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1. INTRODUCTION 
 
 In the era of contemporary and future 
ultraspectral sounders such as Atmospheric Infrared 
Sounder (AIRS) (Aumann et al. 2001), Cross-track 
Infrared Sounder (CrIS) (Bloom 2001), Infrared 
Atmospheric Sounding Interferometer (IASI) (Phulpin et 
al. 2002), Geosynchronous Imaging Fourier Transform 
Spectrometer (GIFTS) (Smith et al. 2002), and 
Hyperspectral Environmental Suite (HES) (Huang et al. 
2003), better inference of atmospheric, cloud and 
surface parameters is feasible. An unprecedented 
amount of three-dimensional (3D) ultraspectral data, 
consisting of two spatial and one spectral dimension, is 
produced by the ultraspectral sounders. For example, 
the HES is the next-generation NOAA/NESDIS 
Geostationary Operational Environmental Satellite 
(GOES) sounder, slated for launch in 2013. It would be 
either a Michelson interferometer or a grating spec-
trometer, with high spectral resolution (over one 
thousand infrared channels with spectral widths on the 
order of 0.5 wavenumber), high temporal resolution 
(better than 1 hour), high spatial resolution (less than 
10km) and hemispheric coverage. Given the large 
volume of 3D data that will be generated by an 
ultraspectral sounder each day, the use of robust data 
compression techniques will be beneficial to data 
transfer and archive. 

There exist differences between ultraspectral 
sounder data and hyperspectral imager data in terms of 
application areas and subsequent user constraints on 
the data compression. The hyperspectral imager data 
(e.g. the well-known AVIRIS data (Abousleman 1999)) 
is in the visible or near-infrared regions with major 
application categories of anomaly detection, target 
recognition and background characterization (Shaw et 
al. 2003). Lossy compression is usually acceptable for 
imager data as long as the tolerance limits in 
application-specific metrics are met (Saghri et al. 1995). 
These metrics include those that signify scientific loss 
for end users (Qian et al. 2001; Ryan et al. 1998), 
content-independent metrics (Shen et al. 1993), and 
even visual comparisons (Eckstein et al. 2000). On the 
other hand, the ultraspectral sounder data is in the 
infrared region with the main purpose of retrieving 
atmospheric temperature, moisture and trace gases pro- 
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files, surface temperature and emissivity, cloud and 
aerosol optical properties for better weather and climate 
prediction. The physical retrieval of these geophysical 
parameters involves the inverse solution of the radiative 
transfer equation, and it is a mathematically ill-posed 
problem (Huang et al. 2002), i.e. the solution is sensitive 
to the error or noise in the data. Therefore there is a 
need for lossless or near-lossless compression of 
ultraspectral sounder data to avoid potential retrieval 
degradation of geophysical parameters due to lossy 
compression. Here, near-lossless compression implies 
that the error spectrum between the reconstructed data 
set and original data set to be significantly less than the 
sensor noise spectrum.  

This paper presents advances in lossless 
compression of ultraspectral sounder data. The lossless 
compression schemes are divided into transform-based, 
prediction-based, and clustering-based schemes. The 
ultraspectral sounder data features strong correlations 
in disjoint spectral regions affected by the same type of 
absorbing gases at various altitudes. To take advantage 
of this fact, a bias-adjusted reordering (BAR) data 
preprocessing scheme (Huang et al. 2004c) is devised 
that is applicable to any 2D compression method. The 
rest of the paper is arranged as follows. Section 2 
describes the ultraspectral sounder data used in this 
paper. Section 3 elaborates the BAR scheme while 
Section 4 highlights the different compression schemes 
along with their compression results.  Section 5 
summarizes the paper. 
 
