
P1.45 A PROTOTYPE FOR THE GIFTS INFORMATION PROCESSING SYSTEM

Raymond K. Garcia*, Steven A. Ackerman, Paolo Antonelli, Ralph G. Dedecker, Steven Dutcher, H. Ben Howell,
Hung-Lung Huang, Robert O. Knuteson, Erik R. Olson, Henry E Revercomb, Maciej J. Smuga-Otto, and David Tobin.

CIMSS / SSEC / Univ. of Wisconsin, Madison

Abstract
The Geosynchronous Imaging Fourier Transform
Spectrometer (GIFTS) instrument is expected to
generate data at rates exceeding 1TB/day. The
design of a proof-of-concept prototype ground data
processing system is presented, which is responsible
for turning raw interferograms from the instrument into
calibrated, geolocated spectra in near-realtime. This
prototype is intended for processing data generated
during ground tests, as well as for testing algorithm
variations, design alternatives, and implementation
strategies. It embodies the core philosophy and
architecture ideas from design studies carried out
previously for a production-level GIFTS data system.
These include a component approach which uses
UML-RT to capture and communicate design
decisions, a processing pipeline with pluggable
algorithm stages, a flexible architecture
implementable on a variety of platforms but targeted
mainly for a distributed computing facility such as a
cluster, and focus on the careful management and
annotation of metadata with a view on complete
reproducibility of processing and on fault tracing.

1. Introduction
The best way to write reusable software is to place
oneself in the position of having to reuse the software
in various contexts. The University of Wisconsin
Space Science and Engineering Center (UW-SSEC),
in collaboration with the National Oceanographic and
Atmospheric Administration (NOAA), is working to
implement software architecture for the data
processing needs of current and future imaging
Fourier transform spectrometers, using object-
oriented techniques and real-time toolsets. The
motivating application for the software system is the
validation of the Geostationary Imaging Fourier-
Transform Spectrometer (GIFTS) instrument. Other
applications of the software suite being developed
include processing systems for experimental Fourier
Transform Spectrometer (FTS) sounders, such as the
Atmospheric Emitted Radiance Interferometer (AERI)
(Knuteson, 2004a), the Scanning High-resolution
Interferometer Sounder (Scanning HIS), and NASA's
NOAA Polar Orbiting Environmental Satellite Suite

(NPOESS) Airborne Science Testbed Interferometer
(NAST-I) (Revercomb et al., 1998). Many aspects of
the software address risk reduction needs for a
planned FTS-based operational atmospheric sounder
being proposed for the GOES-R Hyperspectral
Environmental Suite (HES). This paper presents an
overview of the prototype implementation of the
GIFTS Information Processing System (GIPS),
focusing on science data processing components
implemented in C++, and covers lessons learned thus
far over the course of the development effort.

2. Background
The processing of future imaging FTS data to extract
products including absolute radiance spectra, vertical
profiles of temperature, water vapor and trace gases,
and wind fields is as much a problem in computer
science as it is in atmospheric remote sensing. Thus,
the design of a processing system must take into
account not only the physics of radiative transfer,
radiometric calibration and cloud clearing, but also the
computing mass of the data and need to assure
proper provisioning and tracking of metadata. While
this paper is mostly concerned with the computer
science aspects of the problem, it starts with an
overview of requirements stemming from the
atmospheric science.

2.1 Science Background
In order to extract accurate absolute radiances from
an atmospheric infrared FTS, a detailed model of the
instrument’s internal “background radiation” must be
maintained. This is built from characterization
experiments and theoretical models, and refined with
periodic radiance measurements from a set of self-
calibration blackbody sources. Such calibration data is
interleaved with nominal earth observations. The
resultant model is used to estimate time-matched
reference radiances that form an absolute basis of
comparison (Revercomb et al. 1988). Given the
resultant absolute radiance measurements, an
extensive radiative transfer coefficient library is
consulted using a combination of statistical and
physical retrieval algorithms. This permits the
extraction of vertical atmospheric profiles for
temperature, water vapor, and other atmospheric

constituents (Huang 2001). Such measurements, in
turn, can be mosaiced together as accurate and
contiguous geolocated image planes, which are used
for wind vector extraction using feature tracking
(Velden et al. 2004).

