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ABSTRACT

Built upon the recent success of objective analyses
of potential temperatures in complex terrain using a
mother-daughter approach, experiments are conducted
to evaluate the impacts of assimilating surface temper-
atures on subsequent forecasts. The mother-daughter
approach spreads surface valley observations along cir-
cuitous valleys in complex terrain, while reducing spread
over mountain ridges.

This approach is further refined for mountain-top ob-
servations in this study, to allow spreading the mountain-
top observations to neighboring high ridges across val-
leys. This study also demonstrates how to combine
detailed surface analyses from local observations with
coarse-resolution analyses from major operational cen-
ters, such as the Eta analysis from the National Cen-
ters for Environmental Prediction (NCEP). Incremental
analysis update (IAU) is used to incorporate the final
analysis increments into a mesoscale numerical weather
prediction model. To assess the impacts on mesoscale
forecasts of surface data assimilation, assimilation runs
started from the combined analyses are compared with
control runs driven by unmodified Eta initial conditions.
It is found that the model improves surface temperature
and mean sea level pressure forecasts during the first 12 h
forecast period after assimilating surface temperatures.

1. INTRODUCTION

Nowadays, people tend to rely heavily on numeri-
cal weather prediction (NWP) forecasts beyond the first
few hours. The rapid growing computer power has led
to finer resolution NWP models, which are able to re-
solve mesoscale features and thus to give more accurate
forecasts. This capability is of utmost importance for
mountainous British Columbia (BC) because valleys are
mesoscale, and most of the population and commence is
in such valleys. However, accurate high-resolution fore-
casts depend on accurate and representative initial fields
from which to start.

Determining the best initial conditions for NWP mod-
els is the purpose of data assimilation (DA). There ex-
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ists many methods for this purpose, such as successive
correction methods, statistical (or optimum) interpola-
tion, Kalman filtering, and variational methods (Daley
1991, Kalnay 2003).

Surface observations, being frequent and dense, are
valuable data sources for mesoscale data assimilation
and forecasting (Miller and Benjamin 1992, Ruggiero
et al. 1996). For example, it was found that assimi-
lating surface data into NWP models significantly re-
duced modeling errors in the atmospheric boundary layer
(Alapaty et al. 2001), which might be useful for subse-
quent air pollution modeling. However, assimilating sur-
face observations into NWP models still remains a rel-
atively unexplored area for improving the initial condi-
tions of NWP models, particularly in complex terrain;
i.e., British Columbia, Canada.

A mother-daughter (MD) approach was developed for
the objective analysis of surface observations in com-
plex terrain (Deng and Stull 2004). The approach gener-
ates sharing factors (SFs) and circuitous travel distance
(CTD), which are then used to define anisotropic corre-
lation function for the ADAS Bratseth scheme (Brew-
ster 1996, Bratseth 1986). This allows observation in-
formation to follow valleys around ridges, while reduc-
ing spread over the ridge top. This study further refines
the MD approach by treating mountain-top observations
differently than valley observations, and focuses on as-
similating surface temperature observations in complex
terrain into a NWP model. The main objective is to im-
prove the forecast quality of surface fields.

2. MOUNTAIN-TOP REFINEMENT

Surface observation stations are usually located in val-
leys. But, there are some surface stations located at high
elevations in mountains, such as at ski areas. The origi-
nal MD approach in Deng and Stull (2004) is good for
surface observations in valleys, but is problematic for
mountain-top observations. The original MD approach is
not able to spread information from a mountain-top ob-
servation to the grid points (GPs) of surrounding moun-
tains. This is particularly true if the observation is lo-
cated at the top of a very steep mountain. The spread-
ing to the surrounding mountain tops is desired for two
reasons. During shallow cold-air pooling events, the
high-mountain tops are all penetrating into the free atmo-



Figure 1: Cross section of the model topography (solid
line), the smoothed model topography (dashed line), the
approximated height of BL top (dot dashed line) and the
standard deviation of the difference between the model
topography and the smoothed model topography (dotted
line). The cross section is along 49.0◦N in the domain
shown in Fig. 2. Any observation located above the dot
dashed line will be treated as a mountain-top observation.

sphere where they would experience the same weather.
Second, during deep boundary layer (BL) events with BL
top above the mountain top, vigorous turbulence would
also cause mixing across the valleys. Therefore, the MD
approach is further refined here to allow such spreading
by treating mountain-top observations differently than
valley observations.