2. DATA 
 
 The ultraspectral sounder data could be 
generated from either a Michelson interferometer (e.g. 
CrIS, IASI and GIFTS) or a grating spectrometer (e.g. 
AIRS). Compression is performed on the standard 
ultraspectral sounder data set used before in (Huang et 
al. 2004a).  It consists of ten granules, five daytime and 
five nighttime, selected from representative geo-
graphical regions of the Earth. Their locations, UTC 
times and local time adjustments are listed in Table 1. 
The data is publicly available via anonymous ftp 
(ftp://ftp.ssec.wisc.edu-/pub/bormin/Count).  

This standard ultraspectral sounder data set 
adopts the NASA AIRS digital counts on March 2, 2004. 
The AIRS data includes 2378 infrared channels in the 
3.74 to 15.4 µm region of the spectrum. A day's worth of 
AIRS data is divided into 240 granules, each of 6 minute 



durations. Each granule consists of 135 scan lines 
containing 90 cross-track footprints per scan line; thus 
there are a total of 135 x 90 = 12,150 footprints per 
granule. More information regarding the AIRS instru-
ment may be acquired from the NASA AIRS website 
(http://www-airs.nasa.jpl.gov). 
  The digital count data ranges from 12-bit to 14-
bit for different channels. Each channel is saved using 
its own bit depth. To make the selected data more 
generic to other ultraspectral sounders, 271 bad 
channels identified in the supplied AIRS infrared 
channel properties file are excluded, assuming that they 
occur only in the AIRS sounder. Each resulting granule 
is saved as a binary file, arranged as 2107 channels, 
135 scan lines, and 90 pixels for each scan line. Figure 
1 shows the AIRS digital counts at wavenumber 
800.01cm  for the 10 selected granules on March 2, 
2004. 
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In these granules, coast lines are depicted by 
solid curves and multiple clouds at various altitudes are 
shown as different shades of colored pixels. 
 
3. DATA PREPROCESSING SCHEME 
 

For application of 2D compression schemes to 
the 3D ultraspectral sounder data, one can process the 
data framewise or make the data two-dimensional by 
converting the two spatial dimensions into one 
dimension by a continuous scan. The disadvantage to 
the first approach is that it does not explore the 
correlation between different spectral channels. The 
second approach is a better alternative for improving the 
spatial correlations among the neighboring pixels via the 
2D compression schemes. Nevertheless, these 2D 
schemes do not explore the spectral correlations among 
the disjoint channels – a spectroscopic feature in the 
ultraspectral sounder data. To improve their com-
pression on the ultraspectral sounder data, a bias-
adjusted reordering (BAR) preprocessing scheme was 
proposed (Huang et al. 2004c) for converting the 3D 
data into 2D with the highest correlation channels 
rearranged together.  

The BAR scheme takes advantage of the 
unique spectroscopic characteristic of ultrarspectral 
sounder data that features the strong correlations in 
disjoint spectral regions affected by the same type of 
absorbing gases at various altitudes. Figure 2 shows an 
example of the dominant absorption gases in different 
spectral regions. It can also explore the spatial 
correlations of disjoint geographical regions affected by 
the same type of absorbing gases or clouds.  The BAR 
scheme is geared towards exploiting these correlations 
along different dimensions. When applying the BAR 
scheme in the spectral dimension, channels with similar 
dynamic range but different radiance values due to each 
channel’s altitude preference are bias aligned together 
for finding the highest correlated spatial vector as the 
nearest neighbor of each reordered channel. Similarly, 
when applying the BAR scheme to the spatial 
dimension, pixels with similar dynamic range but 
different radiance values due to different amount of 
absorption from the same kind of absorption gases or 
clouds are bias aligned together for finding the highest 

