
14.4 INTEGRATION OF JAVA/JAVA3D-BASED
OCEANOGRAPHIC ANALYSIS TOOLS WITH GIS

Tiffany C. Vance1*, Christopher W. Moore2 and Nazila Merati2
1NOAA/National Marine fisheries Service, Seattle, WA

 2Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle

ABSTRACT

Ideally, scientists should be able to format, explore,
analyze, and visualize GIS-based data in a simple,
powerful, and fast application that would seamlessly
integrate georeferenced data from a variety of data
sources into a powerful intuitive visualization. Virtual
reality has made visualization easily accessible to
many users using desktop tools but has limitations in
scope and analysis. In this project we used a
combination of Java/Java3D, the Visualization Toolkit,
and the recently introduced ESRI ArcGIS Engine
product to create a prototype of a tool to calculate a
number of parameters for an oceanographic module to
be included in a scientific GIS. We combined the
spatial tools exposed through ArcGIS Engine with the
analytical capabilities of algorithms written in Java and
the complex visualization capabilities of Java3D.
Modules from each of these technologies could be
combined to create innovative tools to allow users to
import data, perform spatial and scientific analyses and
output the results as visualizations for further
examination.

1. INTRODUCTION

Geographic information systems (GIS) provide a high
level of functionality for spatial analyses, but are not yet
able to provide extended functionality needed to create
a truly "scientific GIS". Examples of the functionality
that is lacking include time series analyses, calculation
of the volume of the overlap between two volumes - for
example between a school of fish and a prey field - or
calculation of the intersection of a vector path with a
volume - for example the route of a marine mammal
through a pool of cold water. Other functions might
include the ability to specify a slice through a three-
dimensional lattice of model output data and to make
various analyses along that slice.

Java can be used to program scientific calculations and
analyses, but it isn't inherently spatial. Datasets can
have a spatial component, but Java treats this as it
would any type of coordinate system. Topology, or the

spatial relationship between objects, is not stored with
data. Functions such as map projections, slope
calculations and spatial intersections are not native to
the language. However, Java is easily extensible and
functions written in other languages can be integrated.

VRML provides the ability to visualize scientific data
and to allow the user to interact with the data by
rotating, zooming and panning, but you cannot easily
query VRML objects. Ideally one would be able to
point at a three dimensional location in a VRML view
and return a reference to the object that lists the
analytical methods that act on the data, and allows the
user to execute these methods. VRML scene
navigation generally requires that a separate VRML
plug-in application be installed on the client system.
From the user's perspective, plug-ins are poorly
integrated into the browser environment, and the
browser itself may be superfluous. Additionally, user
plug-ins may only be available for the more popular
client platforms. Recent developments in Java3D
extend the functionality of VRML and answer a number
of the limitations mentioned.

The Java tools described herein were designed using a
framework approach that enables them to be integrated
into an application (OceanGIS), or interfaced with
major off-the-shelf software products (e.g., ESRI
ArcEngine). We aimed to develop these tools for a
broad range of potential users. This project focuses on
tools that convert non-spatial data into GIS compatible
data, expedite the transfer of spatial data to coastal
professionals and emergency managers, and enhance
analyses used for disaster preparedness and response
activities. As the tools we develop can be deployed
without a full ArcGIS license, we hope to make them
widely available to better integrate field activities during
disaster responses.

2. TECHNOLOGY

In this project, we use the flexibility of Java to integrate
GIS functionality with Java3D (and Java-wrapped
OpenGL) visualization capabilities. Specifically we are
using a combination of Java/Java3D and the recently
introduced ArcEngine product to create a prototype of a
scientific GIS. We combine the spatial tools exposed
through the ArcEngine Java API with the analytical
capabilities of algorithms written in Java with the

* Corresponding author address: Tiffany C. Vance,
NOAA/National Marine Fisheries Service, 7600
Sandpoint Way NE, Seattle, WA 98115;
 e-mail: Tiffany.C.Vance@noaa.gov

complex visualization capabilities of Java3D. Modules
from each of these technologies will be combined to
create innovative tools to allow users to import
georeferenced data, make spatial selections, perform
spatial and scientific analyses and output the results as
visualizations for further examination. Use of the
ArcIMS Java Connector will allow these modules to be
implemented in ArcIMS sites for web-based analysis.