Recall that the original MD approach is expressed by
the following iterative equation for sharing factorSod:

Sod(ν+1) =Som(ν)
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for |Zm(ν)−Zd(ν + 1)| < zre f 1 and|Zo −Zd(ν + 1)| <
zre f 2, otherwiseSod(ν + 1) = 0. The subscriptso, m, d
represent an observation, a mother GP and a neighboring
daughter GP, respectively.Z is elevation,ν is iteration
counter. The terrain-following and level-top BL-depth
parameters arezre f 1 andzre f 2, respectively. Parameters
a andb control the analysis decorrelation rate.

The modified sharing factor (SF) for a mountain-top
observation is proposed as follows:

SMT
od = SMT
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Figure 2: The model topography (up, darker shading in-
dicates higher elevations) and the difference between the
model topography and the approximated height of BL
top (bottom, any station located in the darkly shaded ar-
eas will be treated as a mountain-top station).

for |Zo − Zd | < zre f 2, otherwiseSMT
od = 0. The super-

script MT indicates mountain-top observations.SMT
om is

the SF at the mountain-top observation location, which
is 1.0. The SF at any surrounding GP depends upon the
elevation difference between the observation and the GP
and upon the level-top BL depth parameterzre f 2. No
iteration is needed.

The refined MD approach first checks whether an ob-
servation is located at mountain-top or in a valley, and
then picks the right equation to calculate the SF for that
observation station. To distinguish mountain-top obser-
vations from valley observations, a simple approach is
taken here. Firstly, the model topographic heights are
smoothed by the Barnes (1964) method. The shape factor
(R) of the empirical Gaussian weights is taken as 90 km,
which is thirty times the grid-spacing (3 km). Secondly,



the standard deviation (σZ) of the difference between
the model terrain height and the smoothed model terrain
height is calculated within a region of (-R, +R). Let Zs

be the smoothed model terrain height, the long-term av-
eraged height of BL top (ZBL) is approximated by:

ZBL = Zs + max(0.,zre f 2−σZ) (3)

wherezre f 2 is the level-top BL-depth parameter in (1)
and (2). The values of all parameters in (1) and (2) are the
same as in Deng and Stull (2004):a = 2, b = 2, zre f 1 =
750 m, zre f 2 = 750 m. Fig. 1 is a cross section (along
49.0 ◦N in the domain shown in Fig. 2) of the model
topography, the highly smoothed model topography (Zs),
the approximated height of BL top (ZBL) andσZ . Any
observation located above theZBL line will be treated as
a mountain-top observation.

The model topography and the difference between the
model topography and the approximated height of BL
top are shown in Fig. 2 for our study domain centered at
Vernon, British Columbia.

The approximation ofZBL is crude, but provides a sim-
ple and effective way to distinguish mountain-top obser-
vations from valley observations. That is to compare the
elevation of an observation with the approximated height
of BL top (ZBL). As mentioned in Deng and Stull (2004),
in the case of an observation that is not co-located with
any model GP, the station is first approximated as be-
ing co-located at whichever nearest neighboring model
GP has the minimum elevation difference between them.
In such a case, the elevation of the nearest neighboring
model GP is compared withZBL. Any surface observa-
tion that is aboveZBL is treated as a mountain-top obser-
vation, whereas any surface observation that is belowZBL

is treated as a valley observation. The SF for a mountain-
top observation is obtained through (2), whereas the SF
for a valley observation is calculated via (1).

3. METHODOLOGY

Dense surface observations are valuable data sources
for mesoscale data assimilation. However, surface obser-
vations are available only at one level. Meanwhile, major
operational centers generate 3D meteorological analysis
daily by assimilating many types of measurements. One
example is the Eta model analysis from the National Cen-
ters for Environmental Prediction (NCEP). This study
demonstrates how to effectively combine local surface
data with 3D analysis from major operational centers.