2.2 Existing instruments and their
processing pipelines
Historically, developing software for research
interferometers is a process of perpetual prototyping.
There is always a better - or at least a different - way
of treating the data that promises improved accuracy,
further noise reduction, or faster rendering of
products. Two decades of experience with the AERI,
HIS, Scanning HIS and other FTS instruments show
that there is always need for improvement in
processing, visualizing and distributing derived
products.

Dealing with the variety of experimental configurations
of any one of these research instruments requires
backwards compatibility and often presents the
software team with ad-hoc changes to processing
requirements. Largely this has been handled by
lowering barriers on software development and
testing. This involves reliance on simplified "flat" file
formats, preference for scripting languages such as
Python, and packaging the processing stages as
separate executables which can be strung together in
short order, creating a complete processing pipeline
on a host computer or cluster. Such methods must be
expanded upon or even rethought in order to handle
future FTS applications effectively.

Testing algorithms is expensive. Regression testing
and noise characterization is time-consuming but
necessary; debugging handshakes between
successive stages of a data-processing pipeline can
be tedious and often requires that processing code
include logging or monitoring capacity. When dealing
with multiple similar instruments, it is substantially
more cost-effective in the long term to take proven
algorithm implementations, and insert adapters for the
respective instrument platforms, in order to recoup the
cost of verifying the software implementing the
science algorithms.

Algorithms for these instruments have the potential for
stateful behavior, and thus implementing them as
simple context-free library functions shifts the burden
of ensuring correct deployment on the surrounding
code. For instance, for the Scanning HIS instrument,
calibration source observations are taken every 15-30
seconds. When operating in a batch-processing
mode, a windowed fit model is generated from the
calibration radiance views over several minutes’ time
in order to process all data within the window.
Reprocessing requires recovery of the local
calibration window – the context surrounding a given

observation. For a real-time calibration requirement,
this window can only be retrospective. Identifying the
best strategy for folding the calibration data with the
observation data to extract calibrated radiances is as
much an algorithm choice as the radiometric
calibration equation itself.

A further complication for aircraft-based experimental
interferometers is that the instrument itself evolves
over time as understanding improves, limitations are
characterized and overcome, and additional sensor
data are injected into the instrument data stream. The
way to meet the needs of this kind of mutable
hardware system is with equally mutable software
architecture.

2.3 Requirements on the GIFTS
information processing system (GIPS)
A real-time processing system must not only execute
such science data processing pipelines correctly and
efficiently, but also orchestrate the use and update
policies of large databases containing reference and
model data that the science depends upon. It must
manipulate decision-support metadata and reference
data evolving at several time scales: some reference
structures change on the order of seconds, others on
the order of hours, still others on the order of months.
It must also record auditing information in order to
maintain confidence in the truth-value and traceability
of the products, which are expected to rapidly step
into the petabyte scale.

The current approach must address real-time
constraints, dialogue with databases of varying
implementation, efficient exchange of data between
components, testing and validation, flexibility of
deployment, and audit data recording for software and
products.

2.4 Use Scenarios
There are several scenarios under which processing
software must perform. These include:

A. Satellite real-time downlink: Emphasis for
this case is on keeping up with the stream of
incoming data, estimated at 1.5 Terabytes
per day for a GIFTS-type instrument. It is
also necessary to maintain acceptable
latency and accuracy of products, in order to
make them promptly available for
downstream weather prediction and
nowcasting applications.

B. In-flight: For experimental setups mounted

on unmanned airborne vehicles (UAV),
spectral resolution is traded away in order to
operate with limited CPU and memory
resources, limited power consumption, and

limited weight allotment for computing
hardware. This is similar to the constraints
imposed on satellite on-board processing
systems. The databases and calculations
must be "trimmed to fit" and optimized to
provide real-time feedback that can be
immediately used for in-flight decision
support. Plans for operational networks of
UAV’s provide another application of this
mode of use (Dovis et al. 2001).

C. Fieldwork: For post-flight processing of data

taken from S-HIS type instruments on field
experiments, a portable hardware system
must be capable of processing and quality
checking the recorded data at high precision
and rapid turnaround time. This scenario in
particular requires the software to be
maximally flexible, so that a field technician
can assemble ad-hoc algorithms and
procedures into a meaningful and repeatable
processing pipeline.