correlated spectral vector as the nearest neighbor of 
each reordered pixel. A detailed explanation of the BAR 
scheme is given in Huang et al. (2004c). For 2D 
compression schemes, each granule with the size of 
2107 channels by 135 scan lines by 90 footprints is 
converted into 2D with the size of 2107 channels by 
12150 samples via the Boustrophedon pattern. 
Following these observations, compression gains have 
been reported on 3D SPIHT, JPEG2000, JPEG-LS and 
CALIC in Huang et al. (2004b). 
 The effects of the BAR scheme can be gauged by 
looking at the reordered 2D data patterns in the 
spectral-spatial domain. Figure 3 shows such an 
example for granule 82. Comparing Fig. 3(a) with Fig. 
3(b), we can see that the data pattern is smoother along 
the spectral dimension after spectral reordering. This 
results in a higher compression ratio for Fig. 3(b). 
Similarly, the spatially reordered data in Fig. 3(c) is 
smoother than that in Fig. 3(a) along the spatial 
dimension. Fig 3(d) depicts the reordering along both 
dimensions that produces a smoother transition along 
both dimensions. Moreover, the bias adjustment has 
reduced the dynamic range of the reordered data as 
visualized by the reduction of grayscale intensities. 
 Figure 4 shows the sorting indices plotted against 
the original indices in the cases of spectral BAR for 4 
granules. The sorting indices are quite different from the 
original indices as judged by their great deviation from 
the straight line. This shows the natural channel order 
given by the spectral wavelengths do not possess 
optimal correlation in neighboring channels. Another 
interesting fact is that in the BAR scheme, a given 
starting channel produces its own unique list of 
reordering indices and subsequently the compression 
ratios are different for different starting channels. An 
investigation of the effects of the starting channel has 
been conducted in Huang et al. (2004d). A noteworthy 
conclusion was that any starting channel may be used 
without compromising the compression ratio 
significantly. 
 
 
4. COMPRESSION SCHEMES 
 
4.1 Transform-based schemes 
 
3D SPIHT with BAR: SPIHT (Said et al. 1996) is an 
embedded coding algorithm that performs bit-plane 
coding of the wavelet coefficients. It uses spatially 
oriented trees to describe the relationship between the 
parents on higher levels to the children and 
grandchildren on lower levels. It has low complexity and 
provides good performance. Extensions to 3D have 
been proposed in (Tang et al. 2003; Dragotti et al. 
2000). Huang et al. (2003) presented a 3D SPIHT 
version to tackle irregular size 3D data, the dimensions 
of which need not be divisible by 2N, where N is the 
levels of wavelet decomposition being performed. For 
application to ultraspectral sounder data, various 3D 
integer wavelet transforms were used followed by the 
3D SPIHT method and arithmetic coding. The 
compression ratios obtained are shown in Fig. 5. As can 



be seen, different choices of wavelet transforms 
produce different compression ratios. The compression 
gains using the spectral BAR preprocessing are evident 
in Fig. 6. The compression ratios obtained for all ten 
granules are significantly higher with spectral BAR 
followed by 3D SPIHT than using 3D SPIHT alone. 
 
JPEG2000 with BAR: This algorithm is published as a 
new standard of ISO/IEC, as well as an ITU-T 
recommendation (ISO/IEC 2000). Its rich feature list 
includes progressive transmission by quality, resolution, 
component, or spatial locality, lossy and lossless 
compression, region of interest coding by progression, 
and limited memory implementations, to name a few. 
The JPEG2000 encoder consists of four main stages: 
discrete wavelet transform (DWT), scalar quantization, 
and two tiers of block coding, as depicted in Fig. 7. After 
the DWT stage, embedded scalar quantization is 
performed with the quantization step size possibly 
varying for each subband. The block coder is based on 
the principles of Embedded Block Coding with 
Optimized Truncation (EBCOT) (Taubman 2000) and 
includes an arithmetic coder coupled with a rate-
distortion optimization algorithm to achieve the optimal 
bit rates. The performance of JPEG2000 compression 
with and without different reordering schemes on the ten 
granules is shown in Fig. 8. It is seen that all reordering 
schemes combined with JPEG2000 outperform 
JPEG2000 applied alone. 
 