Surface observations are first analyzed by using the
refined MD approach in conjunction with the ADAS to
generate a surface data analysis. This is done by op-
timumly combining surface observations and the first-
guess at the lowest terrain-following level from the

Mesoscale Compressible Community (MC2) model at
3 km grid-spacing. In this study, the model is configured
with five one-way self-nested grids with grid-spacings of
108, 36, 12, 4 and 3 km. The 3-km mesh have 35 lay-
ers (18 below 1500 m) in the vertical, with the model top
at 23 km. The lowest ”thermodynamic” level is located
at 5.3 meters above the model ground, while the lowest
”momentum” level is located at 10.6 meters.

The Eta model analysis at 90.75 km grid-spacing from
NCEP is used as the upper-air analysis. The Eta analysis
is available on 38 pressure levels from 5.0 to 100.0 kPa
every 2.5 kPa. To obtain an upper-air analysis on terrain-
following MC2 3-km model levels, the Eta analysis is in-
terpolated horizontally to 108 km, and vertically to MC2
108-km model levels. MC2 108-km driven by the inter-
polated Eta analysis and forecasts is integrated 1 h. The
0 h and 1 h output from MC2 108-km are used as ini-
tial and boundary conditions to drive MC2 36 km, which
in turn drive 12, 4, and 3 km. MC2 3 km output on
terrain-following levels at 0 h is an upper-air analysis
used below. By doing this, horizontal interpolation is
gradual from coarse grid to finer grids and vertical in-
terpolations are done on terrain-following coordinate ex-
cept the one from Eta analysis (pressure levels) to MC2
108-km model levels. Therefore, interpolation errors are
minimized.

Now we have a surface data analysis, an upper-air
analysis, and the 3D first-guess from previous 3-km run.
The three sources of data are on MC2 3-km model lev-
els. Two schemes are proposed below to combine the
three data sources to form a final analysis to initialize
MC2 3-km assimilation runs.

Scheme I (SIGM) uses a sigmoidal function to influ-
ence the background above the lowest model level by
the analysis increments at the lowest model level. The
scheme assumes that the analysis increments at the low-
est model level apply to the whole BL, considering prob-
ably similar forecast errors in the BL. Above the BL top,
the final analysis is a weighted average of only the first-
guess and the upper-air analysis. The weights depend
on the ratio of error variance of upper-air analysis and
the background. As the upper-air analysis is obtained by
interpolating the Eta analysis to the MC2 3-km model
level, we assume that the error variance is the same for
both the background and upper-air analysis. A transi-
tion zone exists near the BL top. The BL height in this
scheme is diagnosed by the Stull’s transilient turbulence
theory (TTT) mixing potential approach.

In the scheme II (PROF) profile method, potential tem-
peratures at the lowest model level are assumed to be
mixed uniformly within the BL, so the potential tem-
perature analysis at the lowest model level is applied to
the whole BL. Above the BL top, the final analysis is a
weighted average of the first-guess and upper-air analy-



Figure 3: Virtual surface observation stations, indicated
by solid triangles, used in the analysis and verification.
The stations are positioned at the truth-model terrain
height in the Coast Mountains north of Vancouver. Sta-
tion o1 (50.326◦N, 123.578◦W) is near the mouth of the
Elaho River, on the valley floor. Station o2 (50.3344◦N,
122.767◦W) is near the town of Pemberton, also in a
valley. Station o3 (50.3773◦N, 123.2363◦W) is at the
mountain top. Terrain elevations are from the truth model
in meters. Darker shading indicates higher elevations,
with a maximum elevation difference of 2055 m in this
figure.

sis as in SIGM. BL height is diagnosed from a profile
method (described below) based on a slab idealization of
the mixed layer (Stull 2000). A jump of potential tem-
perature at the entrainment zone is taken as 1.5 K.

In the profile method, the analyzed potential temper-
ature at the lowest model levelθSA(1) is compared with
the potential temperature profile of the upper-air analysis
(θUA) at successively higher grid points. WhenθSA(1)−
θUA(1) > −1.5 K, the BL heightZi is the height of the
model levelk at which the criterion ofθUA(k)−θSA(1)≥
1.5 K is first met. WhenθSA(1)− θUA(1) ≤ −1.5 K, Zi

is assumed to be 300 m, which represents nocturnal BLs
or shallow BLs with cold air pooling.

