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1. INTRODUCTION 
 
A short-term (0-1 hour) warning for intense cloud-to-
ground (CG) lightning has the potential to be a very 
valuable new National Weather Service (NWS) 
operational product.  A variety of forecast techniques 
and “rules-of-thumb” have been developed by several 
local NWS Weather Forecast Offices (WFO) which 
manually combine Weather Surveillance Radar – 1988 
Doppler (WSR-88D) data with thermodynamic 
information from local rawinsondes to predict CG 
lightning occurrence (Vincent et al. 2002).  Several 
WFOs are also issuing “excessive lightning alerts” 
based on the frequency of CG lightning in storm cells.  
The NWS Meteorological Development Laboratory 
(MDL) partnered with the NSSL to develop a prototype 
application to predict intense CG lightning and perhaps 
add guidance for issuance of current and future 
operational lightning warning products. 
 
Although a 0-3 hour forecast of CG lightning is available 
in AWIPS, this product provides no guidance on the 
likelihood of very high CG flash rates (Kitzmiller et al. 
1999).   Other lightning prediction applications have also 
been developed to forecast the occurrence of 
convection and lightning in the time frame beyond the 
typical 0-1 hour severe weather warning periods (Bright 
et al. 2005, Keller 2004).  However, our intent is to 
concentrate on the development of an intense CG 
lightning warning application with emphasis on the 0-1 
hour time frame. 
 
Using the National Severe Storms Laboratory (NSSL) 
Warning Decision Support System – Integrated 
Information (WDSSII; Hondl 2002) as a prototyping 
environment, a multiple-sensor application which 
predicts the initiation and the advection of CG lightning 
is being developed.  This application first combines 
radar data from multiple WSR-88D locations into a 
three-dimensional (3D) Cartesian grid (Lakshmanan 
2002).  The radar grid is then integrated with near-storm 
environment information extracted from the 20 km Rapid 
Update Cycle model (RUC20) initial analysis grids.  The 
multi-sensor data are finally integrated with CG lightning 
data from the National Lightning Detection Network 
(NLDN) to predict the onset of CG lightning.   A 
statistical clustering scheme can also be used to advect 
the 3D radar data, as well as any existing CG lightning 
density grids (Lakshmanan et al. 2003). 
 
The application uses a radial basis function (RBF) to 
form a relation between past-observed multi-sensor 

meteorological variables to current CG lightning activity.  
The weights and standard deviations of the RBF are 
optimally determined by training it on historical data.  
The RBF relationship matrix is constantly re-calibrated 
in real-time, and used to predict the onset of CG 
lightning activity in the future based on current 
observations of multiple-sensor variables.  This training 
is continually repeated at regular intervals (e.g., every 5, 
15, or 30 minutes) based on the latest CG lightning flash 
density information, and the radar and NSE data from a 
time prior to the current time.  This time difference 
becomes the prediction interval (e.g., 30 minutes). 
 
A number of multiple-sensor derived variables, with a 
3D radar reflectivity grid as a “base variable” can be 
tested as predictors for future CG lightning activity.  
Tested are input variables used to diagnose radar 
reflectivity information within the thermodynamic levels 
in the mixed-phase (liquid and ice) region of storms, 
typically between 0° and -20°C, where charge 
separation and subsequent lightning is known to occur.  
These can include reflectivity values at 0°C, -10°C, and 
-20°C constant temperature altitudes as determined by 
integrating 3D gridded reflectivity data with RUC zero-
hour analysis grids.  Also tested are various vertically-
integrated and layer-averaged reflectivity parameters in 
the mixed-phase region (e.g., Severe Hail Index, Witt et 
al. 1998).  In this paper, we report on the current status 
of the application (which is relatively new).  We hope to 
provide more information at the conference, including a 
preliminary evaluation of the application. 
 
2. RADIAL BASIS FUNCTIONS 
 
Radial Basis Functions (RBFs) are, like other neural 
networks, a non-parametric regression technique. 
Unlike in the more common multi-layer perceptron 
networks, the activation of a hidden unit in a RBF is 
determined by the distance between the input vector 
and a prototype vector (Bishop 1995).  Intuitively, one 
can think of a RBF as forming a set of examples (along 
with their desired outputs), and formulating the output 
for any new input as a linear combination of these 
examples, with the examples closer in distance to the 
new input providing higher weights. 
 
