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1. Introduction 
 

*A new National Science Foundation Engineering 
Research Center, the Center for Collaborative Adaptive 
Sensing of the Atmosphere (CASA), was established in 
2003 to develop innovative observing systems for high-
resolution sensing of the lower atmosphere. The devel-
opment of low-cost, high-spatial density (also short 
range) and dynamically adaptive networks of Doppler 
radars with polarimetric capabilities is one of the first 
goals. Such networks are to probe the lower atmos-
phere that is often missed by the existing operational 
WSR-88D Doppler radar network, so as to signifi-
cantly improve the detection of hazardous weather 
events such as tornadoes, and to provide more com-
plete data for the initialization of numerical weather 
prediction models. Future upgrade to using electroni-
cally steered phased array antennas in the vertical di-
rection will permit even more dynamic scans and col-
laborations among the network radars. 

To help with the design and operation of the first 
CASA radar test-bed to be deployed in southwestern 
Oklahoma, and to examine the potential impact of the 
data from the test-bed radars on storm-scale weather 
prediction through the assimilation of these data into 
the model initial conditions, a set of observing simula-
tion system experiments (OSSEs) are conducted. A 
recently developed ensemble Kalman filter system is 
used for assimilating the data into a nonhydrostatic 
weather prediction model. 

Since its first introduction by Evensen (1994), the 
ensemble Kalman filter (EnKF) technique for data as-
similation has received much attention. In general, 
EnKF and related methods are designed to simplify and 
make possible the computation of flow-dependent error 
statistics. Rather than solving the equation for the time 
evolution of the probability density function of model 
state as in the traditional Kalman filter, EnKF methods 
apply the Monte Carlo method to estimate the forecast 
error statistics. A large ensemble of model states are 
integrated forward in time using the dynamic equations, 
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the moments of the probability density function are 
then calculated from this ensemble for different times 
(Evensen 2003). 

Very recently, EnKF has been applied to the as-
similation of simulated Doppler radar data for modeled 
convective storms (Snyder and Zhang 2003; Zhang et 
al. 2004; Tong and Xue 2005, hereafter referred to as 
SZ03, ZSS04 and TX05, respectively) and of real radar 
data by Dowell et al. (2004). Very encouraging results 
are obtained in these studies in analyzing the state vari-
ables for convective storms, even though none of these 
state variables are directly observed by the radar. The 
first two studies assimilated only radial velocity data, 
while in Dowell et al. (2004), the use of reflectivity 
data is limited to the update of rainwater mixing ratio 
only. These studies all use the same anelastic cloud 
model with warm rain microphysics only.  

In TX05, a general purpose compressible model is 
used that includes a multi-class ice microphysics 
parameterization. Different from SZ03 and ZSS04, 
both radial velocity and reflectivity data are assimilated. 
The study demonstrates the ability of EnKF in retriev-
ing multiple microphysical species associated with a 
multi-class ice microphysics scheme, and in accurately 
retrieving the wind and thermodynamic variables as 
well. The relative impact of assimilating radial velocity 
and reflectivity data are also examined. In general, the 
assimilation system is able to establish the model storm 
not present in the initial guess extremely well after a 
number of assimilation cycles, and best results are ob-
tained when both radial velocity and reflectivity data, 
including the reflectivity information outside precipita-
tion regions, are used. This is so even though the ob-
servation operator of reflectivity is highly nonlinear. It 
is also shown in TX05 that dynamically consistent 
background error covariances develop in the system, 
especially in the later cycles, even in the unfavorable 
case in which only reflectivity information in the pre-
cipitation regions is assimilated. It is suggested that 
such flow-dependent background error covariances 
play a critical role in successful assimilation and re-
trieval. 

The EnKF system of TX05 is used in this study 
with a number of differences and enhancements, for a 
set of OSSEs that assimilate simulated data from one 
WSR-88D radar located at Oklahoma City and/or the 
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planned Oklahoma test-bed CASA radars located near 
Chickasha and Lawton, about 80 to 100 km southwest 
of Oklahoma City. Details on the EnKF, the assumed 
configurations of CASA radars, the simulation of ob-
servations, and the design of OSSEs will be given in 
section 2. In section 3, the role of cross-covariances of 
the background errors between the observations and 
model state variables in the EnKF is examined by 
comparing the results of two experiments. In section 4, 
the results are reported on the OSSEs that examine the 
value added by one well-positioned (related to the 
storm location) CASA radar to the existing WSR-88D 
radar network, and the effectiveness in assimilating 
CASA radar data alone. The evaluation is performed 
for both quasi-stationary and fast-moving storm sys-
tems, and at different volume scan frequencies. Section 
5 presents results of forecasts starting from selected 
EnKF analyses and section 6 gives a summary. 

 
2. The OSSE System and EnKF Analysis Procedure 
 
a. The prediction model and truth simulation 
 

As in TX05, the May 20, 1977 Del City, Okla-
homa supercell storm case (Ray et al. 1981) simulated 
by the ARPS model (Xue et al. 2000; 2001; 2003) is 
used in this study. The ARPS model is fully com-
pressible and nonhydrostatic, and predicts 12 state 
variables, including three wind components u, v, w, 
potential temperature θ, pressure p, the mixing ratios 
for water vapor qv,  cloud water qc, rainwater qr, cloud 
ice qi, snow qs and hail qh, plus the turbulence kinetic 
energy used by the 1.5-order subgrid-scale turbulence 
closure scheme. The microphysical processes are pa-
rameterized using the three-category ice scheme of Lin 
et al. (1983). More details on the model can be found 
in (Xue et al. 2000; 2001). 

Different from TX05, a smaller horizontal grid 
spacing of 1.5 km is used in this study. Further, to bet-
ter resolve the lower atmosphere, a vertically stretched 
grid with a minimum vertical resolution of 100 m is 
used, instead of a uniform 500m vertical resolution as 
used in TX05, SZ03 and ZSS04. The model domain is 
16 km deep with 40 physical layers. Two domain sizes 
are used (see Fig. 1), the smaller one has 47×47 hori-
zontal points, which, excluding two boundary points, is 
66 km on each side. The larger domain, used by ex-
periments with fast-moving storms and the correspond-
ing cases of slow-moving ones, has 55×103 horizontal 
points and is 78 km by 150 km in physical size. The 
small domain is centered at 34.8º N and 98.1 º W and 
the large domain is centered at 34.75º N and 98.11º W 
and both use Lambert projection. The true latitudes of 
projection are 30 º and 60º N and the true longitude 
circle goes through the center of each grid. 

The truth simulations or nature runs are initialized 

in the same way as in TX05. A sounding of 3300 J kg-1 
CAPE (see Xue et al. 2001 for a skew-T plot of the 
sounding) is used to define the environmental condition 
and a  4 K ellipsoidal thermal bubble is used to initiate 
the storm. Three truth simulations were created; one for 
a slow-moving storm system with a quasi-stationary 
right-moving cell in the small domain (referred to as 
SMS), one for a fast-moving system in the large do-
main (FML), and one for a slow-moving system in the 
large domain (SML) for comparison with the latter. 