Once the final analysis is obtained as proposed above,
incremental analysis updating (IAU, similar to Bloom
et al. 1996) is used to insert the final analysis increments
(the difference between the final analysis and the first-
guess) into the MC2 model. The IAU is implemented for
the MC2 model in a similar way to the one in the Ad-
vanced Regional Prediction System (ARPS), which as-
similates the ADAS analysis increments.

Table 1: Analysis experiments performed.Rh andRz are
correlation length scales in the horizontal and vertical,
respectively, which define the regions of influence.di j

and∆zi j are straight-line horizontal distance and eleva-
tion difference between an analysis grid point (GP) and
the observation station, respectively.Kz is a coefficient.
si j is the circuitous travel distance from the observation
to an analysis GP determined in the mother-daughter pro-
gram. Sod is the sharing factor at an analysis GP, which
represents how much the analysis GP shares the observa-
tion information.SMT

od is the same asSod except that the
former is from the refined mother-daughter approach. In
this study,Rh is 90 km for the first and second iteration,
60 km for the third iteration, 30 km for the fourth and
fifth iteration, during the ADAS assimilation cycle.
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4. NUMERICAL RESULTS

4.1 Surface Data Analysis

4.1.1 Virtual observations

We first use “fraternal-twin” experiments to evalu-
ate the MD approach after the mountain-top refinement
for the same case (7-8 March 2003) in Deng and Stull
(2004). In the fraternal-twin experiments, the “truth”
model (MC2 at 2 km grid-spacing) is integrated 12 h to
generate a reference atmosphere, from which virtual sur-
face observations are extracted. The “analysis” model
(MC2 at 3 km grid-spacing) is started from the same but
randomly perturbed initialization conditions and is inte-
grated 12 h to provide a first-guess.

Table 2 lists the normalized root mean square errors



Table 2: The normalized root mean square errors
(NRMSE) between the analyses and observations for dif-
ferent sets of the verification stations. One set is the val-
ley stations (b1, b2, b3 and b4); the other is the mountain-
top stations (m1, m2 and m3). The analyses were pro-
duced when the single mountain-top observation o3 only
is used. The observation stations are shown in Fig. 3.
NRMSE is RMSE (root mean square error) for each
experiment normalized by the RMSE of the first-guess
(FSTG). Smaller NRMSE corresponds to better analy-
ses. NRMSE close to 1.0 indicates very small correction
to the first-guess from the observations.

EXP Verified against Verified against
b1, b2, b3 and b4 m1, m2 and m3

FSTG 1.0 1.0

GAUSS 1.1025 0.2745

TERR DIFF 1.4061 0.2143

MD 1.0009 1.0

MD MT 1.0026 0.1633

Table 3: Same as Table 2, but for all of the verification
stations (the valley stations b1, b2, b3 and b4, and the
mountain-top stations m1, m2 and m3). The analyses
were produced using two observations (o1 and o2) in dif-
ferent valleys and one mountain-top observation o3.

EXP Verified against
b1, b2, b3, b4, m1, m2 and m3

FSTG 1.0

GAUSS 1.7593

TERR DIFF 1.9668

MD 0.9720

MD MT 0.4147

(NRMSEs) between different sets of the virtual surface
observations (see Fig. 3) and the analyses from differ-
ent experiments, when the single mountain-top observa-
tion o3 only is used to produce an analysis. The obser-
vation increment is -1.56 K. The experiments GAUSS,
TERR DIFF and MD are the same as in Deng and Stull
(2004). They differ from each other in the definition
of background-error correlation (see Table 1). Experi-
ment MD MT is the same as experiment MD except that
the SFs come from the MD approach after mountain-
top refinement. The second column in Table 2 indicates
that experiment MD and MDMT produce almost zero
spread from the mountain-top observation into valleys
as expected. As shown in the third column, experiment
GAUSS and TERRDIFF reduce RMSEs largely from
the first-guess by spreading the observation increments
into surrounding high mountains. Experiment MD pro-
duces identical RMSE as the first-guess (FSTG). While
allowing spread into the surrounding high ridges, exper-
iment MD MT reduces the NRMSE from 1.0 to 0.1633,
compared to experiment MD.