D. Bulk reprocessing of data and sensitivity

studies: Large amounts of clustering
hardware or simple compute farms can be
brought to bear on the problem of large-scale
reprocessing of old datasets with new
reference data or algorithms, and ensemble
testing with input permutations used for
sensitivity analysis or algorithm tuning.
Managing the quantities of data involved
takes precedence over performance
concerns in this case.

E. Algorithm research and development cycles:

Regression testing, unit and integration
testing of new algorithms requires that the
software interact readily with visualization
environments and debuggers, and provide
rapid feedback for test pattern data sets.
This scenario takes place on individual
scientists’ and engineers’ workstations and
laptops prior to releasing candidate software
for production use; for a full-scale data
processing system, the development
environment is likely to include
multiprocessing systems requiring distributed
visualization capability.

The goal of GIPS is to provide for all the above uses,
through the application of component-centered design
philosophy tempered with an appreciation of the
requirements imposed by each of these scenarios.

3. Designing with components
In our previous papers on this topic (Garcia, Smuga-
Otto 2004a, 2004b, 2004c), we presented
increasingly detailed top-down design studies of a

system able to address the aforementioned
requirements and concerns. Discussions so far
included the concept of a reference database service,
audit controls, monitoring subsystem, and included an
interaction pattern outline for the algorithm software
modules within a real-time data processing
framework. For this discussion, we focus on a bottom-
up realization of componentized algorithm software by
way of useful and sustainable software design
practices.

3.1 Towards a component-based
architecture
Previous efforts at applying a component design to
the legacy processing software largely consisted of
using files for intermediate data storage and simple
network protocols (e.g. UDP broadcast of metadata)
to isolate and monitor processing stages in the
pipeline for individual testing. This approach has been
adequate for fieldwork and reprocessing of datasets
from instruments like S-HIS and NAST-I; it lends itself
less well to ensemble testing and development work,
and is not readily adaptable to real-time processing.
The evolutionary nature of much of the codebase that
took this approach has complicated any efforts at
generalization and extension of the codebase.

Another experimental approach to data flow systems
used ideas similar to those found in the Visualization
Toolkit (Schroeder et al. 1996) with implicit flow of
control and highly constrained data generalizations
connecting processing components. Like the
"filesystem-connected" stages, the distribution of top-
level control logic among the components led to
difficulty in attaining proper flow of control for
algorithms, which have richer interactions with their
surroundings than the largely stateless algorithms that
dominate VTK. Further work on this approach was
made difficult by premature generalizations that did
not fit the problem domain.

These early experiments led to the observation that
the flow of data through the system is as much a
“science algorithm” as the numerical manipulations
performed on the data. Separating the concerns of
marshalling data, operating on data, and directing the
sequencing and movement of the data within the
system would lead to a higher degree of reuse. With
this in mind, parts of the S-HIS data system were
rebuilt as operator modules applicable to a variety of
use patterns as outlined above. Heavy reliance on
design patterns including the Builder pattern (Gamma
et al. 1995) allowed for great flexibility in invoking
such operators on a stream of packetized data.

3.2 UML-RT
A significant break-through in architecting the system
came with the assimilation of the object-oriented

concepts of the Unified Modeling Language – Real
Time extensions (UML-RT), whose abstractions are a
good fit for the concerns listed here. While the need
for component-oriented approaches was noticed early
on, the particular set of abstractions offered by UML-
RT proved to provide a reasonable path to code that
did not compromise any of the fundamental
requirements.

The UML-RT view of components is centered on
Capsules, Ports, and Protocols. Capsules are
constructs for isolating functionality with a very clearly
defined interface: Each capsule operates according to
a state diagram, responding to and generating signals
through its ports. The signal content on each port is
prescribed by its role in a protocol, which itself can be
represented with a state transition graph (Douglass
1999, Selic 2003).

UML-RT came about as an adaptation of object-
oriented design philosophy to the world of real-time
software, which is shaped by practicalities of mixed
hardware-software systems with very tight time and
resource budgets. Separability of three major
concerns is inherent in capsule-based designs -
processing itself, marshalling of data, and flow of
control. Control is described by a state transition table
appropriate to the role of the capsule. Data moving
through the system is represented by the protocol
descriptions for the connected ports - these are the
patterns of exchange between the components of the
system.