The center location of the bubble is at x = 16 km, 0 
km and 9 km, and y = -12 km, -62 km and -12 km, re-
spectively for SMS, FML and SML. In the vertical, the 
bubble is centered at z = 1.5 km. The origin of horizon-
tal coordinates is located at the domain center for both 
grids. The initial location of bubble for FML is chosen 
so that over most of the assimilation period, much of 
the storm system remains within the coverage of the 
four-radar CASA network (see Fig. 1). The choice for 
SML is such that at 60 min, the storm system is located 
at roughly the same location as that in FML so as to 
facilitate more direct comparisons. 

 Radiation condition is applied at the lateral 
boundaries and at the model top; the lower boundary is 
free slip. For the experiments with a slow-moving su-
percell system, a constant wind of u = 3 m s-1 and v = 
14 m s-1 is subtracted from the original sounding to 
keep the right-moving cell near the center of model 
grid, as is done in TX05. For the experiments with a 
fast-moving storm system, the original wind profile is 
used. 

During the truth simulation, the strength of the ini-
tial cell that develops out of the initial bubble increases 
quickly over the first 20 min then decreases over the 
next 30 min due to the splitting of the cell into two at 
around 55 min (see Fig. 5). The right moving (relative 
to the storm motion vector which is towards north-
northeast) cell tends to dominate the system; the up-
draft reaches a peak value of 56 m s-1 at 101 min. The 
left moving cell starts to split again at 90 min. The ini-
tial cloud started to form at about 10 min, and rain-
water formed shortly after. Significant ice phase fields 
appeared at about 15 min. The general evolution of the 
storm is similar to that documented in Xue et al (2001). 

 
b. Simulation of radar observations 
 

One WSR-88D and up to four CASA test-bed ra-
dars are involved in this OSSE study. For the WSR-
88D radar, standard precipitation mode parameters are 
assumed, including 10 cm wavelength, 1º beam width, 
a total of 14 elevations with the lowest elevation at 0.5º 
and highest at 19.5º. The radial resolution is 250 m for 
radial velocity and 1 km for reflectivity (the radial 
resolution does not matter in this study because data 
are collected in Cartesian coordinates in the horizontal,
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Fig. 1. A map with county borders showing the locations of first four planned CASA Oklahoma test bed radars, 
near Chickasha (CHI), Rush Springs (RUS), Lawton (LAW) and Cyris (CRY), together with the Twin Lake 
(KTLX) WSR-88D radar near Oklahoma City. The assumed 25 km maximum range of CASA radars are shown 
by the low-level 25 km range circles, and the two (large and small) analysis and forecast domains are shown as 
square and rectangular boxes with axis tick marks and labels. The origin of both domains is set at the center of 
the domain. Also plotted are the 10 dBZ low-level (50 m AGL) reflectivity contours of truth simulations FML 
(thick solid) and SMS (thick dashed), at the times labeled in the figure. The 10 dBZ contours for SML are simi-
larly located as those of FML at 60 minutes, and are therefore not shown. 
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Fig. 2. The radial beams of a WSR-88D radar located at x=0 and of an assumed CASA radar located 90 km away. 
The red lines indicate the center of radar beams, the blue (green) dashed lines indicate the edge of these beams 
for the WSR-88D radar (CASA radar). The maximum range of the CASA radar is assumed to be 25 km. 
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see later); the maximum range is assumed to be 230 km 
(which is sufficient to cover the entire computational 
domain). For the first four CASA radars to be installed 
in the Oklahoma test-bed, whose primary goal is for 
the detection of low-level hazardous weather including 
tornadoes, and for improving weather prediction, the 
wavelength will be 3 cm (X-band) and beam width 
about 2º. The maximum range will be 25-30 km (we 
assume 25 km in this paper). Since the CASA radars 
will be dynamically configurable in real time in re-
sponse to weather situation and user needs, their scan-
ning strategies will remain flexible. For the purpose of 
this study, we assume a total of 15 elevations at 2º in-
crement, with the elevation of the center of the lowest 
beam being at 1º. The impact of a variety of scanning 
strategies, including the vertical data coverage, on the 
quality of storm analysis will be the subject of a future 
paper. 

The locations of the initial four Oklahoma test-bed 
radars to be installed as early as fall 2005 have been 
decided, and they are located near Chickasha, Rush 
Springs, Lawton and Cyril in Okalahoma, to the 
southwest of Twin Lake (KTLX) WSR-88D radar near 
Oklahoma City. The locations of the four CASA radars 
are plotted in Fig. 1 together with their assumed 25 km 
range circles at the low level. 

Different from earlier OSSE studies of SZ03, 
ZSS04 and TX05, we assume that the simulated obser-
vations are available on the original radar elevation 
levels (or the data are on the radar plan position indica-
tor (PPI)) rather than at the model grid points. We do 
assume that on each elevation level, radar observations 
are already interpolated from the radar polar coordinate 
to the Cartesian coordinate; in another word, the obser-
vations are found in the vertical columns co-located 
with the model scalar points. This assumption is rea-
sonable since a horizontal interpolation to bring real 
radar data to the vertical columns is usually done be-
fore assimilating the data (e.g., in the 4DVAR work of 
Sun and Crook 2001). The main purpose of interpola-
tion is to make the data distribution more uniform in 
the horizontal. Still, we plan to examine the effect of 
such horizontal interpolation by comparing with the 
analyses that use data in native radar coordinates. 

The effects of the curvature  of the earth and the 
beam bending due to vertical change of refractivity are 
taken into account by using the simply effective earth 
radius model discussed in Doviak and Zrnic (1993); it 
is mainly the earth curvature effect that prevents the 
radars from seeing the lowest atmosphere far away. 
The radar beams of one WSR-88D radar and one 
CASA radar located 90 km apart are illustrated in Fig. 
2, together with the coverage by these beams up to 
their half-power width. 

Since the observations are not at the model grid 
point, a forward observation operator is needed to bring 

the data from the model vertical levels to the radar ele-
vation levels. This is achieved by using a simplified 
radar emulator that does power gain-based sampling 
only in the vertical direction: 
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where ϕe and ϕg  are respectively the elevation level 
and grid point values of either radial velocity (Vr) or 
reflectivity (Z).  ∆d is the grid spacing in the direction 
perpendicular to the radar beam and d is the distance of 
grid point value from the center of radar beam. The 
power gain function G is assumed to be Gaussian and 
has the form of 

 

 2 2exp[ /(2 )]G d b= − , (2) 
 

where b is the beam half-width in terms of meters. For 
WSR-88D (CASA) radars, b corresponds to a 0.5 (1) 
degree elevation angle.  This formulation is also used 
in Sun and Crook (2001) except for the approximation 
they make with the distance from the beam center. 

