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Abstract 
The Geosynchronous Imaging Fourier Transform 
Spectrometer (GIFTS) instrument is expected to 
generate data at rates exceeding 1TB/day. The 
design of a proof-of-concept prototype ground data 
processing system is presented, which is responsible 
for turning raw interferograms from the instrument into 
calibrated, geolocated spectra in near-realtime. This 
prototype is intended for processing data generated 
during ground tests, as well as for testing algorithm 
variations, design alternatives, and implementation 
strategies. It embodies the core philosophy and 
architecture ideas from design studies carried out 
previously for a production-level GIFTS data system. 
These include a component approach which uses 
UML-RT to capture and communicate design 
decisions, a processing pipeline with pluggable 
algorithm stages, a flexible architecture 
implementable on a variety of platforms but targeted 
mainly for a distributed computing facility such as a 
cluster, and focus on the careful management and 
annotation of metadata with a view on complete 
reproducibility of processing and on fault tracing. 

1. Introduction 
The best way to write reusable software is to place 
oneself in the position of having to reuse the software 
in various contexts. The University of Wisconsin 
Space Science and Engineering Center (UW-SSEC), 
in collaboration with the National Oceanographic and 
Atmospheric Administration (NOAA), is working to 
implement software architecture for the data 
processing needs of current and future imaging 
Fourier transform spectrometers, using object-
oriented techniques and real-time toolsets. The 
motivating application for the software system is the 
validation of the Geostationary Imaging Fourier-
Transform Spectrometer (GIFTS) instrument. Other 
applications of the software suite being developed 
include processing systems for experimental Fourier 
Transform Spectrometer (FTS) sounders, such as the 
Atmospheric Emitted Radiance Interferometer (AERI) 
(Knuteson, 2004a), the Scanning High-resolution 
Interferometer Sounder (Scanning HIS), and NASA's 
NOAA Polar Orbiting Environmental Satellite Suite 

(NPOESS) Airborne Science Testbed Interferometer 
(NAST-I) (Revercomb et al., 1998). Many aspects of 
the software address risk reduction needs for a 
planned FTS-based operational atmospheric sounder 
being proposed for the GOES-R Hyperspectral 
Environmental Suite (HES). This paper presents an 
overview of the prototype implementation of the 
GIFTS Information Processing System (GIPS), 
focusing on science data processing components 
implemented in C++, and covers lessons learned thus 
far over the course of the development effort. 

2. Background 
The processing of future imaging FTS data to extract 
products including absolute radiance spectra, vertical 
profiles of temperature, water vapor and trace gases, 
and wind fields is as much a problem in computer 
science as it is in atmospheric remote sensing. Thus, 
the design of a processing system must take into 
account not only the physics of radiative transfer, 
radiometric calibration and cloud clearing, but also the 
computing mass of the data and need to assure 
proper provisioning and tracking of metadata. While 
this paper is mostly concerned with the computer 
science aspects of the problem, it starts with an 
overview of requirements stemming from the 
atmospheric science.  

2.1 Science Background 
In order to extract accurate absolute radiances from 
an atmospheric infrared FTS, a detailed model of the 
instrument’s internal “background radiation” must be 
maintained. This is built from characterization 
experiments and theoretical models, and refined with 
periodic radiance measurements from a set of self-
calibration blackbody sources. Such calibration data is 
interleaved with nominal earth observations. The 
resultant model is used to estimate time-matched 
reference radiances that form an absolute basis of 
comparison (Revercomb et al. 1988). Given the 
resultant absolute radiance measurements, an 
extensive radiative transfer coefficient library is 
consulted using a combination of statistical and 
physical retrieval algorithms. This permits the 
extraction of vertical atmospheric profiles for 
temperature, water vapor, and other atmospheric 



constituents (Huang 2001). Such measurements, in 
turn, can be mosaiced together as accurate and 
contiguous geolocated image planes, which are used 
for wind vector extraction using feature tracking 
(Velden et al. 2004). 

2.2 Existing instruments and their 
processing pipelines 
Historically, developing software for research 
interferometers is a process of perpetual prototyping. 
There is always a better - or at least a different - way 
of treating the data that promises improved accuracy, 
further noise reduction, or faster rendering of 
products. Two decades of experience with the AERI, 
HIS, Scanning HIS and other FTS instruments show 
that there is always need for improvement in 
processing, visualizing and distributing derived 
products. 
 