A core aspect of the UML-RT methodology is that it
encourages the recursive description of an entire
system. A top-level system design is divided into
functional sub-capsules and their interaction
protocols; these sub-capsules in turn hide smaller
capsules further dividing and conquering the system
requirements. This approach allows rigorous
characterization and testing of resource use of the
system capsule-by-capsule, and helps guarantee that
the system achieves strict performance requirements.

4. The GIPS prototype
A system of "black boxes" prescribed by capsule
responsibilities, protocol requirements and state
charts can be represented directly in software design,
and communicated using the UML-RT syntax.

4.1 Design philosophy
For our implementation of the UML-RT inspired
design, we chose ANSI C++ together with STL,
POSIX and other common open-source libraries,
including ATLAS, MIT FFTW, and the Blitz++ matrix
library. Since our heritage software, such as the
current S-HIS processing system is written in a
mixture of C, Fortran77, C++, Python, Java, and

MATLAB, some backward compatibility is required in
order to allow verification of the new system to take
place.

The practical concerns of doing object-oriented design
in C++ have shaped some of the coding conventions
we have followed. C++ lacks in its language
specification features such as garbage collection and
pointer safety, leaving them instead to libraries such
as Boost and the C++ Standard Template Library
(STL). These libraries function in part as language
extensions by way of C++'s strong support of compile-
time generics and operator overloading. Despite its
complexity, C++ was deemed to be the most mature
language platform at the present time in which to
develop the ideas of GIPS.

Figure 1: Diagrammatic overview of the GIFTS design, with
internal details of the science pipeline exposed as a UML-RT
style capsule diagram.

4.2 Addressing design concerns
Three critical aspects of the system that are
addressed by our science software prototype are
reuse, performance, and testing.

A. Reuse: Algorithm capsules, once tested,
should be able to fit into a variety of
enclosing frameworks without need for re-
coding. Exchanges of data are represented
as fully virtual protocol-role interfaces, which
can be implemented using a variety of
connector classes. Protocols should be kept

simple within the science processing, and
defer flow-of-control decisions to the
enfolding capsule's control logic where it
simplifies inter-capsule protocols. Protocol
descriptions should above all avoid imposing
implementation details on the capsules.

B. Performance: The high-volume observation

data for each detector pixel should be
minimally copied. The enclosing capsule is
given ownership of the exchange buffers
between sibling sub-capsules. Recognize
and expect that protocols will need to be
revisited in order to do optimization
refactorings. Favor simple data carriers (e.g.
structs) over elaborate delivery containers
with costly serialization requirements where
the option exists.

C. Testing (unit and integration): Algorithmic

functional units must be readily verified using
test fittings and unit tests. Each capsule has
a unit test verifying its operating state
transitions.

Furthermore, the following concerns and requirements
are accommodated if not fully implemented in the
prototype code:

D. Auditing: Auditing is not yet directly

answered in code by these design principles.
Critical aspects of auditing will be managed
by proper generation and use of some
implementation of Universally Unique
Identifiers (UUIDs). For an example
implementation, see Leach et al. (2004).
Such UUIDs must be registered for each
distinct algorithm version within the
versioning system, for each deployed
software configuration item. They must also
track which tool set - compilers, library
versions, code generation tools, and
algorithm version corresponded to the
configuration item. UUIDs also need to be
tracked within the data processing system to
identify processing jobs, reference data, and
collected as UUID tuples representing the
processing history for released products.

E. Monitoring: Monitoring is allocated for by

providing the capsules an iostream-
compatible port following the standard output
convention for C++ to accept text, values,
and shorthand tags which can be used to
generate monitoring logs and displays.

F. Refactoring of and testing against heritage

systems: Existing applications systems and
libraries can be encapsulated once their

outermost protocols are extracted.
Refactoring passes can then extricate control
logic and data marshalling in order to
improve performance and meet reuse needs.
Where expedient during prototyping, heritage
algorithms from other languages (e.g.
Fortran77) are recoded in C++.