For radial velocity, the grid point values involved 
in the numerator of Eq.(1) are first calculated from 

 

cos sin cos cos sinrgV u v wα β α β α= + + , (3) 
 

where α is the local elevation angle and β the azimuth 
angle of the radar beam that goes through the given 
grid point, and u, v and w are the model-simulated ve-
locities interpolated to the scalar point of a staggered 
model grid. Subscript g of Vr denotes the grid point 
value. After Vr is sampled from the grid point values, 
random error drawn from a normal distribution with 
zero mean and standard deviation of 1 m s-1 are added 
as simulated observation errors. Since Vr is sampled 
directly from velocity fields, the effect of hydrometeor 
sedimentation is not involved in the data or assimila-
tion.  

The simulated reflectivity, Z, in dBZ, is calculated 
from the mixing ratios of rainwater, snow and hail hy-
drometeors, using the same formulations as in TX05. 
The formulations mostly follow those of Smith et al 
(1975) and are consistent with the ARPS ice micro-
physics. As with Vr, Z is first calculated at the grid 
points within the beam width then transferred to the 
beam elevations using Eq.(1). Random errors of zero 
mean and standard deviation of 5 dBZ are then added 
to the simulated reflectivity data. 

When observation operator Eq.(1) is used to create 
simulated observations, no data is collected when no 
grid level is found within the beam width. This is 
equivalent to saying that data are discarded by the as-
similation when the forward observation operator in-
volves no grid levels within the beam width. For our 
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vertically stretched analysis grids with high resolutions 
at the low levels, this does not happen often, when it 
does happen, the radar beam is usually very narrow 
therefore the atmosphere is already well sampled. Our 
procedure is therefore a natural way of thinning the 
data.  For data sampling and for assimilation, we as-
sume that the observation operators as well as the pre-
diction model are perfect. This assumption is used in 
all earlier OSSE studies with radar data, and also in 
most atmospheric data assimilation systems. Model 
error will be an issue for future study. 
 
c. The EnKF data assimilation procedure 
 

Our EnKF system used in this study is similar to 
that described in Tong and Xue (2005) but with several 
differences. The first is that we now use the ensemble 
square root Kalman filter (EnSRF, Whitaker and 
Hamill 2002; Tippett et al. 2003) instead of the per-
turbed observation method (Evensen 1994; Burgers et 
al. 1998; Houtekamer and Mitchell 1998; Evensen 
2003). Relatively small differences found between the 
two methods are reported in TX05 when 100 ensemble 
members are used. In this study, 40 members are used 
in all experiments; the EnSRF method is chosen be-
cause it generally performs better for limited ensemble 
sizes (Whitaker and Hamill 2002). With EnSRF, no 
additional perturbation is added to the observations 
except for the assumed observational errors added in 
the data sampling process. 

As in TX05, we start the initial ensemble forecast 
at 20 min of model time when the first storm cell de-
veloping out of an initial bubble reaches peak intensity. 
The ensemble is initialized by adding random perturba-
tions to a horizontally homogeneous ensemble mean 
defined by the environmental sounding and the random 
perturbations are sampled from Gaussian distributions 
with zero mean and standard deviation of 3 m s-1 for u, 
v, and w, 3 K for potential temperature θ and 0.5 g kg-1 
for water vapor mixing ratio qv. The pressure and 
microphysical variables are not perturbed. Similar to 
TX05, we apply the initial perturbations to the entire 
domain except for the outermost five rings of grid 
points near the lateral boundaries. We do not perturb u, 
v, θ, and qv at the first grid level about ground either. 
SZ03 and Dowell et al (2004) found that limiting the 
initial perturbations to regions around the observed 
storms improves the analysis by avoiding the triggering 
by the perturbations spurious cells outside the regions 
of Vr data coverage (only Vr is assimilated in their stud-
ies). In our case, both Vr and Z data are assimilated and 
the assimilation of reflectivity information in non-
precipitation regions helps suppress spurious cells. Our 
procedure allows for a more general application of the 
EnKF system, for, e.g., cases where data from plat-
forms rather than radar are involved. 

The observations are assimilated every 5 min and 
the first analysis is performed at 25 min, unless it is 
otherwise stated. Here, the CASA radars are assumed 
to be operating in the traditionally full volume scan 
mode and at a relatively low scan frequency of 5 min, 
but the impact of collecting and assimilating data at 
higher volume scan frequencies will also be examined. 

As mentioned earlier, 40 ensemble members are 
used. The observation errors are assumed to be uncor-
related and the observations are analyzed sequentially 
one at a time (Houtekamer and Mitchell 2001). As in 
TX05, a covariance localization procedure following 
Houtekamer and Mitchell (2001) is employed that ap-
plies Schur product of the background error covariance 
calculated from the ensemble and a correlation function 
with local support. The correlation function follows Eq. 
(4.10) of Gaspari and Cohn (1999). An effective cutoff 
radius of 6 km is used in this study rather than 8 km as 
in TX05, which used 100 ensemble members and a 2 
km horizontal resolution. The best choice of cutoff 
radius is found through numerical experimentation. 

 The covariance inflation procedure is necessary 
due to the typical underestimation of background error 
covariances from the limited-size ensemble. The pro-
cedure that we use is based on that of Anderson (2001) 
with an important modification; instead of applying 
everywhere, covariance inflation is limited to the grid 
points that are directly influenced during the analysis 
update by the observations found within the precipita-
tion (where observed Z > 10 dBZ) regions. This modi-
fication is necessary to avoid amplifying spurious cells 
in precipitation-free regions. The inflation factor we 
use is 1.07 or the amount of inflation is 7 percent. 

 
3. The Role of cross-covariances 
 

In TX05, it is shown for essentially the worst case 
in which only reflectivity data in the precipitation re-
gions are assimilated, that dynamically consistent 
background error covariances between the reflectivity 
in the updraft region and the model state variables in a 
significant portion of the domain can be obtained from 
the ensemble forecast during the later assimilation cy-
cles. It is suggested that such flow-dependent cross 
(across different variables) covariance information is 
very important for a successful analysis of those state 
variables that are not directly observed and often not 
even related to the observed quantities (i.e., Vr and Z) 
through the observation operators. For these variables, 
analysis update based on cross covariances of back-
ground error and the adjustment through model dynam-
ics during the prediction are the only ways by which 
they can be 'analyzed'. However, it is also shown that 
during the early cycles that follow the initialization of 
the ensemble from relatively poor initial guess of en-
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semble mean, the analysis update of variables not di-
rectly related to reflectivity (via the observation opera-
tor) actually hurts the analysis (i.e., the analysis in-
creases rather than decreases the background error). It 
was found that best results are obtained when such 
updating is not done to indirectly related variables 
when assimilating Z during the first four cycles. 