ArcGIS Engine is an ESRI developer product for
creating and deploying ArcGIS solutions. It is a simple
API-neutral cross-platform development environment
for ArcObjects - the C++ component technology
framework used to build ArcGIS. ArcObjects are the
core of the ArcGIS functionality and include tools such
as overlay - union, intersect; proximity - buffer, point
distance; surface analysis - aspect, hillshade, slope;
and data conversion - shapefile, coverage and DEM to
geodatabase. ArcEngines' object library makes full
GIS functionality available through fine- and coarse-
grained components that can be used in Java and
other environments. Using ArcEngine, one can build
solution and deploy them to users without requiring the
ArcGIS Desktop applications (ArcMap, ArcCatalog) to
be present on the same machine. It supports all the
standard development environments, including Java,
C++, and .NET, and all the major operating systems.
In addition, one can embed some of the functionality
available in the ArcGIS extensions. This product is a
developer kit as well as deployment package for
ArcObjects techology. Using ArcEngine we will
integrate GIS functionality into an application with the
data being available for calculations in non-GIS
components. We will also be able to make these tools
available to ArcIMS sites. ArcIMS has a limited set of
spatial capabilities but it is capable of interfacing with
the Java3D API vis the Java Connector. This will allow
the ArcIMS community to utilize tools built with this
project.

Figure 1. Visualization of topography made using IDV
[http://www.unidata.ucar.edu/content/software/IDV/gallery]

Java allows us to make a variety of scientific
calculations on the data and to provide the results back
both to the GIS component and to a Java3D based
visualization component. We are able to take
advantage of a number of Java utilities such as Unidata
IDV (Figure 1), OceanShare, ncBrowse, SGT toolkit,
and TimeSeries applet. The ArcIMS Java Connector
could be used to produce a map coordinates base that
would allow data retrieval from a DODS server, and
subsequent plotting with tools designed for interaction
with gridded fields.

The Java3D API is an application programming
interface used for writing stand-alone three-dimensional
graphics applications or Web-based 3D applets. It
gives developers high level constructs for creating and
manipulating 3D geometry and tools for constructing
the structures used in rendering that geometry. With
Java3D API constructs, application developers can
describe very large virtual worlds, which, in turn, are
efficiently rendered by the Java3D API. The Java3D
API extension is designed as a high-level platform-
independent 3D graphics programming API and is
amenable to very hight performance implementations
across a range of platforms. To optimize rendering,
Java3D implementations are layered to take advantage
of the native, low-level graphics API available on a
given system. In particular, Java3D API
implementations are available that utilize OpenGL,
Direct3D, and QuickDraw3D. This means that Java3D
rendering will be accelerate across the same wide
range of systems that are supported by these low-level
APIs. The Java3D API is aimed at a wide range of 3D-
capable hardware and software platforms, from low
cost PC game cards and software renderers, through
mid-range workstations, all the way up to very high-
performance, specialized, 3D image generators.
Support for run-time loaders was included to allow
Java3D to handle a wide variety of file formats such as
interchange formats, VRML 1.0, and VRML 2.0.

We also explored the use of a second 3D API called
the Visualization Toolkit (www.kitware.com). Like
Java3D, VTK is a cross-platform 3D application
programming interface built upon, and independent of,
the native rendering library (OpenGL, etc). It exposes
a Java bindings (as well as Tcl, and Python). It is
written in C++, uses the object oriented modeling
approach of Rumbaugh, et al., and includes similar
scene-graph, lighting models, and graphic primitives as
Java3D. What VTK does that Java3D doesn't (yet) do
is boolean operations on 3D volumes (intersection,
union), volume rendering, filtering, including
convolution, FFT, Gausian, Sobel filters, permutation,
high- and low-pass Butterworth filters, and divergence
and gradient calculation. The VTK data model allows
for fast topology traversal, making these filters very

fast, and allows for rapid mesh decimation. VTK also
offers powerful 3D probe "widgets" that allow easy
interaction with the data, and has methods to utilize
parallel architecture through the Message Passing
Interface (MPI).

