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1. Introduction 

 Operational and research hydrologic communities 
rely on a single model to predict streamflow. Yet, relying 
on a single model, which most likely does not 
adequately represents all the physical processes of the 
catchment, results in unreliable predictions. Recently 
there has been a movement towards producing 
consensus prediction by using probabilistic multi-model 
combination techniques such as Bayesian Model 
Averaging, BMA, (Hoeting et al., 1999, Fernandez, et 
al., 2001; Raftery et al., 2003). These Bayesian model 
combination approaches exploit the existing model 
structures and combine the model predictions based on 
their past performance. 

 Multi-model combination approaches such as BMA 
are fundamentally a special case of ensemble prediction 
techniques where ensemble members are the different 
model predictions. Various hydrologic model structures 
capture different aspects of the watershed response.  It 
is commonly observed that hydrological models cannot 
represent different phases of the hydrograph equally 
well. Some models do well in simulating the peak flows, 
while others do well in capturing the low flows. This can 
be true in the case of a single model being applied to 
the river basin using different model parameters that are 
calibrated using criteria favoring high or low flows.  One 
way of exploiting different model structures is to 
combine the outputs of various models using a judicious 
strategy that weigh the good performing models more 
favorably than the bad ones. This approach is designed 
to produce consensus predictions that are better than 
those by any single models.  At the same time it 
provides a better description of the predictive 
uncertainty.   

 This study intends to introduce an ensemble 
forecast framework for hydrological forecast, called, 
Bayesian Recursive Model Combination (BRMC). In this 
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framework, which is built over the foundation of 
Bayesian model combination techniques, the forecasts 
generated by various models are the ensemble 
members. These forecasts are being combined 
recursively based on their performance and uncertainty 
in reproducing the observation. The goal is to generate 
consensus forecast that is more skillful in all parts of the 
hydrograph than any individual model while reducing the 
uncertainty of the model predictions. 

 This paper is organized as follows. The first section 
we will present a brief description of the Bayesian Model 
Averaging technique. Subsequently a summary of the 
Bayesian framework and the experiment setup are 
explained. The final section presents preliminary results 
of this work and discusses the future direction for 
improvement. 

2. Bayesian Model Averaging (BMA):  

Let’s consider a quantity y to be the forecasted 
variable and M=[M1, M2, …,MK] the set of all considered 
models. pk(y|Mk ,D) is the posterior distribution of y 
under model Mk , given a discrete data set, D. The 
posterior distribution of the BMA prediction is therefore 
given as: 
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where p(Mk|D) is the posterior probability of model Mk. 
This term is also known as the likelihood of model Mk 
being the correct model. If we denote wk = p(Mk|D), we 
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prediction made by model Mk. The posterior mean and 
variance of the BMA prediction for variable, y, are: 
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where σ2
k is the variance of model Mk. In essence, the 

BMA prediction is the average of predictions weighted 
by the likelihood that an individual model is correct. 
There are several attractive properties to the BMA 
predictions. First the BMA prediction receives higher 
weights from better performing models as the likelihood 
of a model is essentially a measure of the agreement 
between the model predictions and the observations. 
Second, the BMA variance is a measure of the 
uncertainty of the BMA prediction. This term is a better 
measure of uncertainty because it accounts for both the 
between-model-variance and within-model-variance, as 
shown in the first and second terms of equation (3). 
Equations (2) and (3) can be solved iteratively by 
schemes such as the Expectation and Maximization 
scheme (Raftery et al, 2003) and the Markov Chain 
Monte Carlo (MCMC) methods (Gelman et al., 2004).  