Before discussing the experiments on the impact 
of CASA radar data, we further examine in this section 
the role of cross covariance information and the related 
analysis update in assimilating radar data. Two ex-
periments are performed, using only one WSR-88D 
radar. The first experiment, which we refer to as TLX 
(see Table 1), follows the standard procedure that as-
similates Vr data in the precipitation region and Z data 
in all regions within the radar coverage. The procedure 
updates only directly related state variables (i.e., qr, qs 
and qh) when assimilating Z data during the first 20 
min (before the 4th analysis). All state variables are 
updated afterwards. In the second experiment 
(TLXNCov), throughout the assimilation, Vr is used to 
update only the wind components and Z is used to up-
date qr, qs and qh only. The indirectly related variables 
are not updated and have to rely on the model dynam-
ics to adjust to the directly analyzed variables. 

Fig. 3 shows the root-mean-square (rms) error 

curves of ensemble mean forecasts and analyses from 
these two experiments (together with those from 
TLXCYR to be discussed later) plotted against time or 
analysis cycle. The errors are obtained by averaging 
over those grid points where observed Z exceeds 10 
dBZ. Despite a number of configuration differences, 
the behaviors of error reduction in TLX are very simi-
lar to those of experiment VrPZF reported in TX05, 
which used Vr and Z data in the same way. Errors in all 
fields are reduced rapidly up to about 55 min when 
they become stabilized for the next 30 min.  Between 
60 and 80 min, the rms errors in the wind components 
are about 1 ms-1 and the temperature error is less than 1 
K. Such velocity errors are similar to the observational 
errors added to the radial velocity. This means that 
after eight to ten assimilation cycles, the EnKF system 
is producing a very good estimate of the state of simu-
lated storm.  The errors in some of the fields increase 
slightly after 80 min and such increase is apparently 
due to faster forecast error growth in the later stage of 
the storm system development when the left mover 
splits again into several smaller less organized updraft 
cores (see Fig. 5). The spreading of low-level cold pool 
not well captured by KTLX radar also contributes to 
the error increase. A similar behavior is also observed 
in TX05. 
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Fig. 3. The rms errors of ensemble-mean forecast and analysis, averaged over points at which the reflectiv-
ity is greater than 10dBZ for: (a) u, (b) v, (c) w, (d) 'θ , (e) 'p , (f) qc, (g) qr, (h) qv (the curves with larger 
values) and qi (the curves with lower values), (i) qs and (j) qh, for experiments TLX (thick black), TLXCYR 
(dashed) and TLXNCov (thin black). Units are shown in the plots. The drop of the error curves at specific 
times corresponds to the reduction of error by analysis. 
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Table 1 List of Assimilation Experiments 
 

Experiment Radars assimilated and configuration 
TLX TLX data only, standard assimilation procedure 

TLXNCov As TLX, but cross covariance information is not used for updating indirectly related 
state variables 

TLXCYR KTLX and Cyril radars 
CASA1S One CASA radar at Rush Springs in small domain 
CASA3S Three CASA radars at Cyril, Rush Spring and Lawton in small domain 
CASA1L Single Lawton radar in large domain 
CASA4L All 4 CASA radars in large domain 

CASA1LM As CASA1L, but with fast moving storm system 
CASA4LM As CASA4L, but with fast moving storm system 

CASA1LF1/2 As CASA1L but with 1 and 2.5 min VSF and assimilation cycles, respectively 
CASA1LMF1/2 As CASA1LM but with 1 or 2.5 min VSF and assimilation cycles 

CASA4LF1/2 As CASA4L but with 1 or 2.5 min VSF and assimilation cycles 

CASA4LMF1/2 As CASA4LM but with 1 or 2.5 min VSF and assimilation cycles 
 
 

Table 2. Number of radar observations for radial velocity and reflectivity for each experiment at 
30, 60 and 90 minutes 

 
30 min 60 min 90 min 

Obs number Obs number Obs number 
 

Experiment 
Vr Z Vr Z Vr Z 

TLX, TLXNCov 1458 17624 4199 17624 6616 17624 
TLXCYR 2071 28777 7173 28777 12314 28777 
CASA1S 1675 10834 6685 10834 8029 10834 
CASA3S 2691 30960 10794 30960 14767 30960 

CASA1L, CASA1LF1/2 1222 11730 2758 11730 2651 11730 
CASA4L, CASA4LF1/2 4181 46855 14763 46855 18728 46855 

CASA1LM, CASA1LMF1/2 1208 11730 2836 11730 348 11730 
CASA4LM, CASA4LMF1/2 1963 46855 13674 46855 17420 46855 

 
The error reduction in u, v, w, qr and qh in the first 

three assimilation cycles (up to 35 min) is very similar 
between TLX and TLXNCov (Fig. 3). The errors in θ', 
qc and qv are actually larger in TLX than in TLXNCov; 
the model state errors in these three variables are actu-
ally increased by the analysis during the first two cy-
cles in TLX. Since during the first four cycles, only Vr  
data are used to update these variables, the cross-
covariances between Vr  and these indirectly related 
variables must have been unreliable, causing degrada-
tion of their state by the analysis. The same behavior 
was observed in TX05 when updating indirectly related 
variables using Z data in the first few cycles. 

Despite the larger errors in the initial cycles, the 
errors in  θ', qc and qv are quickly reduced in TLX to 
below those of TLXNCov starting around 35 min (Fig. 
3d, Fig. 3f, Fig. 3h) and become significantly smaller 

in the later cycles, in a way similar to all other vari-
ables. For the velocity components, the rms error dif-
ference between the two experiments is as large as 2.5 
ms-1 (3.5 v.s. 1 ms-1, Fig. 3a and Fig. 3c), and at the end 
of the assimilation (100 min), the analysis error in the 
wind components is about twice as large in TLXNCov 
(2 v.s. 1 ms-1, Fig. 3a-c). More disturbingly, the analy-
ses of qs and qh that are directly related to the reflectiv-
ity observations are significantly degraded during the 
intermediate cycles. In fact, the rms error in qs is in-
creased by as much as 0.2 g kg-1 by the analysis at 70 
min (Fig. 3i). This suggests that when the overall 
analysis is poor, even the covariance between the ob-
servation (Z is this case) and the directly related 
(through the observation operator) variable (qs) can be 
bad, causing increase of error in the field by analysis  

The plots of horizontal winds and w at the 6 km 
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level from the truth, TLX and TLXNCov can be found 
in Fig. 5 for various analysis times; the corresponding 
surface fields are found in Fig. 6. We can see that at the 
6 km level, the flow and storm updrafts are very poorly 
analyzed before 100 min (Fig. 5) in TLXNCov; in fact, 
the updrafts are almost completely missing at 60 min 
(Fig. 5j), resulting an rms error of over 3 ms-1 in w at 
this time (Fig. 3c).  Fig. 6 shows that the analysis of 
low-level cold pool and precipitation patterns are very 
poor at 40 min in TLXNCov (Fig. 6i) while those of 
TLX (Fig. 6e) are significantly better. The agreement 
with the truth in these patterns, though better than at 
the higher levels, remains poorer than TLX case 
throughout the analysis period with TLXNCov, consis-
tent with that we saw in the rms errors earlier. 