3. APPLICATIONS

Combining these technologies, we will be creating
applications for the NOAA nowCoast project and for the
NOAA National Marine Fisheries Service (NMFS). The
nowCoast project is an Office of Coast Survey effort to
provide forecast model developers and the coastal
community with centralized access to real-time
physical, meteorological, oceanographic, river, and
air/water quality information. The Web portal (Figure 2)
also provides NOAA forecasts for major estuaries,
seaports, and adjacent coastal regions as well as the
Great Lakes. The application this project develops will
serve 3D rendered objects of model data. It will
enhance nowCoast by the addition of a number of 3D
visualization and spatial analysis tools. These will
include creating 2D and 3D plots from a polyline,
creating 2D velocity plots from point input (columnar
plot) and a capability for viewing model data in 3D. A

second application, for the NOAA/NMFS Alaska
Fisheries Science Center, will allow scientists to
calculate a variety of statistics and measure about the
intersection of vector and volumetric objects with
volumes in 3D. The objects could include marine
mammal tracklines and schools of fish and the 3D
volumes might include schools of prey and water
masses such as cold pools. These types of volume on
volume intersections could be generalized to a number
of coastal and offshore applications. They will also

serve as templates for many other tasks.

4. INITIAL RESULTS

A test application using the project framework was put
together to view high-resolution global
topography/bathymetry, ocean model output, and
standard ocean hydrographic data. For this application
(dubbed OceanGIS) we created a number of Java
objects that wrap data and methods for acting on the
data. For bathymetry data, this was just the ability to
exaggerate the vertical coordinate and to decimate and
smooth the resulting mesh. But for more complicated
data like hydrographic surveys, the objects allow for the
dynamic creation of such typical oceanographic

Figure 2. The nowCoast web portal utilizing ArcIMS
[http://nowcoast.noaa.gov/viewer.htm]

parameters as dynamic height, mixed-layer depth, and
geostrophic flow. For model output, variables such as
salinity can be shown as an isosurface or vector fields
such as water velocity can be shown as a plane of 3D
vectors that the user can move to "probe" the data.
The user can seed the flow field with lagrangian floats
that are time-stepped to show particle paths.

In Figure 3, bathymetry from the Smith and Sandwell
dataset are selected in the Aleutian Island change, and
the vertical dimension is exaggerated to show the
Aleutian trench. A CTD survey just north of the
archipelago is imported in shapefile format, and mixed-
layer depth is calculated using a kriging method. Note
the data-object icon on the left panel, exposing tool
methods to the user - in this case a hydrographic data
object was clicked.

Figure 4 shows an even higher-resolution bathymetric
data set (multi-beam), as well as model output of a
hydrothermal vent plume. Dissolved aluminum
concentration is shown in silver, and a plane probe
widget slices through the data. The user can re-size
the widget or push it through the volume to show
concentration at that location, or to calculate volume of
the plume.

5. CONCLUSION

While none of the various technologies we have used
is complete in and of itself, the linking of GIS, Java,
Java3D and VTK provides a powerful mechanism to

create the beginnings of a "scientific GIS". Once the
technologies have been linked, the form of the final
tools deployed will be dependent upon the users needs
and the relative costs of the GIS portions of the
technologies. Because we are creating scientific tools
rather than a commercial product, license costs may
have to play a large role in our choice of which GIS

tools to use.

6. ACKNOWLEDGEMENT

This publication was supported by the Joint Institute for
the Study of the Atmosphere and Ocean (JISAO) under
NOAA Cooperative Agreement #NA17RJ1232,
Contribution #1102. PMEL contribution 2769. The
views expressed herein are those of the author(s) and
do not necessarily reflect the views of NOAA or any of
its sub-agencies. This work was funded by NOAA's
HPCC program.

7. REFERENCES

PMEL scientific visualization website:
http://www.pmel.noaa.gov/vrl/OceanGIS

VTK website:
http://www.kitware.com/VKT

Java3D website:
http://java.sun.com/products/java-media/3D

Figure 3. OceanGIS with data object icons on the left showing
 tools available for hydrographic data
 [http://www.pmel.noaa.gov/vrl/OceanGIS]

Figure 4. OceanGIS 3D probe widget probing hydrothermal
 vent plume model ouput.

