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1. INTRODUCTION 
Weather modification research has been going 

on for decades. However, it is still in need of “proof” that 
it works. Researchers rely on statistics for their 
evidence. However, even if weather modification 
experiments had been able to produce unequivocal 
statistical “proof” of an effect, replication of that effect is 
required before weather modification efforts can be 
declared a success. A wide variety of tests and 
analyses have been completed on weather modification 
experiments, yet no one is completely satisfied with the 
results. 

 
The problem lies with the use of statistical 

hypothesis testing as a “rubber stamp of approval”. 
Weather modification experiments are very costly and 
can only collect (relatively) little information. Additionally, 
the physical effects of weather modification are not 
always well understood. Thus, in order to squeeze every 
last bit of information out this very expensive data, 
several types of analyses must be completed. However, 
if each of these analyses is considered a “test” of the 
efficacy of cloud seeding, then multiplicity issues rule 
the results. Data from cloud seeding experiments is 
highly variable, and this reduces the power of even a 
single test to detect differences. Dividing the allowable 
error among multiple tests makes detecting differences 
practically impossible. Conversely, to collect huge 
quantities of data and spend small fortunes to arrive at a 
single test statistic is both foolish and wasteful. The 
recommended solution is to use statistics as a tool for 
discovery, a mathematical magnifying glass; not as a 
rubber stamp. Hypothesis testing, modeling (spatial, 
temporal, Bayesian, etc.), multiplicity issues, and 
exploratory analyses will be discussed in the sections 2 
through 4, respectively. Specific strategies for balancing 
these analyses are discussed in the conclusions, 
presented in section 5. 

2. HYPOTHESIS TESTING 
From the beginning of cloud seeding experiments, 

use of the standard t-test has been eschewed due to the 
non-normality of rainfall measurements. Several 
alternatives have been proposed. Some experiments 
(e.g. South Africa and Mexico) used estimates of the 
quartiles to determine if cloud seeding produced 
significant differences (Mather et al., 1997; Bruintjes et 
al., 1997). However, quartile estimates have undesirable 
properties when used on small samples, especially 
when the distribution of the samples is asymmetric or 

 

 

 
skew. A few types of ratio statistics were devised in the 
course of other experiments (Gabriel, 1999). 
Unfortunately, a ratio of means is asymptotically 
distributed as Cauchy, which has undefined variance. 
This is not a desirable property for a statistic, and thus 
ratio statistics are not recommended. 

 
Use of a standard statistical measure that is able 

to “cope” with small samples and skewed 
measurements, the Wilcoxon-Mann Whitney test, is 
recommended for the confirmatory phase on weather 
modification experiments. The formula for the WMW 
statistic and its distribution can be located in almost any 
statistics text. 

 
The WMW test is a robust test of location based 

on the sum of the ranks of the observations (Hodges 
and Lehmann, 1956). Because it is a rank based test, 
the skewness of the measurements does not have any 
effect on the test. Small sample sizes have an effect on 
all statistics. However, tests that incorporate more 
assumptions require considerably smaller sample sizes 
than tests that have fewer assumptions when those 
assumptions are correct. The WMW test has fewer 
assumptions than a standard t-test making it more 
robust than the t-test. However, if the data are normally 
distributed, then the WMW test requires a greater 
sample size to detect the same size difference as a t-
test. However, this sample size increase is quite small, 
usually about an extra 4% (Dixon, 1954). Additionally, 
when the data are even nominally different from normal, 
the WMW test is more efficient, i.e. requires a smaller 
sample size to detect differences than the t-test (Sprent, 
1993). 

 
Estimation of required sample sizes can be done 

when the t-test is employed. Unfortunately, no 
equivalent procedure exists for the WMW test. However, 
the t-test method for determination can be employed as 
a reasonable guess for the necessary sample size.  For 
example, the result of this method, based on the 
variability estimates from data collected during a field 
program in the United Arab Emirates (UAE) during 
summer of 2002, yielded a sample size of 192 cases 
(96 each seeded and control) to detect a 50% increase 
in rain mass with 80% power and 5% error. 

 
It has been suggested that spatial and/or temporal 

modeling be used in the confirmatory phase of weather 
modification experiments. Spatial and temporal 
modeling should certainly be used in the examination of 
weather modification experiments wherever feasible. 
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These types of analyses may provide researchers with  



Many believe that a single question should be the 
focus of the confirmatory phase of weather modification 
experiment. Typically, this question is, “Does this type of 
weather modification effort produce increased 
precipitation (or decreased hail) in this location during 
this season?” Certainly other questions could be asked, 
but the question should be formulated carefully. John 
Tukey was fond of saying that it is better to have an 
approximate answer to the right question than the 
precise answer to the wrong question (Karen Kafadar, 
personal communication).  

better insight into the dynamic effects of cloud seeding 
as well as any effects from other sources. However, in 
order to model a source of variation, the nature of the 
variation must be well understood (Chatfield, 1995). 
This may not be the case in many weather modification 
experiments. Additionally, it should be recognized that 
for some projects, the information that can be gathered 
may be insufficient to complete a full spatial and/or 
temporal analysis. It may prove difficult to measure or 
quantify the many sources of variation in precipitation 
production. Many projects are being undertaken in 
areas with relatively sparse coverage of weather 
instrumentation such as radar, rain gauges, etc. In some 
cases, seeding experiments are conducted in sparsely 
distributed locations and/or are not performed regularly.  
This would certainly make it difficult to do any kind of 
temporal model, and difficult to apply meaningful spatial 
analyses as well. These considerations may make it 
difficult to apply spatial analyses to weather modification 
experiments. 