Overall, it is clear that the analysis obtained in 
TLXNCov, in which cross-covariance information be-
tween the observations and indirectly related variables 
are not used for analysis update, is much poorer. We 
can therefore convincingly say that the cross-
covariances among different variables are very impor-
tant in producing accurate analysis of a convective 
storm using radar observations. We rely on such infor-
mation in retrieving the variables that not directly ob-
served.  

Meanwhile, we also want to point out that the 
model dynamics also play an important role in the 're-
trieval' process. This is indicated by the fact that in 
TLX, for most variables (all except for v and qc and qv 
in the first two cycles), the model forecast between 
analyses actually reduces the state error, sometimes 
significantly, during the earlier cycles when overall 
error is rapidly reduced.  The y component of wind, v, 
and the hail mixing ratio qh are the two variables whose 
errors tend to increase quickly during the forecast pe-
riod while their analyses reduce the forecast errors 
most. 

Apparently, what is happening is that because a 
significant component of wind in the y direction is di-
rectly observed by the radar (located to the north 
northwest of the storm at the early stage) and there is a 
large sensitivity of reflectivity to the hail concentration, 
v and qh get corrected directly by the observations even 
before reliable background covariance structure is de-
veloped and when the overall state of the atmosphere is 
poorly estimated. In fact, the corrections to them tend 
to be 'overdone' relative to the state of the other vari-
ables, so that once set free (during the forecast), their 
errors grow back quickly. This happens when they try 
to restore back towards the state before the analysis so 
as to be more consistent with the other variables, which 
have been adjusted much less by the analysis. The 
other variables, on the other hand, are also adjusted 
during the forecast so as to be more consistent with v 
and qh; in the process, their errors are reduced. For 
these reasons, we say that the model dynamics is also 

very important in producing a dynamically consistent 
estimate of the state of the atmosphere, in particular, of 
convective storms. 

 
4. Assimilation of CASA Radar Data and Its Impact 
 
a. Impact of single CASA radar in addition to one 

WSR-88D radar  
 

As stated in the introduction, one of the key prob-
lems with the existing national network of WSR-88D 
radars is that the typical radar spacings of a few hun-
dred kilometers preclude the observations of the lowest 
kilometers of the atmosphere at a distance from the 
radar due to the earth curvature effect and non-zero 
elevation of the lowest tilt. Important storm-scale fea-
tures such as tornado, cold pool, gust front and down-
bursts are missed in such cases. It is well established 
that low-level cold pool is very important for the sup-
port and maintenance of convective systems.  In this 
section, we compare the analysis and forecast 
TLXCYR, in which the data from a radar at Cyril site 
are add to the data from KTLX radar. The experiment 
is otherwise the same as TLX. 

As can be seen from Fig. 2, at a 90 km range, the 
center of the lowest radar beam is over 1 km above the 
ground, and the lower edge of the 1 degree wide beam 
is about 500 m above ground, implying that the atmos-
phere blow 500 m is not illuminated by the radar beam 
hence not observed. The addition of CASA radars fills 
such gaps while at the same time increases the resolu-
tion of observations in the covered region. In certain 
regions, the CASA radars may even provide dual or 
multiple Doppler wind coverage; in our case, such cov-
erage is very limited partly because Vr observations are 
only available in the precipitation regions (see Fig. 1). 
The total numbers of Vr and Z observations available 
and assimilated in each experiment are given in Table 2. 

The rms error curves for the state variables of ex-
periment TLXCYR are plotted as dashed lines in Fig. 3. 
It is immediately clear by comparing the curves with 
those of TLX that the additional CASA radar provides 
a consistently positive impact, on essentially all vari-
ables. For one thing, the slight error increase in the 
later cycles in TLX is essentially gone for most vari-
ables and this is believed to be due to a good low-level 
coverage of the cold pool associated with the left mov-
ing cells as well as a generally higher-resolution cover-
age provided by the Cyril radar (see Fig. 6). The de-
crease in the rms errors in the wind components is al-
most 0.5 ms-1, making the analysis errors in the late 
cycles significantly lower than the observational error 
in Vr. Improvements in the analyses of other variables 
are also clearly evident from Fig. 3. 
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Fig. 4. Vertical profiles of rms errors of EnKF analyses (averaged over 
the entire horizontal domain) from experiments TLX (thin lines) and 
TLXCYR (thick lines) at 60 min (solid) and 80 min (dashed) for vari-
ables (a) u, (b) (w), (c) p', (d) θ', (e) qv and (f) qr. 

 
The improvement as a function of height is re-

vealed by the vertical profiles of rms errors. Fig. 4 
shows that the largest differences in the rms errors be-
tween TLX and TLXCYR are found at the low levels. 
For u, the difference at the surface is about 0.9 ms-1 at 
60 min and about 0.75 ms-1 at 80 min.  For θ', the sur-
face rms error differences are about 0.3 K and 0.23 K 
at 60 and 80 min, respectively. The rms error in qr is 
about twice as large in TLX at the surface. The larger 
errors in u, θ' and qr in TLX is a reflection of the 
poorer analysis of the low-level cold pool which is 
further driven by the poorer precipitation analysis (see 
Fig. 6 later). The error difference is generally larger at 
the earlier time (e.g., at 60 min); the difference de-
creases with the cycles as the analysis of TLX is also 
improved with the assimilation of more data and the 
buildup of the storm. 

The 6-km level wind and w analyses from TLX 
(2nd row) and TLXCYR (4th row) during the assimila-
tion period are plotted in Fig. 5, together the corre-
sponding truth (first row). At this level, where the 

KTLX radar provides a rather good data coverage (see 
Table 2), the differences between the two experiments 
are relatively small though still identifiable, with the w 
fields from TLXCYR generally agreeing better with 
the truth. The differences at the low-levels are much 
larger. Fig. 6 shows the low-level flow and the simu-
lated reflectivity, together with the cold pool as re-
vealed by the negative θ perturbations. It is clear that 
the analyzed cold pool and the precipitation region are 
too small in area coverage in both experiments and are 
even more so in TLX at the earlier times, at, e.g., 40 
min (Fig. 6e and Fig. 6m). The cold pool expands with 
time in both cases, but that in TLX never reaches the 
south boundary of the plotted domain by 100 min as 
the real one and that one in TLXCYR do. In fact, by 
100 min, the structure and location of the cold pool 
boundary or gust front in TLXCYR agrees very well 
with the truth (Fig. 6p and Fig. 6d). The agreement in 
the reflectivity with the truth is very good in both cases.  