Mathematically, a linear mapping between the input and 
output can be assumed to be of the form: 
 

                                                           (1)                              
 



where x represents the input vector, xn the nth prototype 
vector, and || represents a distance measure, usually 
the Euclidean distance.  A common choice for the 
function φn is a Gaussian function: 

 
                                        

             (2) 
 
because of its highly localized nature. Since the 
Gaussian is a non-linear function, the RBF is a non-
linear function. However, if we keep the number and 
values of the hidden prototypes (xn) fixed, then the RBF 
is a linear model and can be solved by least squares 
methods (involving effectively just a matrix inversion and 
several multiplications). For the necessary derivations, 
the interested reader is referred to Broomhead and 
Lowe (1988) and Bishop (1995). 
 
A RBF where the prototypes are kept fixed can be 
solved in a deterministic manner without resorting to 
numerical methods such as gradient descent. 
Therefore, such a RBF is particularly amenable to real-
time learning tasks. 
 
3. METHOD 
 
We formulate this problem as a spatial-temporal 
prediction problem.  At a particular location, we seek to 
estimate the probability that there will be a lightning 
strike at that position in the next 30 minutes, for 
example. Since lightning is an almost instantaneous 
event, the probability of lightning is also estimated in a 
spatial-temporal sense: a particular location is said to 
have experienced lightning if there is a lightning strike 
within a given distance of that location within a given 
time period. This spatial-temporal definition of lightning 
activity is represented by a lightning density grid. 
 
3.1 Lightning Density 
 
The lightning density grid is a two-dimensional grid that 
has a resolution of 0.01° latitude and longitude 
(approximately 1km × 1km).  The remapping of lightning 
source data into lightning density grids is achieved using 
temporal averaging and spatial smoothing. All the 
source data that impacts a grid cell over a given time 
period are used to determine the lightning density at a 
grid cell. We experimented with time periods ranging 
from 1 minute to 15 minutes. Spatially, we let each 
source impact not just the grid cell into which it falls, but 
all grid cells within a given radius (using a triangular 
neighborhood function to determine the weight of 
impact). In a later study, we will experiment using a 
Gaussian or some other smooth weighting function, but 
we don't expect to see much of an impact. The 
triangular weighting function was chosen mainly for 
computational speed.  Figure 1 depicts an example 
gridded CG density field for a 5 minute time period from 
a case in Central Florida.  Overlaid are actual CG strike 
points. 
 

To avoid numerical problems resulting from the very 
small dynamic range of lightning density data, the 
lightning density data are remapped using an 
exponential function to a more linear range before 
training the RBF network. Forecasts are unmapped 
using a logarithmic function to their original range before 
being presented. 
 

 
Fig. 1:  Gridded lightning density and cloud-to-ground (CG) 
lightning locations.  Minus (Plus) symbols represent negative 
(positive) CG strikes.  Data are for the 5 minute period ending 
at 162635 UTC 16 July 2004.  Location is Central Florida, and 
county names and boundaries are shown. 
 
3.2 Predictors 
 
When creating 3D grids of reflectivity from multiple 
radars (Lakshmanan 2002), we usually map the 
reflectivity values to constant altitudes above mean sea 
level. By integrating numerical model data zero-hour 
analysis grids, it is possible to obtain an estimate of 
reflectivity at constant temperature altitudes – at time 
intervals of less than an hour, this information is quite 
reliable. Thus, it is possible to compute the reflectivity 
value from multiple radars and interpolate it to points not 
on a constant altitude plane, but on a constant 
temperature surface. This information, updated every 60 
seconds in real-time, is valuable for forecasting 
lightning. 
 
Following Hondl and Eilts (1994) and Watson et al. 
(1995), as well as our own selection of “good predictors” 
of CG lightning, we can use determine the following 
multi-sensor attributes as potential predictors of CG 
lightning activity: 

 
 Reflectivity at constant temperature altitudes of 

0°C, -10°C, and -20°C. 
 
 Echo top heights, from multiple radars to 

minimize radar geometry problems. 
 

 Vertically Integrated Liquid (VIL; Green and 
Clark 1972), estimated from multiple radars. 