 
A separate exploratory phase of the experiment 

can include several types of analyses, and ensures that 
all available information is studied without the issues of 
multiplicity.  

4. EXPLORATORY DATA ANALYSIS 
The exploratory phase of a weather modification 

experiment is arguably the most important. Though 
weather modification experiments have been carried on 
for decades, plenty of unknowns remain. To approach 
the data from a weather modification experiment with 
the intent of confirming or discrediting a preconceived 
notion is fine, permitted that is not the extent of the 
analysis. To limit the analysis in this way is the 
equivalent of wearing blinders. Instead, it is 
recommended that the data be analyzed and examined 
in many different ways, with the intent of seeing what is 
there rather than looking for what one wants to see. 

 
In addition, weather modification experiments are 

based on a variety of different designs. Some of these 
designs would be amenable to spatial/temporal 
modeling approaches, while others would not. For 
example, the approach could be very beneficial when 
the design involves two adjacent areas that are 
randomly assigned – perhaps on a daily basis – to be 
treatment or control areas (i.e., much like the Fisher 
experiments), assuming that adequate datasets are 
available. However, the approach would not be 
meaningful in a number of other cases, for example 
when the experimental unit is a cloud or a storm.  

 
Certainly, there are as many ways to analyze data 

as there are people. A small sample of suggested 
methods is included here. For more methods or greater 
detail, see Chambers (1983) or Hoaglin et al (1983). 

 
Most importantly, at this point in time, for the 

purposes of a confirmatory analysis, spatial/temporal 
modeling is unlikely to satisfy reviewers and critics. The 
results of such modeling may be sensitive to the inputs, 
priors, and assumptions. Thus, it may be difficult to 
show that any positive results are due to seeding and 
not to model specifications and assumptions (Chatfield, 
1995). Additionally, spatial/temporal modeling is a 
relatively new science and is unlikely to be well 
understood by the weather modification community. 
Once these methods demonstrate successful 
application in the weather modification field and gain 
acceptance, they may be incorporated into the 
confirmatory analyses. 

 
A QQ-plot is a plot of quartiles of one distribution 

or set of data versus the quartiles of another distribution 
or set of data. It can be used to determine if two sets of 
data come from the same distribution or it one set of 
data comes from some known distribution, such as a 
Gaussian.  
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3. MULTIPLICITY ISSUES 
In their report The Role of Statistics in Weather 

Resources Management, the Weather Modification 
Advisory Board’s statistical task force claims, “dilution of 
our data by the asking of multiple questions . . . is 
guaranteed to keep us from being able to draw firm 
conclusions” (1978). The allowable error for any 
experiment is quite small, generally 5%. If several tests 
are conducted at the 5% error level, then the overall 
experimental error is much too great. However, if the 
error is divided between the tests, then little power 
remains to detect differences. 

Figure 1: QQ-plot of log precipitation mass 
measurements versus the quantiles of a standard 
normal distribition. 



If the points fall approximately on a straight line, 
then the two distributions are the same, otherwise they 
are no. An example is shown in Figure 1 below, with log 
precipitation measurements compared to the standard 
normal. This plot indicates that the log measurements 
are approximately normally distributed. 
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Figure 2: Boxplots showing distibutions of log rain 
mass measurements for seeded an unseeded cases. 

Boxplots are another method of comparing 
samples. A boxplot shows the distribution of the 
measurements for each sample. The top and bottom of 
the box denote the 75th and 25th percentiles of the data, 
respectively. The center line in the box indicates the 
placement of the median and the notches around that 
center line show an approximate 95% confidence 
interval on the median. The top and bottom of the 
whiskers extend to the highest and lowest values of the 
data that are not outliers. Outliers, when there are any, 
are indicated with a mark above or below the whisker. 
An example boxplot is shown in Figure 2. 
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Figure 3: Time series plot of rain mass quartiles for 
seeded and unseeded cases. In some places, the 
plot has been annotated with p-values. 

Most weather modification data have a time 
component, especially when measurements are taken 
by radar. When possible, it is recommended that the 
time series be examined for possible trends. Time 
series of individual storms can be interesting but may be 

overwhelming. Thus, time series of summary statistics 
such as averages, quartiles and variance are 
recommended instead. An example time-series plot 
using the quartiles is shown in Figure 3. 

5. CONCLUSIONS AND STATISTICAL ISSUES 
Statistics can be a great tool for uncovering the 

unknown from batches of data. While standard 
hypothesis testing tells us little, its use in the 
confirmatory stage of the experiment is nearly essential 
at this time. The exploratory phase of a weather 
modification experiment is limited only by time, money 
and imagination. Thus, it can be quite complete and 
thus is more likely to uncover interesting facts than the 
confirmatory analyses. 

 
For the confirmatory phase of the experiment, the 

WMW test is recommended for its combination of 
efficiency and robustness. In the exploratory phase, a 
variety of exploratory graphical analyses are 
recommended. 

 
Spatial and temporal analyses, whether Bayesian 

or not, should be conducted as part of the exploratory 
analyses of weather modification experiments where 
feasible and meaningful. Perhaps in the future, these 
analyses will be incorporated into the confirmatory 
phase of the experiments when it is appropriate to do 
so, but until then, accepted methods should continue to 
be used. 
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