To further examine the impact of Cyril radar data, 
we plot in Fig. 7 low-level vertical cross sections at 40 
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and 60 min through the cold pool along the lines indi-
cated in Fig. 6. The cold pool is indicated by the con-
tours of negative θ' which are plotted together with the 
winds projected to the plane of cross section. It can be 
seen by 40 min or after 4 analysis cycles, a updraft 
above 1 km level is reasonably well captured in both 
cases, but the low-level winds differ significantly from 
the truth due to an almost complete lack of cold pool in 
TLX and a much weaker but clearly identifiable one in 
TLXCYR. Another 4 analysis cycles later, at 60 min, 
the cold pool structure becomes much closer to the 
truth, but that in TLX remains noticeably narrower than 
the truth (25 km v.s. the true 30 km when the gust 
fronts are defined by -1 K θ' contours) while the gust 
front locations and cold pool width in TLXCYR are 
almost identical to the true ones (Fig. 7b and Fig. 7d). 
The gust front strength measured in terms of the hori-
zontal θ' gradient is slightly weaker than the truth near 
the B' end of the cross section, which is part of rear 
flank gust front of the main cell. The depth of the cold 
pool is similar to that of the truth in both TLX and 
TLXCYR. The above results clearly indicate that the 
additional data from the Cyril radar are very helpful, 
especially during the earlier cycles, in establishing ac-
curate low-level precipitation and cold pool structures 
as well as that of the associated winds in the model. 

 
b. Assimilation of single or multiple CASA radars 

alone 
 

In this section, we examine the ability of CASA 
radar(s) alone in producing a good analysis of the su-
percell storm system. Results from experiments 
CASA1S and CASA3S will be shown (Table 1). The 
analysis grid and procedure are the same as in TLX and 
TLXCYR except for the radar(s) used. In CASA1S, 
data from single radar at Rush Springs are used (see 
Fig. 1) while in CASA3S, data from three radars, at 
Cyril, Rush Springs and Lawton are used. The trailing 
'S' in the names denotes the small domain used. 

Fig. 8 shows that, when three CASA radars are 
used that provide a good spatial coverage of the storm 
system (see Fig. 1, Fig. 6 and Table 2), the quality of 
analysis is close to that of TLXCYR; in fact, for most 
variables, the error curves are between those of TLX 
and TLXCYR (c.f., Fig. 3), with the wind analysis er-
rors at around or being lower than 1 ms-1 after 60 min. 
Similar conclusion can be drawn from the 6 km and 
surface plots shown in Fig. 5 and Fig. 6. The analysis 
of CASA3S can therefore be considered very good.  

The errors of CASA1S are, however, consistently 
larger at all times (Fig. 8), and the errors start to in-
crease significantly after 60 min, reaching over 2 ms-1 
in the winds. This increase is clearly due to the lack of 
spatial coverage of the left-moving cells starting from 

60 min (Fig. 6r - Fig. 6t), by the single Rush Springs 
radar. The lack of coverage in the western portion of 
the analysis domain is also responsible for the inability 
of the analysis to suppress spurious precipitation per-
sistent in this part of domain (Fig. 6r - Fig. 6t).  

The updraft core and the main precipitation re-
gions of the right-moving cell did remain within the 
range of Rush Springs radar. By 100 min, the low-level 
flow within the radar range (Fig. 6t) and the mid-level 
updraft core and horizontal flow of the right mover 
(Fig. 5t) are well captured, but the updrafts of the left-
moving cells are poorly analyzed (Fig. 5t); the low-
level cold pool extends too far north, partly due to the 
merger with earlier spurious precipitation in the region 
(Fig. 7t). 

The results show that when three CASA radars 
work together to provide a complete coverage of the 
storm system during the assimilation period, the EnKF 
analysis is almost as good as that from one well-
positioned CASA radar plus one WSR-88D radar. 
When only one CASA radar is available and when a 
portion of the storm system is not covered by the radar, 
the quality of analysis deteriorates significantly. Spuri-
ous precipitation developed in part of the domain that 
could not be corrected by the analysis due to the lack of 
observations there. 

 
c. Effect of storm motion  
 

In all of our OSSEs reported so far, and in those of 
TX05 and ZSS04, a mean storm motion speed is first 
subtracted from the environmental sounding to keep 
the main storm cell quasi-stationary relative to the 
forecast and analysis grid. Doing so effectively reduces 
the local time tendency of model state and may have 
helped improving the quality of analysis. The use of a 
moving reference frame that follows the storm system 
is known to improve single Doppler wind analysis 
(Gal-Chen 1982; Zhang and Gal-Chen 1996; Liou and 
Luo 2001); traditional techniques that retrieve thermo-
dynamic fields from the Doppler wind analyses (Gal-
Chen 1978; Gal-Chen and Kropfli 1984) are also sensi-
tive to the accuracy of time tendency estimate (Sun and 
Crook 1996). For general NWP applications, a moving 
reference frame is not easy, if at all possible, to imple-
ment.  

In this section, we examine the effect of storm mo-
tion on the quality of EnKF analysis, by comparing 
experiments with and without subtracting the storm 
motion from the sounding. A larger grid, as shown in 
Fig. 1, is used to contain within the domain the fast 
moving storms for the entire period of analysis. The 
truth simulations used for the slow and fast-moving 
experiments are SML and FML, respectively. 
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Fig. 5. Vertical velocity w (contours with shading at intervals of 4 m s-1, negative contours are 
dashed) and horizontal wind (vectors, plotted every other grid point; ms-1) in a subdomain, at z = 6 
km: for truth simulation in the small domain (SMS) (a)-(d); analyses from experiments TLX (e)-
(h), TLXNCov (i)-(l), TLXCYR (m)-(p), CASA1S (q)-(t), and CASA3S (u)-(x) at t = 40, 60, 80 
and 100 min during the assimilation period. 
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Fig. 6. As Fig. 5 but for horizontal winds (vectors; m s-1), perturbation potential temperature (thick 
dashed lines at 1 K intervals) and simulated reflectivity (thin solid contours with shading at inter-
vals of 5 dBZ, starting from 15 dBZ) at z = 50 m AGL. Lines A-A' and B-B' in the plots indicate 
the locations of vertical cross sections to be shown in Fig. 7. 
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Fig. 7. Vertical cross-sections along lines A-A' (left panel) and B-B' (right panel) in Fig. 6 show-
ing the analysis perturbation potential temperature (θ') contours at 1 K intervals, and the wind vec-
tors projected to the cross section, for truth simulation SMS (a)-(b), experiments TLX (c)-(d), and 
TLCYR (e)-(f), at 40 (left panel) and 60 min (right panel) during the assimilation period. 
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Fig. 8. As Fig. 3 but for experiments CASA1S (thick lines) and CASA3S (thin lines). 