Figure 2: UML-RT capsule diagram of the interferogram-to-
spectrum stage of the L0-L1 pipeline.

4.3 The system as a network of capsules
Our adaptation of UML-RT concepts in C++
implements connectors and capsules as objects, and
protocol roles as interfaces. Connectors are meant to
be provided by the system integrators and
implementers, and used by capsules without
knowledge of their internal construction. Capsules
hold the science and other supporting algorithms and
services required of the GIPS. Since capsules can be
composed into larger enclosing capsules, the entire
data processing system may be thus constructed by
applying the same principle recursively.

With the GIPS science processing pipeline itself a
capsule, a full-scale data processing system can be
created so that instances of the pipeline are
distributed across dozens or hundreds of processor
nodes. This takes advantage of “embarrassingly
parallel” nature of many of the processing tasks. Each
pipeline capsule is embedded within a processing

node is provided access to observation data and
reference data. The worker capsules themselves are
sibling capsules to the main data processing system
input and output, auditing, monitoring and reference
data service capsules. The controlling logic of the
overall system distributes processing jobs to the
workers. In the case of a large shared memory
system, building connectors moving data to the

pipeline largely takes the form of implementing access
to memory buffers. In the more complex case of a
distributed multiprocessor target, a system of
middleware (e.g. MPI, ACE, CORBA) connectors and
capsules will be required to hide the movement of
data structures and control signals across machine
boundaries from the science pipeline.

Figure 3: C++ interface code from the file Ifg2spectrum.h

4.4 Capsules as science algorithms
By the strictest UML-RT definition, capsules are
expected to accept signals on their ports
asynchronously, effectively functioning as parallel
execution threads. While this level of generality is
appropriate for multithreaded and multiprocessor
systems, our task of implementing a science
processing pipeline within a worker capsule, we
establish a practical convention, which we've
assigned the name of Operator.

The Operator has an activation function that operates
synchronously; in C++ this function is operator(), and
returns a success or failure to complete a calculation
cycle on its input.

The vectors and other data structures made available
on an operator’s input ports remain constant while it is
active. Thread safety of the data held on the
Operator's ports is the responsibility of the enclosing
capsule, and may eventually be handled by thread-
aware versions of connectors.

Where possible, the state of the Operator is
externalized as context input and update ports. This
allows an instance of a data processing pipeline to be
re-used at runtime for a variety of similar jobs (e.g.
reprocessing) by recovering archived context data
prior to re-activating the operator.

In this fashion, the processing pipeline becomes a
series of processing stage operators, which are
activated in sequence by the pipeline control logic.
The pipeline itself is signaled to proceed when the
enclosing worker has sufficient data ready for a job to

be processed.

4.5 Developing the system in C++
When coding a science algorithm as a major data
processing stage, one starts by identifying the
dependencies and command set of the algorithms
within that stage's Operator. These will largely take
the form of data structure declarations and specific
content definitions to be delivered to the algorithms by
way of one of its input ports.

Figure 4: Implementation in C++ of the abstract interface for the interferogram-to-spectrum capsule, using three internal capsules
(ifgShift, cplxFFT and foldSpectrum) joined by internally defined connectors (shiftedIfg, prefoldedSpectrum). Taken from

SHISStage.cc

The dependencies are then gathered into protocol
roles (example is an input role for a data port)
required by the Operator. The protocol roles are
declared as C++ virtual abstract classes, which
function as interface specifications in the C++ world.
Local protocol roles are based on existing protocol
role archetypes where appropriate – this lessens
complexity when building distributed applications. The
capsule’s protocol roles are finally bundled into a
Ports structure that is used to initialize operator
instances (see figure 3: C++ interface code, for a
simple example). The names and protocol roles for
the ports can be directly represented in a UML-RT
capsule diagram of the Operator (as shown in figure
2).

Unit tests are built for the operator using simple
connectors that pass in the prepared input test structs
and vectors. The operator is implemented such that
upon activation, it cycles through a computation,
recovering inputs from its input ports, writing output
and monitoring data to the corresponding output
ports, and then returns a pass/fail code to the
upstream controlling logic (see Figure 4 for
implementation code corresponding to the interface
listed in figure 3).

