.

This study will examine only the cumulonimbus and
its associated thick upper tropospheric anvils over the
Pacific Ocean using TRMM (Tropical Rainfall Measur-
ing Mission) data. Four criteria are used to define the
tropical deep convection type: 1) the footprints must
have 100% cloud fraction; 2) a minimum value of 10 for
the cloud optical depth is used to eliminate thin anvil
clouds; 3) the cloud top height must be greater than 10
km and 4) the cloud footprints must be located within
25 S and 25 N of the Pacific Ocean. After individual

cloud objects have been identified, grand mean statistics
in terms of probability density functions (PDFs) are pro-
duced for a group of cloud objects as a function of SST,
geographic location and size. A number of measured
and retrieved variables is available from the TRMM,
EOS-Terra and EOS-Aqua satellites. A few PDFs will
be shown below to illustrate the sensitivity of cloud
properties in tropical convection to SST changes.

4. RESULTS

Table 1 shows the number of tropical deep-convec-
tive cloud objects in the Pacific during January-August
1998. The numbers of cloud objects are obtained for
five processing cycles and two cloud-object size classes.
Each processing cycle of the TRMM satellite is 46 days
long. A processing cycle gives a complete sampling of
the diurnal cycle at a given location. The cloud-object
size class is defined in terms of the equivalent diameters
of cloud objects. It appears that the size class with
equivalent diameters greater than 100 km has roughly
the same number of cloud objects for the five processing
cycles except for the April-May cycle. The large size
class with equivalent diameter greater than 300 km has a
higher number of cloud objects at the beginning of the
January-August period, corresponding to the peak phase
of the 1997/1998 El Niño. This suggests that higher
SSTs are preferred by larger cloud objects in the Trop-
ics. As expected, relatively fewer numbers of large
cloud objects were observed during the April-May
cycle.

Figure 2 shows the PDFs of SST associated with the
large cloud objects with equivalent diameters greater
than 300 km. From January to August 1998, the num-
bers of cloud footprints occurring over warmer SSTs
decreases as the El Niño dissipates. The SST PDF is
close to be normally distributed in the July-August
cycle. In the other four cycles and the entire eight-month
period, the SST PDFs are skewed toward the higher val-
ues of SSTs. This is an interesting result. One may won-
der whether or not the differences in SSTs are
statistically significant among the processing cycles?° °

Table 1: Number of observed cloud objects during
the five processing cycles for two cloud object size
classes. The cloud object size is in terms of its
equivalent diameter.

Equivalent
Diameter

Jan. - 
Feb.

Mar. - 
Apr.

Apr. - 
May

June - 
Jul.

Jul. - 
Aug.

> 100 km 429 448 295 407 484

> 300 km 122 90 64 87 96



 
To address this question, statistical tests are used to

detect statistically significant differences between two
grand mean PDFs. These are done in the following
ways. First, the differences in PDFs are measured by a
root-mean-square method for two PDFs of the same
parameter, which is called the Euclidean distance or L2.
This PDF distance measure is defined as

,

where f and g are two PDFs, with a total of N bins where
the ith bin is located at xi. The bin width is denoted by

. The frequency of occurrence is normalized by the

bin width. That is, f and g satisfy

. The bin width  is

uniform for the PDFs examined here. The maximum

possible value of L2 is , which occurs if two single-
point PDFs are not collocated. The minimum value of
this measure is zero, which indicates no difference
between the PDFs.

Second, the bootstrap method (Efron and Tibshirani
1993) is used to determine whether the difference
between two grand-mean PDFs is statistically signifi-
cant. A statistically significant difference between two
grand-mean PDFs means that the individual cloud
objects forming the two grand-mean PDFs came from
two different populations. Cloud objects, but not their
individual footprints, are assumed to be independent
from each other. The null hypothesis is that all cloud
objects came from one population. The probability, cal-
culated taking the null hypothesis to be true, that we

would observe a statistic value greater than or equal to
the one we did observe is the significance level. The test
statistic chosen in this study is L2.