Dealing with the variety of experimental configurations 
of any one of these research instruments requires 
backwards compatibility and often presents the 
software team with ad-hoc changes to processing 
requirements. Largely this has been handled by 
lowering barriers on software development and 
testing. This involves reliance on simplified "flat" file 
formats, preference for scripting languages such as 
Python, and packaging the processing stages as 
separate executables which can be strung together in 
short order, creating a complete processing pipeline 
on a host computer or cluster. Such methods must be 
expanded upon or even rethought in order to handle 
future FTS applications effectively. 
 
Testing algorithms is expensive. Regression testing 
and noise characterization is time-consuming but 
necessary; debugging handshakes between 
successive stages of a data-processing pipeline can 
be tedious and often requires that processing code 
include logging or monitoring capacity. When dealing 
with multiple similar instruments, it is substantially 
more cost-effective in the long term to take proven 
algorithm implementations, and insert adapters for the 
respective instrument platforms, in order to recoup the 
cost of verifying the software implementing the 
science algorithms. 
 
Algorithms for these instruments have the potential for 
stateful behavior, and thus implementing them as 
simple context-free library functions shifts the burden 
of ensuring correct deployment on the surrounding 
code. For instance, for the Scanning HIS instrument, 
calibration source observations are taken every 15-30 
seconds. When operating in a batch-processing 
mode, a windowed fit model is generated from the 
calibration radiance views over several minutes’ time 
in order to process all data within the window. 
Reprocessing requires recovery of the local 
calibration window – the context surrounding a given 

observation. For a real-time calibration requirement, 
this window can only be retrospective. Identifying the 
best strategy for folding the calibration data with the 
observation data to extract calibrated radiances is as 
much an algorithm choice as the radiometric 
calibration equation itself. 
 
A further complication for aircraft-based experimental 
interferometers is that the instrument itself evolves 
over time as understanding improves, limitations are 
characterized and overcome, and additional sensor 
data are injected into the instrument data stream. The 
way to meet the needs of this kind of mutable 
hardware system is with equally mutable software 
architecture. 

2.3 Requirements on the GIFTS 
information processing system (GIPS) 
A real-time processing system must not only execute 
such science data processing pipelines correctly and 
efficiently, but also orchestrate the use and update 
policies of large databases containing reference and 
model data that the science depends upon. It must 
manipulate decision-support metadata and reference 
data evolving at several time scales: some reference 
structures change on the order of seconds, others on 
the order of hours, still others on the order of months. 
It must also record auditing information in order to 
maintain confidence in the truth-value and traceability 
of the products, which are expected to rapidly step 
into the petabyte scale.  
 
The current approach must address real-time 
constraints, dialogue with databases of varying 
implementation, efficient exchange of data between 
components, testing and validation, flexibility of 
deployment, and audit data recording for software and 
products.  

2.4 Use Scenarios 
There are several scenarios under which processing 
software must perform. These include: 
 

A. Satellite real-time downlink: Emphasis for 
this case is on keeping up with the stream of 
incoming data, estimated at 1.5 Terabytes 
per day for a GIFTS-type instrument. It is 
also necessary to maintain acceptable 
latency and accuracy of products, in order to 
make them promptly available for 
downstream weather prediction and 
nowcasting applications. 

 
B. In-flight: For experimental setups mounted 

on unmanned airborne vehicles (UAV), 
spectral resolution is traded away in order to 
operate with limited CPU and memory 
resources, limited power consumption, and 



limited weight allotment for computing 
hardware. This is similar to the constraints 
imposed on satellite on-board processing 
systems. The databases and calculations 
must be "trimmed to fit" and optimized to 
provide real-time feedback that can be 
immediately used for in-flight decision 
support. Plans for operational networks of 
UAV’s provide another application of this 
mode of use (Dovis et al. 2001). 

 
C. Fieldwork: For post-flight processing of data 

taken from S-HIS type instruments on field 
experiments, a portable hardware system 
must be capable of processing and quality 
checking the recorded data at high precision 
and rapid turnaround time. This scenario in 
particular requires the software to be 
maximally flexible, so that a field technician 
can assemble ad-hoc algorithms and 
procedures into a meaningful and repeatable 
processing pipeline.  