4.6 Connectors as data conduits
In UML-RT component diagrams, connectors are
represented as lines connecting capsule ports; each
connector endpoint answers a particular protocol role,
and the connector conforms to its declared protocol.
Protocols are usually binary – Connectors that
implement them have two ends, one acting in an input
role, the other as an output.

It can be a challenge to design protocol roles for a
given algorithm balancing the number and type of
ports without forcing implementation details on the
capsule. If too much unrelated data is grouped on one
port, it may need to be separated internally to route
relevant pieces to individual sub-components. At the
same time, minimally revealing the implementation
details of the encapsulated algorithms permits more
alternatives in implementing the Operator. Thus,
consistent practices for classifying the inputs
(metadata, engineering data, observation data,
reference data) are needed in order to provide clear
and concise interfaces.

C++, with its support for both class inheritance and
generic programming, provides a broad set of
possibilities with which to construct connectors. The
approach chosen for GIPS comes from a desire for
strong type safety and compile-time error detection.
The philosophy behind the design is to make it easy
to use capsules and connectors properly, and catch
obvious mistakes at compile time. An equally
important goal is to decouple the programming of

capsules, which only need to know the protocols they
interact with, from the programming of connectors and
glue code. Capsule implementers do not import
connector headers or any other implementation
details - they strictly specify the abstract protocol
roles, which must be satisfied at the time of the
capsule's instantiation. Separately, the implementer of
the enclosing system creates for each capsule a set
of connector instances compatible with the protocols.
In order to speed development, a connector template
library answering many of the archetype protocol roles
is being assembled. It currently includes utility
connectors such as raw data carriers, implementing a
simple binary data in/ data out protocol, as well as
connectors which use pre-existing test patterns,
connectors with debugging hooks, and connectors
using previously allocated memory as their data
sources or sinks.

Most important for the efficient functioning of the
system is a set of connectors for managing the high-
volume hyperspectral data. For the current prototype
effort, connectors utilizing the Blitz++ library were
built, owing to its literate treatment of large multi-
dimensional arrays and management of references to
slices of memory. For these connectors, the input port
interface specifies a getForInput() method that returns
a one-dimensional immutable (C++ const) array
containing the input vector of interest to the
downstream capsule. Likewise, the output protocol
role specifies a getForOutput() method for use by the
upstream capsule. These vectors provide access to
memory already allocated by the connector, and do
not perform a copy when their getForInput/Output
methods are called. The difference between the
various kinds of connectors fulfilling this raw data
protocol lies in how the backing memory is provided.
The BlitzSimpleConnector allocates a vector in
memory of a specific size, and allows proper
upstream and downstream access. The
BlitzMatrixBackedInputConnector allows stepped
access to one row at a time of an entire two-
dimensional blitz array.

Example uses for the matrix-backed connector are
dealing with a large number of records provided
simultaneously, and double buffering. If an entire set
of records becomes available at once in memory (e.g.
via a bulk network transfer or memory mapped file)
this kind of connector may be used to loop over the
entire set of records as the controlling logic invokes
the relevant Operator instances for each record.
Alternately, if space for only two records is allocated
in the backing memory, the controlling code may be
queuing data from a network connection even as the
other record is being used as an input vector for an
enclosed computational capsule. Bridges between
language systems, such as those allowing C++
capsules to be fed data from Java arrays, or allowing

direct visualization and interaction using MATLAB or
Python, can be largely constrained to be connector
adaptations.

Other connector types include struct connectors,
lookup connectors and monitoring connectors. Struct
connectors can be used to deliver immutable
algorithm configuration data to capsules, such as
input spectrum size that needs to be known at
capsule instantiation time. Lookup connectors fulfill
the need of science algorithms to access a database
of instrument characterization and self-calibration
records in order to properly extract science from the
interferograms. These connectors implement protocol
roles designed for the purpose of retrieving and
augmenting database entries. Whether the backing
implementation behind the connectors is a full SQL
database server, or an STL map based out of local
memory - as might be the case for an embedded in-
flight application or a unit test - the implementation
remains opaque to the science algorithm client.
Monitoring connectors currently work off the
assumption that emanated messages vary from
capsule to capsule, and thus provide a streamed
output channel. In C++, standard iostream
conventions are adopted.

