

1. INTRODUCTION

Scientists in the geophysical data community now
universally expect to have remote access to scientific
datasets. Many of these datasets are constantly
changing as new information is gathered or generated.
The most commonly used protocols for accessing these
updated datasets are ftp, http, and OPeNDAP. All of
these protocols assume that the client has
uninterrupted, high speed access to the Internet.

In today’s world of mobile computing it can no
longer be assumed that clients will have uninterrupted
high speed network access. Even if a client has high
speed access, network latency in wireless networks can
be much greater than in traditional wired connections.

An efficient alternative to the traditional network
based protocols for accessing datasets is to mirror the
remote dataset on a local machine. As new data is
added to the remote dataset, the client dataset is
synchronized with the remote dataset. Only changes to
the remote dataset are sent across the network.

In this paper we describe cdfsync, an extension to
the open source rsync synchronization program that is
optimized for efficient mirroring of datasets archived in
Unidata’s netCDF format over a high latency, low
bandwidth network link.

2. THE RSYNC ALGORITHM

Suppose we have a remote file A, a local file B and
we wish to synchronize B with A. The rsync algorithm
contains the following steps (from Tridgell (2003)):

1. Divide B into a set of non-overlapping fixed

size blocks of size S.
2. Calculate two checksums on each of the

blocks from B: a weak 32 bit checksum (see
below) and a strong 128-bit MD4 checksum.

3. Send the checksums and S to the remote host.
4. On the remote host, calculate weak 32 bit

checksums on A of all blocks of length S at any
offset.

5. Create a 16-bit hash of the 32-bit checksums
from 4).

6. Find all blocks of length S in the hash table for
A that match the checksums sent for B. If there
is a match, verify the match by calculating the

strong 128-bit MD4 checksum on the block and
comparing it to the value sent from the local
client.

7. Send a sequence of instructions from the
remote host to the local host for constructing a
copy of A. The instruction is either a reference
to a local block of B or literal data. Literal data
is only sent if there are no blocks of A which
match blocks of B.

The weak rolling checksum has the property that it
is very inexpensive to incrementally compute, but
there is a much greater likelihood of a hash
collision.

3. CDFSYNC EXTENSIONS TO RSYNC

3.1 Changes to the Rsync Algorithm

A netCDF file consists of a header block containing

file metadata followed by blocks containing data from
netCDF variables. We take advantage of this block
structured format to speed up file synchronization. Steps
1) and 4) of the algorithm are changed as follows:

1. Divide B into a set of non-overlapping variable

sized blocks. The first block corresponds to the
netCDF header, and each following block
contains the data for a given netCDF variable.
Blocks do not cross variable boundaries, and
the block size depends on whether the file
contains a record dimension and the size of the
variable.

4. On the remote host, divide A into a set of
blocks in the same way that B was divided.
Calculate weak 32 bit checksums on these
blocks.

This reduces the hash search time on the remote host
and also optimizes the block size (since most netCDF
file changes tend to occur as additions to the “record”
dimension).

3.2 Compressed File Lists

In-situ atmospheric and ocean data are commonly
distributed as large collections of small netCDF files. For
example, the Global Temperature Salinity Profile
Program (GTSPP) at the National Oceanographic Data
Center contains 2.3 million 15 KB netCDF files.
Although updates to the datasets often only involve
changes to several files, the synchronization program
must transfer a list of all the files in the dataset from the
client to the host. This transfer time can dominate the

NETWORKED SYNCHRONIZATION OF NETCDF DATASETS

Joe Sirott1, L.C. Sun2, Donald W. Denbo3
1Sirott and Associates, Seattle, WA

2National Oceanographic Data Center, Silver Spring, MD
3Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle

16.3

* Corresponding author address: Joe Sirott,
7600 Sand Point Wy NE, Seattle, WA 98115;
email: Joe.Sirott@noaa.gov

time for synchronization. We use LZ77 compression on
the file list to reduce the transfer time.

3.3 In-place Updates

Rsync updates local files by writing the old and new
data to a temporary file and, once the transfer from the
remote host is complete, renaming the temporary file to
the name of the original local file. This can be quite
inefficient for small changes to large files. Cdfsync offers
an in-place option that instead causes changes to be
written directly to the local file.

In-place updates are implemented in a three stage
process. First, a delta file is created that contains two
types of instructions: block copies that move data from
the original file to a new place in the file (a copy
command) and literal data commands (an add
command) that add new data to the original file. Block
copies can contain cyclic dependencies: for example, if
blocks 1 and 2 are swapped then block 1 depends on
block 2 while block 2 depends on block 1. A naïve in-
place update would result in a corrupt file as block 1
would first be replaced by block 2, overwriting the
original block 1 data that is required by the new block 2.

In the second stage, a graph of block dependencies
is created. Each edge of the graph represents a
dependency, and each node contains a copy
command. Cycles in the graph are detected and broken
by replacing one of the edges in a cycle with a link to a
new node with a save command. The parent node of
the new node has a load command prepended to it.
 Finally, the commands in the graph are executed by
emitting the instructions in a depth-first traversal of the
graph, followed by all of the literal data commands. In
our example the following commands would be emitted:

 save 1
 copy 2->1
 load 1
 copy 1->2

4. RESULTS

The netCDF optimization changes to the rsync
algorithm resulted in about a 2x speedup in checksum
calculation and comparison with standard rsync using
the default block size.

Compression of file lists resulted in a speedup of
over 4x when synchronizing a file list containing about
1.45 million netCDF files with no changes over a 256
kbs link.

An in-place update of a 1.5 GB netCDF file where a
single record was appended to the remote data file was
about 2x faster in cdfsync than in rsync.

5. ACKNOWLEDGEMENTS

This publication was funded by NOAA's High
Performance and Computing (HPCC) program.

6. REFERENCES

Tridgell, A and Mackerras, P, 2003: The rsync algorithm
 http://samba.anu.edu.au/rsync/tech_report/

Unidata,2004:

http://www.unidata.ucar.edu/packages/netcdf