 
D. Bulk reprocessing of data and sensitivity 

studies: Large amounts of clustering 
hardware or simple compute farms can be 
brought to bear on the problem of large-scale 
reprocessing of old datasets with new 
reference data or algorithms, and ensemble 
testing with input permutations used for 
sensitivity analysis or algorithm tuning. 
Managing the quantities of data involved 
takes precedence over performance 
concerns in this case. 

 
E. Algorithm research and development cycles: 

Regression testing, unit and integration 
testing of new algorithms requires that the 
software interact readily with visualization 
environments and debuggers, and provide 
rapid feedback for test pattern data sets. 
This scenario takes place on individual 
scientists’ and engineers’ workstations and 
laptops prior to releasing candidate software 
for production use; for a full-scale data 
processing system, the development 
environment is likely to include 
multiprocessing systems requiring distributed 
visualization capability. 

 
The goal of GIPS is to provide for all the above uses, 
through the application of component-centered design 
philosophy tempered with an appreciation of the 
requirements imposed by each of these scenarios. 

3. Designing with components 
In our previous papers on this topic (Garcia, Smuga-
Otto 2004a, 2004b, 2004c), we presented 
increasingly detailed top-down design studies of a 

system able to address the aforementioned 
requirements and concerns. Discussions so far 
included the concept of a reference database service, 
audit controls, monitoring subsystem, and included an 
interaction pattern outline for the algorithm software 
modules within a real-time data processing 
framework. For this discussion, we focus on a bottom-
up realization of componentized algorithm software by 
way of useful and sustainable software design 
practices. 

3.1 Towards a component-based 
architecture 
Previous efforts at applying a component design to 
the legacy processing software largely consisted of 
using files for intermediate data storage and simple 
network protocols (e.g. UDP broadcast of metadata) 
to isolate and monitor processing stages in the 
pipeline for individual testing. This approach has been 
adequate for fieldwork and reprocessing of datasets 
from instruments like S-HIS and NAST-I; it lends itself 
less well to ensemble testing and development work, 
and is not readily adaptable to real-time processing. 
The evolutionary nature of much of the codebase that 
took this approach has complicated any efforts at 
generalization and extension of the codebase.  
 
Another experimental approach to data flow systems 
used ideas similar to those found in the Visualization 
Toolkit (Schroeder et al. 1996) with implicit flow of 
control and highly constrained data generalizations 
connecting processing components. Like the 
"filesystem-connected" stages, the distribution of top-
level control logic among the components led to 
difficulty in attaining proper flow of control for 
algorithms, which have richer interactions with their 
surroundings than the largely stateless algorithms that 
dominate VTK. Further work on this approach was 
made difficult by premature generalizations that did 
not fit the problem domain. 
 
These early experiments led to the observation that 
the flow of data through the system is as much a 
“science algorithm” as the numerical manipulations 
performed on the data. Separating the concerns of 
marshalling data, operating on data, and directing the 
sequencing and movement of the data within the 
system would lead to a higher degree of reuse. With 
this in mind, parts of the S-HIS data system were 
rebuilt as operator modules applicable to a variety of 
use patterns as outlined above. Heavy reliance on 
design patterns including the Builder pattern (Gamma 
et al. 1995) allowed for great flexibility in invoking 
such operators on a stream of packetized data. 

3.2 UML-RT 
A significant break-through in architecting the system 
came with the assimilation of the object-oriented 



concepts of the Unified Modeling Language – Real 
Time extensions (UML-RT), whose abstractions are a 
good fit for the concerns listed here. While the need 
for component-oriented approaches was noticed early 
on, the particular set of abstractions offered by UML-
RT proved to provide a reasonable path to code that 
did not compromise any of the fundamental 
requirements. 
 
The UML-RT view of components is centered on 
Capsules, Ports, and Protocols. Capsules are 
constructs for isolating functionality with a very clearly 
defined interface: Each capsule operates according to 
a state diagram, responding to and generating signals 
through its ports. The signal content on each port is 
prescribed by its role in a protocol, which itself can be 
represented with a state transition graph (Douglass 
1999, Selic 2003). 
 