2.1Recursive Bayesian Model Combination (RBMC) 
for Streamflow Forecasting 

 Three conceptual rainfall-runoff models, 
Sacramento Soil Moisture Accounting model, SAC-
SMA, (Burnash et al. 1973), Hydrologic MODel, 
HYMOD, (Boyle, 2000) and Simple Water Balance 
model, SWB, (Schaake et al., 1996) are used in this 
study. These models introduce different levels of 
complexity and have different skill and reliability levels. 
Five watersheds are selected from the study basins 
used in international MOdel Parameter Estimation 
Experiment (MOPEX). Each model is calibrated to 
historical streamflow observation available for each 
basin by applying Shuffled Complex Evolution (SCE; 
Duan et al. 1992) based on five different criteria 
(objective function) which emphasize on different parts 
of the hydrograph:  

• Fitting the streamflow with higher stress on 
high flows by employing  

1. Sum of quadratic errors,  
2. Sum of square errors. 

• Fitting both low and high flows 
3. Sum of absolute error 

• Fitting the streamflow with higher stress on low 
flows by using  

4. Heteroscedastic Maximum Likelihood 
Estimator 
5. Sum of log of errors 

Fifteen sets of flow simulations for each basin were 
generated using the calibrated model parameters (3 
models x 5 parameter sets). Figures (1a-c) display the 
15 model simulations.  It can be observed that SAC 
predictions on average do well in simulating high flows, 
while HyMOD predictions do reasonably in representing 

the low flows. SWB predictions do extremely poor in 
predicting low flows.  Given that the predictions have 
different skills in matching various sections of the 
hydrograph, we hope to obtain the consensus river flow 
prediction that extracts the strengths from each model 
prediction while avoiding the weaknesses.  Two 
strategies were undertaken. First the combination 
weights (posterior probability of each model) were 
calculated over the entire time series (daily    streamflow 
data from 1961 to 1965). In the second approach 
streamflow values were sorted in ascending order and 
then divided into ten different quantiles. Subsequently 
the weights are calculated separately for each quantile. 
The Expectation-Maximization (EM) algorithm is used to 
compute the weights.  For brevity, EM is not presented 
here.  Refer to Raftery et al. (2003) for details. 

 

 

 

 

 

 

 

 

 

Figure (1) The streamflow simulations of the three 
hydrologic models using 5 different sets of calibrated 

parameters 

3. Results and Discussion 

The model combination results are first compared 
to any individual member model. Then, the results are 
compared among two different BRMC approaches; one 
with a single set of weights and the other one with 
multiple sets of weights.  Finally, all of the results were 
compared to the Simple Model Averaging, SMA, where 
all the models are assigned equal weights. The 
questions we try to address from this numerical 
experiment are: (1) does BRMC predict streamflow 
better than any single model?  (2) how does BRMC 
prediction compare to SMA prediction? (3) Do model 
weights reflect model performance? 



Basins/
model 

"01608
500" 

"01643
000" 

"01668
000" 

"03054
500" 

"03179
000" 

SAC1 0.589 0.668 0.657 0.705 0.733 
SAC2 0.727 0.551 0.775 0.770 0.784 
SAC3 0.701 0.687 0.726 0.745 0.747 
SAC4 0.593 0.58 0.627 0.574 0.605 
SAC5 0.712 0.633 0.713 0.66 0.623 
SWB1 0.513 0.508 0.576 0.656 0.738 
SWB2 0.574 0.428 0.650 0.664 0.758 
SWB3 0.488 0.503 0.663 0.642 0.74 
SWB4 0.443 0.348 0.40 0.564 0.452 
SWB5 0.474 0.333 0.381 0.367 0.474 
HYM1 0.278 0.440 0.321 0.546 0.661 
HYM2 0.549 0.222 0.516 0.587 0.728 
HYM3 0.437 0.505 0.5 0.551 0.67 
HYM4 0.437 0.337 0.375 0.472 0.548 
HYM5 0.513 0.368 0.513 0.472 0.639 
BRMC 0.534 0.525 0.661 0.657 0.767 
BRMC-

10q 0.742 0.737 0.787 0.789 0.846 
SMA 0.702 0.677 0.715 0.714 0.770 

Table (1): Efficiency of all member models, model 
combination strategies and simple model averaging to 

match the observation for all basins 

Figure (2) presents the overall efficiency of the 
member models compared to BRMC prediction with 10 
quantiles and SMA prediction. The figure indicates the 
superior performance of BRMC with 10 quantiles over 
any individual model. As one can see for all quantiles 
BRMC outperforms every single individual model. 