4.7 Capsules as science algorithms.
The code in Figures 3 and 4 shows a sample
algorithm interface and implementation. The intention
behind abstracting the algorithms as capsules is to
capture not only the specific sequence of math
functions required, but also the context necessary for
that sequence of functions to make sense. In part,
bundling algorithms into objects also enables some
aggressive optimization techniques, such as caching
FFT plans assembled during object construction.
Three different approaches to providing an
implementation to a science capsule have been
carried by the authors: atomic (function-based C/C++
code) implementations, sub-capsule implementations,
and wrapping of legacy Fortran code. When an
existing C/C++ library already provided some basic
functionality, as in the case of the complex FFT
operator, the library call was simply wrapped in a
capsule. This presented a good opportunity to gather
the legacy code for setting up intermediate buffers
and creating an FFT plan which had previously been
scattered around the source files into the capsule as
well, thus freeing the new capsule-style surrounding
code from such implementation details. A similar
approach was taken with algorithms to fold a complex
spectrum coming out of the FFT and to shift a
complex interferogram going into that FFT. Once
these were encapsulated, it was a fairly easy to
gather them together into a higher-level capsule, by
first setting up intermediate data buffer connectors,
making sure that an external configuration connector
was correctly distributed, and then simply firing the

operator() calls for the three component capsules in
sequence. Another capsule, which performs a
nonlinearity correction for the SHIS instrument, was
implemented by wrapping an existing well-
characterized heritage Fortran binary inside a
capsule. This last coding experiment demonstrated
the philosophy of enabling rapid development as well
as side-by-side testing of C++ versus Fortran
implementations by utilizing known code in the new
framework.

4.8 Other practical considerations
In a production system, memory leaks are not
permitted. Allocation and freeing of memory blocks
can incur unpredictable overhead at run-time. These
kinds of behavior are strictly disallowed in hard real-
time systems, and need to be characterized in soft
real-time systems. The convention we select is that
the enclosing capsule is the owner of all connectors
and capsules that it operates. It instantiates internal
connectors and delivers references for those
connectors to its internal capsules; the capsule
implementer may safely assume that the objects
being referenced will be valid over the lifetime of a
capsule instance. We favor instance variables with
constructor-passed references over the use of new()
and pointer passing. We also prefer libraries such as
STL and Blitz++ to control heap allocation of data
variables. This all should improve the stability of
memory usage once a network of capsules is
constructed and configured. Finally, while C++
exceptions are a welcome language feature, they
should not be able to leak through capsule boundaries
after they have been constructed – as this would
create a mechanism separate from the well-defined
ports by which capsules may be coupled to the
external world.

5. Conclusion and continuing work
This paper presents an overview of practical
challenges and solutions encountered so far in our
C++ prototype implementation of the GIFTS
Information Processing System. This is an ongoing
process, and the current focus is on refining the
prototype, with the goal of making it fully operational
for both S-HIS data processing needs in the field, and
for upcoming GIFTS thermal vacuum tests.

Source code, sample datasets and updates for this
project can be found at:

http://www.ssec.wisc.edu/gifts/noaa/l0l1.html

Acknowledgments
The authors wish to acknowledge NOAA for
supporting this work through Grant #NA07EC0676.

Bibliography
Alexandrescu, A., 2001: Modern C++ Design: Generic

Programming and Design Patterns Applied,
Addison-Wesley, New York

Davis, S. P. Abrams, M. C., Brault, J. W. 2001:

Fourier Transform Spectroscopy, Academic Press,
San Diego

Douglass, B. P., 1999: Real-Time UML: Developing

Efficient Objects for Embedded Systems, (2nd
Edition), Addison-Wesley, New York

Dovis, F., L. L. Presti, E. Magli, P. Mulassano, G.

Olmo, 2001: Stratospheric platforms: a novel
technological support for Earth observation and
remote sensing applications, Proceedings of SPIE
-- Volume 4540, Sensors, Systems and Next-
Generation Satellites V, Hiroyuki Fujisada, Joan B.
Lurie, Konradin Weber Editors, pp 402-411

Gamma, E., R. Helm, R. Johnson, J. Vlissides 1995:

Design Patterns - Elements of Reusable Object-
Oriented Software, Addison Wesley, New York

Garcia, R. K. and M. J. Smuga-Otto 2004a: "Design

Studies for the GIFTS Information Processing
System", 20th International Conference on
Interactive Information and Processing Systems
for Meteorology, Oceanography, and Hydrology,
American Meteorological Society, Boston, MA.