Lossless PCA: The Principal Component Analysis 
transform (PCA) or the Karhunen-Loève transform 
(KLT) has long been used in applications pertaining to 
hyperspectral images such as feature extraction, 
dimensionality reduction, and pattern recognition 
(Chang et al. 1999). PCA has also been used for lossy 
compression of hyperspectral imager data (Canta et al. 
1998; Hoffman et al. 1994; Lee et al. 2000). We 
investigated PCA for lossless compression of the 
ultraspectral sounder data. PCA is a linear transform 
that utilizes the data statistics to construct an orthogonal 
basis on which the data is projected, and simultaneously 
decorrelated by diagonalization of the data covariance 
matrix. The advantage of using PCA is that it gives the 
smallest average error when approximating a data set 
by its projection on an orthogonal basis (Mallat 1999). 
To ensure lossless compression of the ultraspectral 
sounder data, the error residuals are rounded and 
entropy-coded. The compression ratios of the ten 
granules using lossless PCA with 60 PC’s are shown in 
Table 2.  
 
4.2 Prediction-based schemes 
 
CALIC with BAR: The CALIC scheme (Wu 1997) is 
considered as the most efficient and complex encoder 
for compression of 2D continuous-tone images. Among 
the nine proposals in the initial ISO/JPEG evaluation in 
July 1995, CALIC was ranked first. It works on the 
principle of a context-adaptive non-linear predictor 
which adjusts to the local gradients around the current 
pixel. As shown in Fig. 7, the algorithm operates in the 

binary or continuous modes. The binary mode codes the 
regions of the image in which the intensity value is no 
more than two. In the continuous mode, the system has 
four major components: gradient-adjusted prediction, 
context selection and quantization, context modeling of 
prediction errors, and entropy coding of prediction 
errors. The compression ratios obtained by using CALIC 
with and without different BAR schemes are depicted in 
Fig. 10. A significant improvement in compression ratio 
is seen by using both BAR scheme with CALIC. 
Moreover, all schemes combining reordering with 
CALIC outperform CALIC alone.  
 
JPEG-LS with BAR: The ISO/IEC working group 
released a new standard for the lossless/ near-lossless 
compression of continuous-tone images in 1999, 
popularly known as JPEG-LS (ISO/IEC 1999). It 
features low complexities based on predictive coding 
technique. Near-lossless compression is controlled 
through an integer valued threshold representing the 
maximum permissible absolute difference between each 
original pixel value and its decompressed value. Figure 
11 shows the JPEG-LS encoder that is composed of 
four main stages: prediction, context modeling, error 
encoding, and run mode. In Fig. 12, the compression 
ratios of JPEG-LS with and without different reordering 
schemes on the ten granules are depicted. It is seen 
that all reordering schemes combined with JPEG-LS 
outperform JPEG-LS applied alone. 
 
4.3 Clustering-based schemes 
 
Partitioned Vector Quantization schemes: Vector 
Quantization (VQ) is a well-known technique for source 
coding. Despite its widespread use for hyperspectral 
imager data compression (Abousleman et al. 1997; 
Canta et al. 1998), one of the significant drawbacks 
towards its use is the computational complexity required 
in the codebook generation process. Many fast VQ 
algorithms have been proposed in literature (Motta et al. 
2003; Qian et al. 1996). In Motta et al. (2003), a 
partitioned vector quantization is proposed in which the 
variable size partitions are determined adaptively, and 
the codebook of each partition was generated via the 
Linde-Buzo-Gray (LBG) algorithm (Linde et al. 1980). 
Huang et al. (2004a) develop the Differential Partitioned 
VQ (DPVQ) and Predictive Partitioned VQ (PPVQ) for 
the ultraspectal sounder data. Both schemes fall under 
the category of predictive vector quantization 
(Cuperman et al. 1982; Gersho et al. 1992). An open-
loop design methodology is used such that the predictor 
is designed independently of the VQ codebooks. After 
the prediction step, the ultraspectral sounder data is 
partitioned spectrally based on the bit depth of each 
channel.  Different vector quantizers are then designed 
for each partition using the LBG algorithm. The results 
for DPVQ and PPVQ are shown in Table 3. For 
comparison, the compression ratios of partitioned VQ 
(PVQ) on the complete granules are also shown. The 
PPVQ scheme significantly outperforms DPVQ and 
PVQ. 
 