UML-RT came about as an adaptation of object-
oriented design philosophy to the world of real-time 
software, which is shaped by practicalities of mixed 
hardware-software systems with very tight time and 
resource budgets. Separability of three major 
concerns is inherent in capsule-based designs - 
processing itself, marshalling of data, and flow of 
control. Control is described by a state transition table 
appropriate to the role of the capsule. Data moving 
through the system is represented by the protocol 
descriptions for the connected ports - these are the 
patterns of exchange between the components of the 
system. 
 
A core aspect of the UML-RT methodology is that it 
encourages the recursive description of an entire 
system. A top-level system design is divided into 
functional sub-capsules and their interaction 
protocols; these sub-capsules in turn hide smaller 
capsules further dividing and conquering the system 
requirements. This approach allows rigorous 
characterization and testing of resource use of the 
system capsule-by-capsule, and helps guarantee that 
the system achieves strict performance requirements. 

4. The GIPS prototype 
A system of "black boxes" prescribed by capsule 
responsibilities, protocol requirements and state 
charts can be represented directly in software design, 
and communicated using the UML-RT syntax. 

4.1 Design philosophy 
For our implementation of the UML-RT inspired 
design, we chose ANSI C++ together with STL, 
POSIX and other common open-source libraries, 
including ATLAS, MIT FFTW, and the Blitz++ matrix 
library. Since our heritage software, such as the 
current S-HIS processing system is written in a 
mixture of C, Fortran77, C++, Python, Java, and 

MATLAB, some backward compatibility is required in 
order to allow verification of the new system to take 
place.  
 
The practical concerns of doing object-oriented design 
in C++ have shaped some of the coding conventions 
we have followed. C++ lacks in its language 
specification features such as garbage collection and 
pointer safety, leaving them instead to libraries such 
as Boost and the C++ Standard Template Library 
(STL). These libraries function in part as language 
extensions by way of C++'s strong support of compile-
time generics and operator overloading. Despite its 
complexity, C++ was deemed to be the most mature 
language platform at the present time in which to 
develop the ideas of GIPS.  
 
 

 
Figure 1: Diagrammatic overview of the GIFTS design, with 
internal details of the science pipeline exposed as a UML-RT 
style capsule diagram. 

4.2 Addressing design concerns 
Three critical aspects of the system that are 
addressed by our science software prototype are 
reuse, performance, and testing. 
 

A. Reuse: Algorithm capsules, once tested, 
should be able to fit into a variety of 
enclosing frameworks without need for re-
coding. Exchanges of data are represented 
as fully virtual protocol-role interfaces, which 
can be implemented using a variety of 
connector classes. Protocols should be kept 



simple within the science processing, and 
defer flow-of-control decisions to the 
enfolding capsule's control logic where it 
simplifies inter-capsule protocols. Protocol 
descriptions should above all avoid imposing 
implementation details on the capsules. 

 
B. Performance: The high-volume observation 

data for each detector pixel should be 
minimally copied. The enclosing capsule is 
given ownership of the exchange buffers 
between sibling sub-capsules. Recognize 
and expect that protocols will need to be 
revisited in order to do optimization 
refactorings. Favor simple data carriers (e.g. 
structs) over elaborate delivery containers 
with costly serialization requirements where 
the option exists. 

 
C. Testing (unit and integration): Algorithmic 

functional units must be readily verified using 
test fittings and unit tests. Each capsule has 
a unit test verifying its operating state 
transitions. 

 
Furthermore, the following concerns and requirements 
are accommodated if not fully implemented in the 
prototype code:  

 
D. Auditing: Auditing is not yet directly 

answered in code by these design principles. 
Critical aspects of auditing will be managed 
by proper generation and use of some 
implementation of Universally Unique 
Identifiers (UUIDs). For an example 
implementation, see Leach et al. (2004). 
Such UUIDs must be registered for each 
distinct algorithm version within the 
versioning system, for each deployed 
software configuration item. They must also 
track which tool set - compilers, library 
versions, code generation tools, and 
algorithm version corresponded to the 
configuration item. UUIDs also need to be 
tracked within the data processing system to 
identify processing jobs, reference data, and 
collected as UUID tuples representing the 
processing history for released products.  

 
E. Monitoring: Monitoring is allocated for by 

providing the capsules an iostream-
compatible port following the standard output 
convention for C++ to accept text, values, 
and shorthand tags which can be used to 
generate monitoring logs and displays.  