 

 14

 

0.0

2.0

4.0

6.0

20 40 60 80 100
0.0

2.0

4.0

6.0

20 40 60 80 100
0.0

2.0

4.0

6.0

20 40 60 80 100
0.0

1.0

2.0

3.0

20 40 60 80 100
0

20

40

60

80

20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

20 40 60 80 100
0.0

0.4

0.8

1.2

1.6

2.0

20 40 60 80 100
0.0

0.4

0.8

1.2

1.6

20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

20 40 60 80 100

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

t (min) t (min) t (min) t (min) t (min)

t (min) t (min) t (min) t (min) t (min)

u (m/s) v (m/s) w (m/s) θ' (K) P (Pa)

qc (g/kg) qr (g/kg) qv, qi (g/kg) qs (g/kg) qh (g/kg)

 
 

Fig. 9. As Fig. 3 but for experiments CASA1L (thick solid), CASA4L (thin solid), CASA1LM 
(thick dashed) and CASA4LM (thin dashed). 
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Fig. 10. Horizontal wind (vectors; m s-1), θ' (thick dashed contours at 1 K intervals) and simulated 
reflectivity (thin solid contours with shading at intervals of 5 dBZ, starting from 15 dBZ) at z = 50 
m AGL: for truth simulation SML (a)-(d); analyses from experiments CASA1L (e)-(h), and 
CASA4L (i)-(l), at t = 40, 60, 80 and 100 min during the assimilation period. 
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Fig. 11. As Fig. 10 but for truth simulation FML (a)-(d), and analyses from experiments 
CASA1LM (e)-(h), and CASA4LM (i)-(l). 

 
Fig. 9 shows the forecast and analysis errors in the 

model state variables during the assimilation period for 
experiments CASA1L, CASA4L, CASA1LM and 
CASA4LM. The former two contain a slow moving 
storm system while the latter two contain a fast moving 
one. In CASA1L and CASA1LM, single CASA radar 
located at Lawton is assimilated while in CASA4L and 
CASA4LM, all four CASA radars are assimilated. 
Lawton radar provides the best coverage of the fast 
moving storm system during the early cycles. All four 
experiments use the same large domain. 

It can be seen from the rms error plots (Fig. 9) that 
the analyses using four radars are consistently better 
than those of one-radar cases. Between 60 and 70 min 
where the errors are generally the smallest, the differ-
ence in the wind analysis errors is 1 ms-1 or more, and 
the difference in θ errors is larger than 0.5 K. The case 
with the largest errors during the later cycles is 
CASA1LM. In this case, the errors in all variables in-
crease rapidly after 70 min from a level that is close to 
that of CASA1L at 70 min, when the precipitation re-

gions of both left and right movers propagate out of the 
range of single Lawton radar (see Fig. 11). Before this 
time, spurious precipitation also exists in a significant 
portion of model domain (Fig. 11f) that is not corrected. 
As in some previous cases, such spurious precipitation 
is mainly caused by the initial random perturbations 
used to start the initial ensemble. Since the rms errors 
shown in Fig. 9 are calculated over the regions where 
observed Z exceeds 10 dBZ, most of the errors due to 
the spurious precipitation are not even reflected in the 
error plots. 

The case with a slow moving storm system and 4 
radars (CASA4L) produces the best analysis (Fig. 9). 
The errors of CASA4LM are close to though slightly 
larger in general than those of CASA4L, until 90 min. 
After this time, the errors also start to increase rapidly 
as the left mover propagates out of the range of all four 
radars (Fig. 11l). The analysis of the right mover re-
mains rather good (Fig. 11l). 

The 6-km level and the surface analysis fields 
from the four experiments are shown in Fig. 10 and Fig. 



 

 16

11, and some of them have already been referenced 
earlier. These fields help us understand the error evolu-
tions shown in Fig. 9. In general, the data coverage 
appears to be the most significant factor that affects the 
quality of storm analysis. Once a storm or a portion of 
it moves out of the range of radar network, the model 
state error growth can no longer be controlled and the 
analysis deteriorates. The lack of data coverage in the 
entire analysis domain also negatively impacts the 
overall analysis as some spurious cells can be not sup-
pressed. When the data coverage is similar, the analysis 
of a slow-moving storm system is slightly better than 
that of a fast moving one. 

 
d. Impact of volume scan frequency 
 

Another factor that can affect the accuracy of local 
time tendency estimate is the radar volume scan fre-
quency (VSF). Faster scan tends to give a better esti-
mate. Furthermore, freezing turbulence assumption 
made in certain single-Doppler velocity retrieval 
(SDVR) techniques becomes more valid between two 
scans of short time interval. The mean winds deter-
mined from successive volume scans based on the 
principle of tracking quasi-conserved quantities (e.g, 
Qiu and Xu 1992; Shapiro et al. 1995) are definitely 
more accurate using high-frequency data. Shapiro et al 
(2003) find that with a SDVR scheme based on a La-
grangian form of the radial component of the equation 
of motion, the wind retrieval error statistics are sub-
stantially improved as the volume scan intervals de-
creases from 5 min down to 1 min, using real Doppler-
on-Wheels mobile radar data. ZSS04 find, however, 
with their EnKF system, that the analysis is only mar-
ginally better during the first few assimilation cycles 
when 2-min instead of 5-min volume scan data are 
assimilated, and the difference becomes minimal dur-
ing the later cycles. The main storm in their case was 
quasi-stationary. 

Since the CASA radars will be designed to operate 
with a variety of scan strategies that would respond in 
real time to user needs.  When necessary, the radar can 
perform sector or even spatially or temporally inter-
leaved scans at short time intervals. It is important to 
better understand the impact of scan frequency on the 
quality of thunderstorm analysis, so as to help design 
the control system of the network and to optimize the 
system operations. In this section, we attempt to an-
swer some of the questions by comparing analyses 
from the WSR-88D-standard 5 min-interval data and 
data collected at 1 and 2.5 min intervals. To be fair, the 
analysis starts at 25 min in all experiments. Further, we 
will examine the impact for both slow-moving and fast 
moving storms. As in the previous subsection, truth 
simulations SML and FML are used. 

The four large-domain experiments in the previous 

subsection are repeated assimilating 1 min and 2.5 min 
volume scan data instead. The general conclusion is 
that the faster volume scan does improve the quality of 
analysis, especially during the earlier cycles, but the 
sensitivity of the analysis to VSF is much smaller than 
the afore-mentioned retrieval techniques are, and the 
sensitivity decreases as the length of assimilation pe-
riod increases but increases as the storms move faster. 
When the spatial coverage of the radar network is small, 
high VSF helps because the storm structure can be es-
tablished quickly before the storm moves out of the 
range of the network. Actual results of these experi-
ments will be presented at the conference. 