Table 3 lists the verification summary when the three
observations (two valley observations o1 and o2, and
one mountain-top observation o3) are used to produce
an analysis. The verification is done for independent val-
ley observations (b1, b2, b3 and b4) and mountain-top
observations (m1, m2 and m3) shown in Fig. 3. Overall,
experiment MDMT has minimum NRMSE.

4.1.2 Real observations

Experiments are conducted for the 29-30 July 2003
case when a large wild forest fire occurred in McClure,
BC. The weather situation during 29-30 July 2003 was
characterized by a strong ridge over Southern BC. Sur-
face analyses are performed at 00 UTC 30 July, by blend-
ing hourly surface observations with the first-guess at the
lowest terrain-following model level valid at the same
time. The analysis domain is shown in Fig. 2. Sur-
face observations are from several agencies: BC min-
istry of Transportation and Highways (MOTH), BC Min-
istry of Water Land and Air Protection (WLAP), BC
Ministry of Forests (MOFS), CN Railroad (CNRL), CP
Rail (CPRL), Environment Canada (EC) and BC Hydro
(HYDR). Those surface stations with the difference be-
tween their elevation and model topography greater than
500 m are excluded from analysis and verification. Ob-
servations separated by 100 m or less in the horizontal
and vertical are averaged to create a smaller number of
“superobservations”.

The verification statistics (Table 4) show that all
schemes improve FSTG as measured by bias, mean
absolute error (MAE) and normalized root mean
square error (NRMSE). GAUSS is slightly better than



Table 4: Verification of analyzed potential temperatures
in terms of bias, mean absolute error (MAE), and nor-
malized root mean square error (NRMSE) for all report-
ing verification stations at the analysis time: 00 UTC
30 July, 2003. N equals total number of reporting sta-
tions. NRMSE is RMSE (root mean square error) for
each experiment normalized by the RMSE of the first-
guess (FSTG).

EXP N Bias (K) MAE(K) NRMSE

FSTG 64 -5.2583 7.6869 1.

GAUSS 64 0.7577 2.0990 0.5146

TERR DIFF 64 0.7121 2.3238 0.5462

MD 64 0.0894 1.5997 0.3906

MD MT 64 0.1332 1.6102 0.3872

TERR DIFF, with smaller MAE and NRMSE. Both MD
and MD MT outperform GAUSS and TERRDIFF. MD
produces lowest bias, MAE, whereas MDMT has low-
est NRMSE. The improvement of MDMT over MD is
not as obvious as that for the virtual observation case in
the previous subsection.

4.2 Data Assimilation Results

To assess the impacts of the different schemes on sub-
sequent forecasts, six experiments are examined: one
control experiment without assimilation (CTRL) and five
other experiments, which assimilate various combina-
tions of the surface data analysis and upper-air analy-
sis (see Table 5). Experiment SIGMDA uses the sur-
face analysis increments within the BL and the upper-
air analysis increments above BL, where two analysis
increments are combined by scheme SIGM described
above. Experiment PROFDA uses the surface analy-
sis and upper-air analysis combined by scheme PROF.
These two experiments are performed to see which com-
bination scheme is better for subsequent forecasts. Ex-
periment SURFDA uses the surface data analysis only at
the lowest model level, above which are the first-guess.
This experiment is used to study the effect of assimilat-
ing surface observations at only one model level. Ex-

periment SFSIGM uses the surface analysis only, but
the analysis increments at the lowest model level are
spread by scheme SIGM to the whole BL. Experiment
SF PROF is the same as SFSIGM, except that the sur-
face analysis is spread vertically by PROF. These two
experiments are conducted to see if the surface data as-
similation plays a dominant role on subsequent surface
forecasts.

A schematic illustrating the assimilation and forecast
periods is shown in Fig. 4. All assimilation runs are
started at 00 UTC on day 2 and are integrated 24 h. Ex-
periment CTRL is started at 12 UTC on day 1 and is
integrated 36 h. CTRL provides its 12 h output as the
first-guess for analysis at 00 UTC on day 2. Surface ob-
servations and Eta analysis valid at 00 UTC on day 2 are
used to produce a new analysis. Verification of subse-
quent forecasts at the lowest model level is performed
during a 24 h forecast period from 00 UTC on day 2 to
00 UTC on day 3.

