
J2.5 NQuery: a network-enabled data-based query tool for
multi-disciplinary earth-science datasets

 John R. Osborne1, Kevin T. McHugh2,3, and Donald W. Denbo2
 1OceanAtlas Software, Vashon, WA
 2Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle
 3Coastal Data Information Program, Scripps Institution of Oceanography, La Jolla, CA

1. INTRODUCTION

NQuery is a Java-based, network-enabled data-based
query tool that loads pertinent subsets of multi-disciplinary,
earth-science datasets into a temporary, on-the-fly
relational database, performs local calculations, and then
allows a scientist to construct sophisticated SQL queries.
What distinguishes NQuery from other data selection tools
is the ability to find a subset of a dataset from the values
of measured parameters rather than just the spatial
domain. NQuery currently works only with oceanographic
profile data but can be extended to time-series data (and
other types of data) in future revisions.

NQuery computes summary statistics (e.g., average

value, depth of maximum value, and depth of minimum
value) for a profile from the observed parameters and from
user-specified calculations (e.g., mixed-layer depth,
apparent oxygen utilization, and interpolation of a
measured parameter to a standard level). A simple two-
step process takes the user from pre-selected data (e.g.,
from local data collections, or distributed data collections
available through Dapper/OPeNDAP) to a set of data files
selected from the computed summary statistics. First, the
user determines what observed and computed variables
will be used to construct the database, and therefore are
available for subsequent queries. This selection is
accomplished via a simple graphical interface that lists all
available variables. Additional dialogs allow selection and
configuration of a large set of computed variables. A single
click then begins the process of ingesting the data files,
computing summary statistics for both the observed
values and user-specified calculated values, and building
and populating a MySQL database. Second, after the
database has been populated with the requested data, the
user can create a SQL query using a second graphical
user interface.

The user can build simple to fairly complex queries by

using either the graphical interface, or entering an SQL
statement by hand. Once a satisfactory query is
constructed, it is executed by the database, resulting in a
list of files that satisfies the query. The scientist can then
use these files in other research tools by exporting a
“pointer file” that contains the locations of the actual data
files.

* Corresponding author address: John Osborne, NOAA/PMEL/OD,
Route: R/PMEL, 7600 Sand Point Way NE, Seattle, WA 98115-6349
(john.osborne@noaa.gov)

2. NQUERY ARCHITECTURE

The major components of NQuery are shown in
Figure 1. NQuery is a Java application with built-in
components to communicate with MySQL database
servers (JDBC) and Dapper-enabled databases (Sirott,
2004). The JDBC drivers handle communications between
MySQL database servers that are installed on your
desktop personal computer as well as those accessible
over a network. In each case, NQuery’s internal database-
access API communicates with the JDBC driver that in
turn communicates with a specified MySQL database
server (mysqld). NQuery can ingest data from Dapper
databases through the Dapper Wizard and from files on
your local system via an EPIC XML pointer file. NQuery
also creates and reads it’s own “database documents” —
an XML file that contains information to reopen and query
existing NQuery on-the-fly database. Currently NQuery
produces two output files, database documents (described
above) and EPIC XML pointer files for query results from
an NQuery database. Currently, the only desktop
application that can ingest XML pointer files from NQuery
is Java OceanAtlas 4.0 (http://odf.ucsd.edu/joa).

3. USING NQUERY

Before using NQuery, it must be configured to

communicate with a local or network-accessible MySQL
database server (Figure 2). NQuery requires the URL of a
database server and a password and username. Other
preferences include which built-in calculations to perform
on ingested profile data (Figure 3) and how NQuery
handles variables names and variable substitutions
(Figure 4) from data files with different naming
conventions.

There are two ways to ingest data and create
NQuery’s on-the-fly databases. For data that resides on
your local machine, you first construct a “pointer” file that
describes the data’s geospatial and temporal domain,
measured variables, and individual profiles and collections
of profiles (filesets). The pointer file also contains
attributes that describe the location of individual data files
(pathname) on your local machine. The pointer file is an
XML file that adheres to conventions established by the
EPIC group at PMEL (Appendix 1).

After successfully parsing a pointer file, NQuery

presents a variable selection window where users can
select which of the measured variables in the dataset to
include in the on-the-fly database (Figure 5). Using
additional interfaces, the user can also chose from a large

set of calculated variables to include in the final database
(Figures 7-9).

After choosing variables and calculations, the user
specifies the name of the database to create and an
optional description (Figure 10). This information is written
to an NQuery database document that resides on your
local machine. NQuery then builds the relational database
given the variables the user has specified. By locating the
actual data files either through the path stored in the
pointer file or through the Dapper interface, reading the
actual data files, performing any user calculations on
individual profiles, computing summary statistics, and
finally populating the database with the results (Figure 11).