 

 

Figure (2): Overall Efficiency of the member models, 
BRMC with 10 quantiles and SMA for Basin number 

“01643000” 

Table (1) presents the efficiency of each individual 
model, as well as both BRMC approaches and simple 
model averaging, with the observed stream flow. It is 
important to notice both BRMC approaches outperform 
any individual member model for all of the basins. The 
results demonstrate that dividing the time series into 
different flow levels considerably improves the results 
compared to only having one set of weights for the 
entire time series. Figure (3) proves this statement. One 
can clearly observe in the figure that BRMC with 10 
quantile outperforms both simple BRMC as well as 
simple model averaging. This can be explained by 
considering the fact that just one set of weights for 
matching all flow levels makes it more arduous to 
account for bias (error) in all sections of the hydrograph. 
Whereas estimating separate sets of weights for each 
flow level enables us to match various parts of the 
hydrograph more accurately and decrease the 
uncertainty in the forecast. This can be confirmed by 
studying figures (4) and (5). Figure (4) shows the 
weights for each individual model over the entire time 
series, while figure (5) represents the weights for all 
models over each quantile. 

 

Figure (3) DRMS for all the individual models, Simple 
BRMC, BRMC with 10 quantiles and SMA 

As one can see in figure (4), SAC-SMA and SWB 
models carry low weights compared to HYMOD models. 
This result indicates that these models do not have any 
significant role in matching the observed hydrograph. 
While looking at figure (5), one can see that the SAC 4 
and SAC 5 models, which were calibrated using 
objective functions with more emphasis to match low 
flows (HMLE and LOG), carry significant weights within 
the low flow quantiles. 



 However, these models (SAC4 and SAC5) start 
carrying lower weights while SAC3 (with more emphasis 
on mid flows) holds higher weights as we move toward 
mid flows. Finally, SAC1 and SAC2 start picking up 
higher weights as we move toward higher flows. Hence, 
simple BRMC with one set of weights does not consider 
the skill of these aforementioned models through 
estimation of weights and assigns them all low weights. 
This shows the lack of reliability and skill for simple 
BRMS with just one set of weights and explains that for 
a more accurate streamflow forecast, dividing the 
hydrograph to different section is a necessary approach. 
Sectioning the hydrograph helped the weight estimating 
process assign multiple weights to the model 
simulations which were generated using parameter sets 
estimated applying different objective functions 
throughout the various quantiles (figure (5)). This 
confirms the consistency of the algorithm to capture the 
skill level of each member model. It also confirms that 
the weights carry a physical meaning and represents 
the model’s performance within each quantile. 

 

Figure(4): Weights of the individual model for simple 
BRMC (One set of weights over the entire time series) 

In addition, all of the results were compared to the 
Simple Model Averaging method. As illustrated in 
Figures (2) and (3) as well the table (1), consensus 
forecast applying variable weights over 10 different 
quantiles consistently outperforms the SMA results. It is 
important to mention that using weights which vary from 
model to model makes more physical sense and 
decreases the uncertainty in the forecast. Assigning 
equal weights to all the models ignores the past 
performance as well as the innate uncertainty of the 
model.  

These are the preliminary results of an ongoing 
study. The investigations on the number of models 
needed, the effect of the unknown probability 

distribution function of model errors, the application of 
Monte Carlo sampling techniques to deal with non-
Gaussian distribution, the consideration of the input, 
model structure and the model parameters uncertainty, 
and finally how to quantify these uncertainties are part 
of the ongoing study. More comprehensive and 
complete results will be presented in a near future. 

 

Figure (5): Weights of individual member model during 
different quantile for basin number “01643000” 
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