All DA experiments assimilate only temperature ob-
servations from the surface analysis and/or upper-air
analysis for the 29-30 July 2003 case. For fair-
comparison purposes, upper-air analyses are used at the
grid-points where the absolute values of the temperature
analysis increments at the lowest model level are greater
than 1.0E-03 K. For all experiments, surface analyses
are from MDMT; the final analysis increments are in-
corporated all at once by IAU within a 30 seconds (one
time step) window. The subsequent forecasts at the low-
est model level are verified against surface observations.
Bias, MAE and RMSE between observations and fore-
casts are calculated.

Statistical assessments during 1-12 h forecast period
in Table 6 suggest that different experiments have vari-
able success at predicting surface fields. For temperature
forecasts, all of the DA experiments outperform CTRL.
By assimilating surface temperature only at the lowest
model level, experiment SURFDA gives very little im-
provement over CTRL. When surface potential temper-
ature analyses from MDMT are spread throughout the
whole BL either through SIGM or PROF, larger improve-
ment for predicting surface temperatures are achieved.
The two experiments (SIGMDA and PROFDA) that
combine the surface and upper-air analysis gain larger
improvement over CTRL than any other experiments that
assimilate surface data only. The difference in the error
measures between SIGMDA and PROFDA is very small.

For SLP forecasts, all DA experiments also outper-
form CTRL except SURFDA. Overall, improvement of
SLP forecasts is smaller than the one of temperature fore-
casts. This is reasonable as temperature is directly as-
similated into the model. For wind forecasts, all DA ex-
periments underperform CTRL in terms of normalized
root mean square vector error (NRMSVE) due to initial



Table 5: Experiment design to test different schemes
combining surface data analysis and upper-air analysis.

EXP Surface Upper-air Combination
Name Analysis Analysis Scheme

CTRL No No

SIGMDA Yes Yes SIGM

PROFDA Yes Yes PROF

SURFDA Yes No

SF SIGM Yes No SIGM

SF PROF Yes No PROF

Time
(UTC)      00     03     06     09     12     15     18     21     00    03    06    09   12    15    18    21    00

 Day 1

108 km

SFC

 Day 2  Day 3

36 km

12 km

 4 km

 3 km  CTRL12 h

first-guess
new analysis

Eta
analysis

 3 km  assimilation run

Figure 4: Schematic diagram illustrating time-lines of
MC2 self-nested grids, 3-km CTRL run and 3-km assim-
ilation runs. MC2 4-km provides boundary conditions
for 3-km CTRL run and 3-km assimilation runs. SFC
indicates surface data.

Table 6: Verification of surface potential temperatures
(θ), wind (V) and mean sea level pressure (SLP) fore-
casts in terms of bias, mean absolute error (MAE), root
mean square error (RMSE) and/or normalized RMSE
(NRMSE) for all reporting verification stations (n) dur-
ing 12 h forecast period from 01 UTC 30 to 12 UTC 30
July, 2003. NRMSE is RMSE for each experiment nor-
malized by the RMSE of the control run (CTRL).

1 - 12 h

θ (K)
(n = 601)

SLP (hPa)
(n = 153)

V (m s-1)
(n = 506)

Experiment BIAS MAE RMSE NRMSE BIAS MAE NRMSE RMSVE NRMSVE

CTRL -4.8380 5.6661 6.4715 1. 3.7556 3.9732 1. 1.7445 1.

SIGMDA -4.1647 5.1123 5.9504 0.9195 3.1126 3.5925 0.9329 1.9478 1.1165

PROFDA -4.1629 5.1785 5.9788 0.9239 3.0049 3.5659 0.9348 1.9958 1.1441

SURFDA -4.8528 5.6228 6.4421 0.9955 3.7572 3.9703 1.0003 1.7502 1.0033

SF_SIGM -4.3195 5.2334 6.0702 0.9380 3.2345 3.6122 0.9368 1.9604 1.1238

SF_PROF -4.3279 5.2882 6.0890 0.9409 3.2109 3.6500 0.9511 1.9682 1.1282

imbalance between mass and wind fields after assimilat-
ing temperatures. SURFDA has the smallest NRMSVE,
probably because the assimilated temperature informa-
tion is soon lost after insertion, whereas PROFDA has the
largest NRMSVE. The differences between NRMSVEs
of different experiments are small.