 
F. Refactoring of and testing against heritage 

systems: Existing applications systems and 
libraries can be encapsulated once their 

outermost protocols are extracted. 
Refactoring passes can then extricate control 
logic and data marshalling in order to 
improve performance and meet reuse needs. 
Where expedient during prototyping, heritage 
algorithms from other languages (e.g. 
Fortran77) are recoded in C++.  

 
 

  

 
Figure 2: UML-RT capsule diagram of the interferogram-to-
spectrum stage of the L0-L1 pipeline. 

4.3 The system as a network of capsules 
Our adaptation of UML-RT concepts in C++ 
implements connectors and capsules as objects, and 
protocol roles as interfaces. Connectors are meant to 
be provided by the system integrators and 
implementers, and used by capsules without 
knowledge of their internal construction. Capsules 
hold the science and other supporting algorithms and 
services required of the GIPS. Since capsules can be 
composed into larger enclosing capsules, the entire 
data processing system may be thus constructed by 
applying the same principle recursively. 
 
With the GIPS science processing pipeline itself a 
capsule, a full-scale data processing system can be 
created so that instances of the pipeline are 
distributed across dozens or hundreds of processor 
nodes. This takes advantage of “embarrassingly 
parallel” nature of many of the processing tasks. Each 
pipeline capsule is embedded within a processing 



node is provided access to observation data and 
reference data. The worker capsules themselves are 
sibling capsules to the main data processing system 
input and output, auditing, monitoring and reference 
data service capsules. The controlling logic of the 
overall system distributes processing jobs to the 
workers. In the case of a large shared memory 
system, building connectors moving data to the 

pipeline largely takes the form of implementing access 
to memory buffers. In the more complex case of a 
distributed multiprocessor target, a system of 
middleware (e.g. MPI, ACE, CORBA) connectors and 
capsules will be required to hide the movement of 
data structures and control signals across machine 
boundaries from the science pipeline.  
 

 
 

Figure 3: C++ interface code from the file Ifg2spectrum.h 
 

4.4 Capsules as science algorithms 
By the strictest UML-RT definition, capsules are 
expected to accept signals on their ports 
asynchronously, effectively functioning as parallel 
execution threads. While this level of generality is 
appropriate for multithreaded and multiprocessor 
systems, our task of implementing a science 
processing pipeline within a worker capsule, we 
establish a practical convention, which we've 
assigned the name of Operator.  
 

The Operator has an activation function that operates 
synchronously; in C++ this function is operator(), and 
returns a success or failure to complete a calculation 
cycle on its input. 
 
The vectors and other data structures made available 
on an operator’s input ports remain constant while it is 
active. Thread safety of the data held on the 
Operator's ports is the responsibility of the enclosing 
capsule, and may eventually be handled by thread-
aware versions of connectors. 
 



Where possible, the state of the Operator is 
externalized as context input and update ports. This 
allows an instance of a data processing pipeline to be 
re-used at runtime for a variety of similar jobs (e.g. 
reprocessing) by recovering archived context data 
prior to re-activating the operator. 
 
In this fashion, the processing pipeline becomes a 
series of processing stage operators, which are 
activated in sequence by the pipeline control logic. 
The pipeline itself is signaled to proceed when the 
enclosing worker has sufficient data ready for a job to 

be processed. 

4.5 Developing the system in C++ 
When coding a science algorithm as a major data 
processing stage, one starts by identifying the 
dependencies and command set of the algorithms 
within that stage's Operator. These will largely take 
the form of data structure declarations and specific 
content definitions to be delivered to the algorithms by 
way of one of its input ports. 
 

 

 
 
 

Figure 4: Implementation in C++ of the abstract interface for the interferogram-to-spectrum capsule, using three internal capsules 
(ifgShift, cplxFFT and foldSpectrum) joined by internally defined connectors (shiftedIfg, prefoldedSpectrum). Taken from 

SHISStage.cc



The dependencies are then gathered into protocol 
roles (example is an input role for a data port) 
required by the Operator. The protocol roles are 
declared as C++ virtual abstract classes, which 
function as interface specifications in the C++ world. 
Local protocol roles are based on existing protocol 
role archetypes where appropriate – this lessens 
complexity when building distributed applications. The 
capsule’s protocol roles are finally bundled into a 
Ports structure that is used to initialize operator 
instances (see figure 3: C++ interface code, for a 
simple example). The names and protocol roles for 
the ports can be directly represented in a UML-RT 
capsule diagram of the Operator (as shown in figure 
2). 
 