 —, 2004b: Distributed Computing for the Extraction

of Meteorological Products from the GIFTS
Imaging Interferometer, presented at the third
GOES-R Users Conference, Broomfield CO.

—, 2004c: Component-oriented design studies for

efficient processing of hyperspectral infrared
imager data. in Atmospheric and Environmental
Remote Sensing Data Processing and Utilization:
an End-to-End System Perspective edited by
Hung-Lung Allen Huang, Hal J. Bloom,
Proceedings of SPIE Vol. 5548 (SPIE, Bellingham,
WA, 2004) pp 444-454

Huang, H.-L., P. Antonelli, 2001: Application of

Principal Component Analysis to High-Resolution
Infrared Measurement Compression and
Retrieval. Journal of Applied Meteorology: Vol. 40,
No. 3, pp. 365–388

Knuteson, R. O., F. A. Best, N. C. Ciganovich, R. G.

Dedecker, T. P. Dirkx, S. Ellington, W. F. Feltz, R.
K. Garcia, R. A. Herbsleb, H. B. Howell, H. E.
Revercomb, W. L. Smith, J. F. Short, 2004a:
Atmospheric Emitted Radiance Interferometer
(AERI): Part I: Instrument Design, J. Atmos.
Oceanic Technol., (Accepted for Publication)

Knuteson, R. O., F. A. Best, R. Dedecker, R. K.

Garcia, S. Limaye, E. Olson, H. Revercomb and
D. Tobin, 2004b: Level 0-1 Algorithm Description
for the Geosynchronous Imaging Fourier
Transform Spectrometer, 20th International
Conference on Interactive Information and
Processing Systems for Meteorology,
Oceanography, and Hydrology, American
Meteorological Society, Boston, MA

Leach, P., M. Mealling, R. Salz, 2004: A UUID URN

Namespace. http:// www.ietf.org/internet-
drafts/draft-mealling-uuid-urn-03.txt

Revercomb, H. E., H. Buijs, H. B. Howell, D. D.

LaPorte, W. L. Smith, L. A. Sromovsky, 1988:
Radiometric calibration of IR Fourier transform
spectrometers: solution to a problem with the
High-Resolution Interferometer Sounder, Applied
Optics Vol 27 No. 15, pp 3210-3218

Revercomb, H.E., D. C. Tobin, V.P. Walden, J.

Anderson, F.A. Best, N.C. Ciganovich, R.G.
Dedecker, T. Dirkx, S.C. Ellington, R.K. Garcia, R.
Herbsleb, H.B. Howell, R.O. Knuteson, D.
LaPorte, D. McRae, M. Werner, 1998: Recent
Results from Two New Aircraft-based Instruments:
the Scanning High-resolution Interferometer
Sounder (S-HIS) and the NPOESS Atmospheric
Sounder Testbed Interferometer (NAST-I),
Proceedings of the Eighth International Workshop
on Atmospheric Science from Space Using
Fourier Transform Spectrometry (ASSFTS8),
Toulouse, France, sponsored by Meteo-France,
CNES, CNRS, pp 249-254

Schroeder, Will, with Ken Martin and Bill Lorenson,

1996: The Visualization Toolkit. Prentice-Hall,
Boston, MA

Selic, B., J. Rumbaugh, 2003: Using UML for

Modeling Complex Real-Time Systems, Rational /
IBM whitepaper, http://www-
128.ibm.com/developerworks/rational/library/139.h
tml

Velden, Christopher, Dengel, Gail, Huang, Allen

Hung-Lung, Stettner, David, Revercomb, Hank,
and Knuteson, Robert, 2004: Determination of
wind vectors by tracking features on sequential
moisture analyses derived from hyperspectral IR
satellite soundings. 20th International Conference
on Interactive Information and Processing
Systems (IIPS) for Meteorology, Oceanography,
and Hydrology, American Meteorological Society,
Boston, MA