Verification statistics for 13-24 h forecast period (not
shown) indicates that all assimilation experiments pro-
duce temperature, wind and SLP forecasts that are closer
to those from CTRL.

Experiments are conducted to assess different data as-
similation strategies. Experiment TH1 incorporates tem-
perature analysis increments all at once within a 30 sec-
onds data assimilation window. In experiment TH3, the
temperature analysis increments are incorporated every
120 seconds over a 1 h data assimilation window. The 1 h
window is selected based on the fact that BL responds to
the surface forcing with a time scale of about one hour
or less (Stull 1988). In experiment TH6, the temperature
analysis increments are incorporated every 1200 seconds
over a 1 h window. For all these three experiments, the
final analysis is obtained through PROF scheme. There-
fore, experiment TH1 is identical to PROFDA in table
6.

Fig. 5 shows NRMSE of potential temperature ver-
sus forecast hours for experiment TH1, TH3 and TH6.
The NRMSEs for these experiments is smaller than 1.0
during the first 12 h (except 4 h) forecasts, and increase



Figure 5: Time series of normalized root mean square
error (NRMSE) for surface potential-temperature from
experiment CTRL, TH1, TH3, and TH6.

gradually with forecast hours. Finally the NRMSE be-
comes closer to 1.0. By applying the analysis increments
over a 1 h window rather than all at once, experiment
TH3 and TH6 produce much smaller NRMSE than ex-
periment TH1 for the first 7 h (except 4 h) forecast. Re-
ducing the rate at which data are assimilated decreases
NRMSE for the 1 h forecast.

The evolution of NRMSVE for experiment TH1, TH3
and TH6 is shown in Fig. 6. By assimilating tempera-
tures only, the model tends to produce poorer wind fore-
casts during the first 12 h, due to initial imbalances be-
tween the mass and wind fields. During the second 12 h
forecast period, all DA experiments and CTRL produce
similar results. This could be because the assimilated
information propagate out of the domain. Another rea-
son could be that the mass and wind fields are adjusted
to be in balance. By applying the temperature analysis
increments over a 1 h window rather than all at once
(thus reducing initial imbalances), experiment TH3 and
TH6 decrease NRMSVE effectively for the 1 h forecast
as compared to experiment TH1, but increase NRMSVE
a little bit during the 2-8 h forecast period. Reducing
the rate at which data are assimilated decreases further
NRMSVE for the 1 h forecast while reducing the in-
crease of NRMSVE.

5. Summary

A mountain-top refinement is introduced to the orig-
inal mother-daughter (MD) approach (Deng and Stull
2004), and is tested with two cases. The MD approach
after mountain-top refinement (MDMT) has larger im-
provement over MD for the virtual observation case than
for the real observation case. A reason for this perfor-

Figure 6: Time series of normalized root mean square
vector error (NRMSVE) for surface winds from experi-
ment CTRL, TH1, TH3, and TH6.

mance could be that only a very small fraction of stations
(three out of the 64 stations) are treated as mountain-top
observations in the real observation case, while in the
virtual observation case, one out of the three stations is a
mountain-top observation.

By assimilating temperature observations only, the
model improves surface temperature and mean sea level
pressure forecasts during the first 12 h, but tends to pro-
duce poorer forecasts of surface winds due to the initial
imbalance. Surface information assimilated only at the
lowest model level is soon lost at the beginning of the
forecast period. Larger improvement over the control run
is achieved when surface information is spread upward
throughout the BL. Experiments that spread surface in-
formation by the two combination schemes (SIGM and
PROF) behave only slightly differently.

By applying the temperature analysis increments over
a 1 h window rather than all at once by using incremental
analysis update (IAU), the model decreases effectively
NRMSE of potential temperature for the first 7 h forecast
(and NRMSVE of winds for the first 1 h forecast). The
IAU over a proper data assimilation window can reduce
initial imbalances, but can’t remove initial imbalances
completely if temperature data only are assimilated.
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