Unit tests are built for the operator using simple 
connectors that pass in the prepared input test structs 
and vectors. The operator is implemented such that 
upon activation, it cycles through a computation, 
recovering inputs from its input ports, writing output 
and monitoring data to the corresponding output 
ports, and then returns a pass/fail code to the 
upstream controlling logic (see Figure 4 for 
implementation code corresponding to the interface 
listed in figure 3). 

4.6 Connectors as data conduits 
In UML-RT component diagrams, connectors are 
represented as lines connecting capsule ports; each 
connector endpoint answers a particular protocol role, 
and the connector conforms to its declared protocol. 
Protocols are usually binary – Connectors that 
implement them have two ends, one acting in an input 
role, the other as an output. 
 
It can be a challenge to design protocol roles for a 
given algorithm balancing the number and type of 
ports without forcing implementation details on the 
capsule. If too much unrelated data is grouped on one 
port, it may need to be separated internally to route 
relevant pieces to individual sub-components. At the 
same time, minimally revealing the implementation 
details of the encapsulated algorithms permits more 
alternatives in implementing the Operator. Thus, 
consistent practices for classifying the inputs 
(metadata, engineering data, observation data, 
reference data) are needed in order to provide clear 
and concise interfaces.  
 
C++, with its support for both class inheritance and 
generic programming, provides a broad set of 
possibilities with which to construct connectors. The 
approach chosen for GIPS comes from a desire for 
strong type safety and compile-time error detection. 
The philosophy behind the design is to make it easy 
to use capsules and connectors properly, and catch 
obvious mistakes at compile time. An equally 
important goal is to decouple the programming of 

capsules, which only need to know the protocols they 
interact with, from the programming of connectors and 
glue code. Capsule implementers do not import 
connector headers or any other implementation 
details - they strictly specify the abstract protocol 
roles, which must be satisfied at the time of the 
capsule's instantiation. Separately, the implementer of 
the enclosing system creates for each capsule a set 
of connector instances compatible with the protocols. 
In order to speed development, a connector template 
library answering many of the archetype protocol roles 
is being assembled. It currently includes utility 
connectors such as raw data carriers, implementing a 
simple binary data in/ data out protocol, as well as 
connectors which use pre-existing test patterns, 
connectors with debugging hooks, and connectors 
using previously allocated memory as their data 
sources or sinks. 
 
Most important for the efficient functioning of the 
system is a set of connectors for managing the high-
volume hyperspectral data. For the current prototype 
effort, connectors utilizing the Blitz++ library were 
built, owing to its literate treatment of large multi-
dimensional arrays and management of references to 
slices of memory. For these connectors, the input port 
interface specifies a getForInput() method that returns 
a one-dimensional immutable (C++ const) array 
containing the input vector of interest to the 
downstream capsule. Likewise, the output protocol 
role specifies a getForOutput() method for use by the 
upstream capsule. These vectors provide access to 
memory already allocated by the connector, and do 
not perform a copy when their getForInput/Output 
methods are called. The difference between the 
various kinds of connectors fulfilling this raw data 
protocol lies in how the backing memory is provided. 
The BlitzSimpleConnector allocates a vector in 
memory of a specific size, and allows proper 
upstream and downstream access. The 
BlitzMatrixBackedInputConnector allows stepped 
access to one row at a time of an entire two-
dimensional blitz array. 
 
Example uses for the matrix-backed connector are 
dealing with a large number of records provided 
simultaneously, and double buffering. If an entire set 
of records becomes available at once in memory (e.g. 
via a bulk network transfer or memory mapped file) 
this kind of connector may be used to loop over the 
entire set of records as the controlling logic invokes 
the relevant Operator instances for each record. 
Alternately, if space for only two records is allocated 
in the backing memory, the controlling code may be 
queuing data from a network connection even as the 
other record is being used as an input vector for an 
enclosed computational capsule. Bridges between 
language systems, such as those allowing C++ 
capsules to be fed data from Java arrays, or allowing 



direct visualization and interaction using MATLAB or 
Python, can be largely constrained to be connector 
adaptations.  
 