 
5. Forecasts from ensemble-mean analyses 
 

Since the goal of data assimilation is to provide a 
good initial condition for numerical weather prediction, 
in this section, we look at the quality of forecasts pro-
duced from the analyses. Fig. 12 shows the rms errors 
(averaged over the entire domain) of forecasts begin-
ning from the ensemble-mean analyses of different 
times from experiments TLX, TLXCRY and CASA3S.  

In general, more accurate estimate of the initial 
condition yields better forecast, but, because the differ-
ences in the analysis errors among the above three 
cases are relatively small, the forecast errors approach 
very similar values after 40 to 80 min, depending on 
the variable and the start time. The difference in errors 
is maintained for the longest for forecasts starting from 
60 min. For example, the forecast error in u remains 
lower in TLXCRY than in TLX up to 165 min, or for 
over 100 min from the analysis time. The correspond-
ing errors for w, θ' and qr become indistinguishable by 
140 min. The initial analysis errors of CASA3S are 
similar to those of TLXCYR, and its forecast errors 
generally oscillate between those of TLX and 
TLXCYR.  

The error growth in w and qr is fastest in the first 
40 min or so; after that, the errors in w and qr appear to 
reach saturation. The fast initial error growth in w and 
qr is believed to be due to the fact that w and qr repre-
sent smaller thunderstorm-scale disturbances that grow 
the fastest in the system while the rms errors of u and 
θ' measure the accuracy of the fields in both storm re-
gion and in the environment. For the latter, the error 
saturation is harder to reach. The overall error evalua-
tions are similar for all three cases. 

The forecast fields at the 6 km level and at the sur-
face for TLX, TLXCYR and CASA3S as compared to 
the truth (not shown due to space limitation). It is 
found that the main updraft of the right mover is well 
forecasted up to 130 min, although a slight westward 
position error is seen in all three experiments. The fea-
tures associated with the further split left movers are 
not predicted as well. By 190 min, the main updraft 
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appears better positioned in TLXCYR although all 
three show northwestward position errors. The left 
moving cells are mostly out of the plotting domain at 
this time. 

At the surface, the general patterns of cold pool 
and gust front, and the precipitation regions are rea-
sonably well predicted even at 190 min. Errors in the 
details do exist. At 190 min, the reflectivity pattern of 
TLXCYR appears worst among the three cases, with 
spurious precipitation appearing within the cold pool 
west of the main precipitating downdraft. Such dis-
crepancy shows up in the rms plotted in Fig. 12. At 190 
min, the rms error in u is almost 1 ms-1 higher and in w 

0.5 ms-1 higher in TLXCYR than in TLX or CASA3S. 
The error in θ' is about 0.3 K higher in TLXCYR. Be-
cause the error growth is nonlinear in such a convective 
system, the exact cause of such behaviors at this late 
stage is not clear. Still, all three analyses, as produced 
by TLX, TLXCYR and CASA3S, can be considered 
very good, because the ensuing forecasts remain good 
in terms of the storm morphology and rms errors for up 
to two hours. A significant portion of the rms errors at 
the later times is due to position errors. The forecasts 
starting from the analysis of TLXNCov or CASA1S 
are much poorer (not shown). 
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Fig. 12. The rms errors of forecasts averaged over the entire domain for: (a) u (m s-1), (b) 
w (ms-1), (c) θ' (K) and (d) qr (g kg-1). The forecasts begin from ensemble-mean analysis 
at t = 60 min (dotted), t = 80 min (dashed) and t = 100 min (solid) of experiments TLX 
(thin black curves), TLXCYR (thick black curves) and CASA3S (thick gray curves).  
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6. Summary 
 

In this study we used the ensemble Kalman filter 
technique to assimilate simulated radial velocity and 
reflectivity data from an assumed WSR-88D radar and 
a network of four low-cost radars planned for the first 
Oklahoma test bed by the CASA project. Forecasts 
starting from selected analyses were also performed to 
further examine the quality of analysis and its impact 
on forecast. 

It is shown that the assimilation of data from a 
CASA radar, in addition to data from one WSR-88D 
radar located about 90 km away, improves the analysis. 
Such improvement is most significant at the low levels 
where the WSR-88D radar does not observe. The sub-
sequent forecast is also better for at least 40 min with 
the addition of CASA radar data. The experiments also 
show that when a single CASA radar is assimilated and 
when the radar does not provide full coverage of the 
storm system, significant errors can develop in the 
analysis that cannot be effectively corrected. The com-
bination of several CASA radars effectively eliminates 
the problem when a complete coverage is available. 

The impact of storm motion speed on the quality 
of EnKF analysis is also examined. In general, the 
analysis is better for a slower moving system although 
the quality of analysis of a fast moving storm is rea-
sonable too when good data coverage is available. The 
quality of analysis can be improved by employing 
faster volume scans, especially for fast moving systems, 
but the sensitivity of the EnKF analysis of convective 
storms to the volume scan frequency is much less than 
that of more traditional single-Doppler velocity and 
thermodynamic retrieval schemes. In fact, very good 
analyses can be obtained even with the WSR-88D-
standard 5-min volume scan frequency. For this reason, 
more versatile scan strategies may be developed for 
and employed by the CASA radars in response to user 
needs. For example, complete volume scans can be 
made by the radar network every 5 minutes in perhaps 
1-2 minute periods while in between, the radars can be 
doing sector scans that focus on active local features 
such as tornado and microburst. 

In general, the data coverage appears to be the 
most significant factor that affects the quality of storm 
analysis. Once a storm or a portion of it moves out of 
the range of radar network, the model error growth can 
no longer be controlled and the analysis deteriorates. 
The lack of data coverage in the entire analysis domain 
also negatively impacts the overall analysis as some 
spurious cells can be not suppressed. When the data 
coverage is similar, the analysis of a slow-moving 
storm system is slightly better than that of a fast mov-
ing one. 

An additional experiment was also performed in 
which the Vr data are used to update = directly related 

wind components only and the Z data are used to up-
date only the precipitating hydrometeor species. The 
updating of other variables based on the cross covari-
ances of the background error is not performed. The 
analysis from this experiment is significantly poorer 
than the corresponding one using the cross covariance 
information, and the results demonstrate clearly that 
cross covariances play a key role in 'retrieving' unob-
served fields in a storm system when assimilating radar 
data. At the same time, the perhaps equally important 
role of the model dynamics in the retrieval process is 
also discussed. 

In the end, we point out that the CASA radar-
related issues examined in this study are only a few of 
many. The dynamic adaptive systems in the CASA 
radar networks promise to establish a completely new 
paradigm for the sensing of the atmosphere, and the 
impact of data collected using a variety of possible 
scanning modes remain to be studied in a more system-
atic way. This study represents only the first step to-
wards this direction. 
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