5. SUMMARY 
 
 The compression of ultraspectral sounder data is 
better to be lossless or near-lossless to avoid potential 
degradation of the geophysical retrieval in the 
associated ill-posed problem. In this paper, lossless 
compression of this data is performed using transform-
based, prediction-based and clustering-based compres-
sion schemes.  It is shown that the compression ratios 
of ultraspectral sounder data via the standard state-of-
the-art algorithms (e.g. 3D SPIHT, 2D JPEG2000, 2D 
CALIC, 2D JPEG-LS etc.) can be significantly improved 
when combining the BAR preprocessing scheme. We 
also report the promising compression results for the 
ultraspectal sounder data using various approaches 
such as lossless PCA and Predictive Partitioned Vector 
Quantization (PPVQ). 
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Granule   9 00:53:31 UTC   -12 H  (Pacific Ocean, Daytime)  
Granule  16 01:35:31 UTC    +2 H  (Europe, Nighttime)       
Granule  60 05:59:31 UTC    +7 H  (Asia, Daytime)           
Granule  82 08:11:31 UTC     -5 H  (North America, Nighttime) 
Granule 120 11:59:31 UTC   -10 H  (Antarctica, Nighttime)    
Granule 126 12:35:31 UTC     -0 H  (Africa, Daytime)         
Granule 129 12:53:31 UTC     -2 H  (Arctic, Daytime)         
Granule 151 15:05:31 UTC  +11 H  (Australia, Nighttime)    
Granule 182 18:11:31 UTC    +8 H  (Asia, Nighttime)         
Granule 193 19:17:31 UTC     -7 H  (North America, Daytime)  

 
 

Table 1. Ten selected AIRS granules for ultraspectral sounder data compression studies. 
 
 
 
 

 

     

                



         

   
 

Figure 1. AIRS digital counts at wavenumber 800.01cm-1 for the 10 selected granules on March 2, 2004. 
 
 
 
 
 

 
 

Figure 2. Dominant absorption gases in the infrared spectrum.  
 



  
 
Figure 3. Example of 2D data distribution (a) of the original granule (b) after applying spectral BAR (b) after applying spatial 
BAR (d) after applying spectral BAR followed by spatial BAR. 
 
 
 
 
 

 



 
 

Figure 4. Spectral BAR sorting indices for various AIRS digital counts granules. 
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Figure 5. Compression ratios of ten granules using different wavelet transforms and 3D SPIHT. 
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Figure 6. Compression ratios of ten granules after spectral BAR using different wavelet transforms and 3D SPIHT. 

 
 
 

 
 

Figure 7. JPEG2000 encoder functional block diagram. 
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Figure 8. Compression ratios for JPEG2000 with and without BAR for ten tested granules.  



Granule full PCA
9 3.19
16 3.19
60 3.18
82 3.20
120 3.16
126 3.17
129 3.22
151 3.14
182 3.10
193 3.16

Average 3.17  
 

Table 2. Compression ratios using Lossless PCA with 60 eigenvectors for ten granules. 
 

 
 

Figure 9. Schematic description of CALIC’s encoder. 
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Figure 10. Compression ratios for CALIC with and without BAR for ten tested granules.  
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Figure 11. JPEG-LS encoder  block diagram. 
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Figure 12. Compression ratios for JPEG-LS with and without BAR for ten tested granules.  
 
 

Granule PVQ DPVQ PPVQ
9 2.23 2.85 3.35
16 2.25 2.88 3.36
60 2.01 2.75 3.30
82 2.37 2.94 3.39
120 2.13 2.80 3.31
126 2.07 2.76 3.29
129 2.38 2.91 3.38
151 2.03 2.73 3.26
182 1.96 2.64 3.22
193 2.04 2.73 3.27

Average 2.15 2.80 3.31  
 

Table 3. Compression ratios for partitioned VQ, DPVQ, and PPVQ on ten granules. 