Specifically, the two populations of m and n cloud
objects are first combined into one population. Then,
two sets of cloud objects of sizes of m and n are resam-
pled randomly from the population, and the values of
the distance measures between the two bootstrapped
sets are calculated. Any cloud object in the population
can be sampled once, more than once, or not all at any
given time. This procedure is repeated B (B is chosen to
be 5000) times to generate a statistical distribution of
the test statistic (L2). The bootstrapped distance value is
compared to the value from the true arrangement of
cloud objects, i.e., two separate populations. If the boot-
strapped value is greater than the true value between
two populations in less than 5% of a total calculation of
B times, the two populations are deemed to be statisti-
cally different. That is, the null hypothesis is rejected at
the 5% significance level. Therefore, the two grand-
mean PDFs are deemed to be statistically different. 

For the PDFs shown in Fig. 2, the L2 distances
between the last cycle with the earlier cycles are 0.320,
0.350, 0.197 and 0.197, respectively. That is, the differ-
ences from the first two cycles are greater. This is con-
sistent with the visual inspection. The bootstrap method
also determines that the grand-mean SST PDFs are dif-
ferent at the 5% significant level, except for the differ-
ence between the first two cycles, which are statistically
similar.

The most important parameter for validating the
fixed anvil temperature hypothesis is the cloud top tem-
perature. Figure 3 shows that the PDFs of cloud top tem-
perature for all five cycles and the January-August
period. All PDFs are nearly normally distributed except
for being slightly skewing towards the high values of
cloud top temperature. The most striking feature shown
in Fig. 3 is that all PDFs are not statistically different

Fig. 2: Probability density functions of sea surface
temperature for the five processing cycles and January
- August period. Cloud objects with equivalent
diameters greater than 300 km are included in PDFs.
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Fig. 3: Same as Fig. 2 except for cloud temperature.



from each other, except for between the January-Febru-
ary and April-May cycles, despite the large changes of
SSTs (Fig. 2). This result suggests that the fixed anvil
temperature hypothesis of Hartmann and Larson (2002)
is basically valid. The difference between the January-
February and April-May cycles may be related to the
small number of cloud object observed during the Apr.-
May cycle (Table 1). That is, this cycle does not have
statistically large samples of cloud objects.

The outgoing longwave radiation (OLR) fluxes also
show small differences among the five cycles (Fig. 4).
However, the difference between the first and the last
two cycles are moderately significant, according to the
bootstrap procedure. This is because the OLR flux is
proportional to the fourth power of cloud top tempera-
ture for thick anvil clouds. A small difference in cloud
top temperature very likely becomes a significant differ-
ence in OLR.

Ice water path (IWP) is a measure of cloud micro-
physical properties, which distributed lognormally (Fig.
5). Apparently, there is no significant differences in

IWPs among the cycles despite of the large changes in
SSTs shown in Fig. 2.

The cloud top height is a measure of cloud macro-
physical properties. Figure 5 shows that there is a strong
dependency of cloud top height on the SSTs. The cloud
tops are slightly higher for higher SST cycles. Because
cloud top temperature is nearly independent of the SST
in a statistical sense, this result suggests that the lapse
rates are slightly smaller for the high SST cycles. This is
plausible because the more intense convection is, the
more strongly it tends to stabilize its environment.

5. CONCLUSIONS
This study has presented a new methodology for

studying cloud feedbacks in the climate system through
an integrated observational and modeling approach. Sat-
ellite data have been analyzed to produce large ensem-
bles of cloud objects for different size classes, SSTs or
climate regimes. In this study, the statistics of the
observed cloud objects are analyzed to understand the
cloud feedbacks, in particular, to validate the fixed anvil
temperature hypothesis. 

It has been found that the differences in the statistics
of cloud objects are very small in cloud top temperature,
cloud microphysical and optical properties (not shown).
But cloud top height shows slightly stronger depen-
dency on SST. Further studies will be performed to
compare statistics between observations and high-reso-
lution cloud model simulations to firmly validate the
fixed anvil temperature hypothesis.
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