 



 Vertically integrated reflectivities relative to 
constant temperature altitudes, such as a 
Severe Hail Index (Witt et al. 1998), or layer 
reflectivity differences (LRD), averages (LRA) 
and maxima (LRM) (e.g., average reflectivity 
between 0°C and -20°C). 

 
 Cell echo areas at constant temperature 

altitudes. 
 

A variety of these fields from the same Central Florida 
case are shown in Figure 2. 
 

 
Fig. 2a:  Reflectivity at the -10°C temperature altitude.  Data 
are derived from 3D grid of reflectivity data from multiple radars 
at KMLB, KTBW, and KAMX.  Data are at 162613 UTC 16 July 
2004.  Location is Central Florida, and county names and 
boundaries are shown. 
 

 
Fig. 2b:  Same as Fig. 2a except for reflectivity at the -20°C 
temperature altitude. 
 

 
Fig. 2c:  Same as Fig. 2a except for height of the 30 dBZ echo. 
 

 
Fig. 2d:  Same as Fig. 2a except for height difference between 
the height of the 30 dBZ echo and the height of the -10°C 
altitude. 
 

 
Fig. 2e:  Same as Fig. 2a except for the Vertically Integrated 
Liquid (VIL). 
 
 



 
Fig. 2f:  Same as Fig. 2a except for the Severe Hail Index 
(SHI). 
 
3.3 Training and Forecast 
 
One of the major concerns in RBF training is choosing 
the prototype vectors. Recall that for the RBF to be a 
linear model, the prototype vectors have to be kept 
fixed. To obtain a reasonable mapping between input 
and output, we try to ensure that there are enough 
pixels with lightning activity, and an approximately equal 
number of pixels without lightning activity in the data set. 
We maintain a historical queue of pixels and their 
attributes, along with the current CG lightning activity. 
As new data arrives, older training data is aged off.  We 
will experiment with a variety of weighting schemes 
design to favor a larger proportion of more current data 
versus older data in the queue. 
 
The size of the historical queue is set to ensure that the 
training constantly adapts to evolving conditions, but 
that there is enough data for training even in low-
weather conditions. Every hour or so, the current 
training data is saved to disk, such that a statistical 
climatology can be developed for future runs of the 
program.  The climatological information can be used as 
an initial default “background field” prior to the 
development of any convective activity. 
 
Older CG lightning activity and the input training 
attributes can be advected to their expected location 
before being used for RBF training. The motion is 
estimated using K-means clustering of reflectivity data 
from multiple radars and tracking the clusters using a 
minimum mean-absolute error in combination with a 
Kalman filter (Lakshmanan et al. 2003). 
 
For example, to train the RBF for 30-minute lightning 
prediction, we use the input attributes from 30 minutes 
ago, advected to their current expected positions. The 
current lightning density is used as the training output. 
The prototypes, xn, for the RBF are chosen through K-
means clustering of the available prototypes (without 
regard to the desired output). Then, using these 
prototypes, the RBF matrix equations are solved for the 
weights (wn) and sigmas (σn).  New forecasts of 

lightning density 30 minutes in advance are then made 
using the computed RBF equation and the current 
values for all the inputs, advected to their expected 
locations 30 minutes later. 
 
4. RESULTS 
 
Using the same Central Florida case, Figure 3 depicts a 
30-minute forecasted lightning density field, with actual 
CG lightning strike points for the forecast time overlaid.  
This is using three multi-sensor inputs into the RBF, 
namely the multi-radar reflectivity at constant 
temperature altitudes of 0°C, -10°C, and -20°C.  Figure 
4 depicts the relationship between the three multi-
sensor inputs to lightning density for the particular RBF 
equation trained on these data. 
 
We anticipate more results to be reported at the 
conference as the evaluation of the application 
continues. 
 

 
Fig. 3:  Gridded lightning density forecast.  Forecast period is 
for the 5 minute period ending at 162635 UTC 16 July 2004.  
Location is Central Florida, and county names and boundaries 
are shown. 
 

 
 
Fig. 4a:  Distribution of values of the reflectivity at the 0°C 
altitude versus lightning density observations. 
 



 
 
Fig. 4b:  Distribution of values of the reflectivity at the -10°C 
altitude versus lightning density observations. 
 

 
 
Fig. 4c:  Distribution of values of the reflectivity at the -20°C 
altitude versus lightning density observations. 
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