Other connector types include struct connectors, 
lookup connectors and monitoring connectors. Struct 
connectors can be used to deliver immutable 
algorithm configuration data to capsules, such as 
input spectrum size that needs to be known at 
capsule instantiation time. Lookup connectors fulfill 
the need of science algorithms to access a database 
of instrument characterization and self-calibration 
records in order to properly extract science from the 
interferograms. These connectors implement protocol 
roles designed for the purpose of retrieving and 
augmenting database entries. Whether the backing 
implementation behind the connectors is a full SQL 
database server, or an STL map based out of local 
memory - as might be the case for an embedded in-
flight application or a unit test - the implementation 
remains opaque to the science algorithm client. 
Monitoring connectors currently work off the 
assumption that emanated messages vary from 
capsule to capsule, and thus provide a streamed 
output channel. In C++, standard iostream 
conventions are adopted. 

4.7 Capsules as science algorithms. 
The code in Figures 3 and 4 shows a sample 
algorithm interface and implementation. The intention 
behind abstracting the algorithms as capsules is to 
capture not only the specific sequence of math 
functions required, but also the context necessary for 
that sequence of functions to make sense. In part, 
bundling algorithms into objects also enables some 
aggressive optimization techniques, such as caching 
FFT plans assembled during object construction. 
Three different approaches to providing an 
implementation to a science capsule have been 
carried by the authors: atomic (function-based C/C++ 
code) implementations, sub-capsule implementations, 
and wrapping of legacy Fortran code. When an 
existing C/C++ library already provided some basic 
functionality, as in the case of the complex FFT 
operator, the library call was simply wrapped in a 
capsule. This presented a good opportunity to gather 
the legacy code for setting up intermediate buffers 
and creating an FFT plan which had previously been 
scattered around the source files into the capsule as 
well, thus freeing the new capsule-style surrounding 
code from such implementation details. A similar 
approach was taken with algorithms to fold a complex 
spectrum coming out of the FFT and to shift a 
complex interferogram going into that FFT. Once 
these were encapsulated, it was a fairly easy to 
gather them together into a higher-level capsule, by 
first setting up intermediate data buffer connectors, 
making sure that an external configuration connector 
was correctly distributed, and then simply firing the 

operator() calls for the three component capsules in 
sequence. Another capsule, which performs a 
nonlinearity correction for the SHIS instrument, was 
implemented by wrapping an existing well-
characterized heritage Fortran binary inside a 
capsule. This last coding experiment demonstrated 
the philosophy of enabling rapid development as well 
as side-by-side testing of C++ versus Fortran 
implementations by utilizing known code in the new 
framework. 

4.8 Other practical considerations 
In a production system, memory leaks are not 
permitted. Allocation and freeing of memory blocks 
can incur unpredictable overhead at run-time. These 
kinds of behavior are strictly disallowed in hard real-
time systems, and need to be characterized in soft 
real-time systems. The convention we select is that 
the enclosing capsule is the owner of all connectors 
and capsules that it operates. It instantiates internal 
connectors and delivers references for those 
connectors to its internal capsules; the capsule 
implementer may safely assume that the objects 
being referenced will be valid over the lifetime of a 
capsule instance. We favor instance variables with 
constructor-passed references over the use of new() 
and pointer passing. We also prefer libraries such as 
STL and Blitz++ to control heap allocation of data 
variables. This all should improve the stability of 
memory usage once a network of capsules is 
constructed and configured. Finally, while C++ 
exceptions are a welcome language feature, they 
should not be able to leak through capsule boundaries 
after they have been constructed – as this would 
create a mechanism separate from the well-defined 
ports by which capsules may be coupled to the 
external world.  

5. Conclusion and continuing work 
This paper presents an overview of practical 
challenges and solutions encountered so far in our 
C++ prototype implementation of the GIFTS 
Information Processing System. This is an ongoing 
process, and the current focus is on refining the 
prototype, with the goal of making it fully operational 
for both S-HIS data processing needs in the field, and 
for upcoming GIFTS thermal vacuum tests. 
 
Source code, sample datasets and updates for this 
project can be found at: 
 
http://www.ssec.wisc.edu/gifts/noaa/l0l1.html  
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