To use network data, the user begins by invoking the
Dapper Wizard. The Dapper Wizard is a three-panel user
interface similar in function to many software installers that
requires the user to perform actions in a set order.

The first Dapper panels allows the user to specify the
URL of a Dapper server (Figure 11). After a Dapper URL
has been entered, the tree view in the middle panel shows
collections of data sets available on the chosen server.
Clicking a folder icon in the list shows the actual file sets in
a collection (Figure 11 shows the interface after a
particular collection has been opened). The user then
selects a file set and clicks the “Select Domain” tab to
show the second step of the wizard (Figure 12).

The Select Domain tasks displays the geospatial and
temporal domain of the selected file set and shows the
number of distinct files available. Controls allow selecting
a subset domain to reduce the amount of data returned by
the servers (historical data collections can be very large.)
You can also specify a sub-domain to filter the data to
meet your research needs. After you have specified a
domain, you click the “Select Stations” tab to display the
wizard’s third panel for selecting the actual files to return
from the server.

The third panel is based upon a tool called NdEdit
(Osborne and Denbo, 2002) that combines tools for
filtering in space and time along with a set of selection
tools for precisely specifying which files to return from the
database server. After you have selected the files to use
(shown in blue in Figure 13), you click the “Select” button
at the bottom of the wizard window show the variables
measured in the selected files in the NQuery variable
selections window (Figure 5).

From this point using NQuery is identical to the steps
described above for selecting variables, specifying
preferred built-in calculations, and defining any user-
defined calculations. In the case of Dapper data, NQuery
retrieves the actual data from the server in OPeNDAP
format. Using code created by PMEL’s Donald Denbo
NQuery converts the OPeNDAP structures into a netCDF
representation before reading and processing. Figure 14
shows the database document window opened when
creating a new database. The upper log panel shows the
progress of the database construction and data ingest
processes. Figure 15 shows the “About” windows for a
database just created by NQuery.

Once NQuery has built and populated a database of
summary statistics, NQuery can be used to compose SQL
query statements in a simple point-and-click user interface
to use the database to identify profiles relevant to specific

research needs. The query interface is the middle panel of
a database document window. A simple example of the
query interface is shown in Figure 16. Here the user wants
to select all profiles where the mean measured
temperature is between 10 and 15 degrees. Note: as you
use the point-and-click query builder, NQuery builds and
displays the actual SQL syntax in the lower panel. The
results of a query are shown in Figure 17. To save the
selected files to a new XML pointer file for further analysis,
click the “Save” button.

The query interface can be used to construct
sophisticated SQL queries but has limitations (e.g., no
way to group criteria with parentheses). Figure 18 shows a
more complicated query with three criteria. To specify an
arbitrary SQL query, click the “DB Command” button to
enter any valid MySQL command and send it to the
database server.

4. SYSTEM REQUIREMENTS

NQuery is compatible with all major desktop operating

systems including Windows, Mac OS X, and Linux.
NQuery requires version 1.4.2 or greater of the Java
virtual machine. NQuery has been tested with version 4.1
of MySQL. An Internet connection is required for access to
network data through Dapper and to create databases on
networked MySQL database servers.

5. INSTALLING NQUERY

The NQuery application is installed with a standard

double-clickable installer for Windows, Linux, and generic
UNIX. The Mac OS X version of NQuery is provided as a
mountable disk image. On Mac OS X, installation is by
dragging the NQuery folder to the Mac’s hard disk.
Installation of MySQL is beyond the scope of this paper
but is described at:
http://dev.mysql.com/doc/mysql/en/Installing.html

6. LOOKING TO THE FUTURE

Currently, NQuery only works with profile data. To
accommodate time series data, NQuery will need to define
what summary statistics are computed and any user-
defined calculations. The query interface will also be
enhanced to be able to create queries with grouped
criteria.

7. REFERENCES

Osborne, J.R. and D.W. Denbo, 2002: NdEdit: Interactive

Data Selection Tool. 18th Conference on Interactive
Information and Processing Systems (IIPS) for
Meteorology, Oceanography, and Hydrology, AMS,
13–17 January 2002, Orlando, FL

Sirrott, J, D.W. Denbo, and W. Zhu, 2004: Dapper: an

OPeNDAP server for in-situ data. 20th Conference on
Interactive Information and Processing Systems
(IIPS) for Meteorology, Oceanography, and
Hydrology, AMS, 10–15 January 2004, Seattle, WA.

Figure 1. NQuery Architecture

Figure 2. NQuery settings for accessing MySQL database servers

Figure 3. NQuery preferences for selecting the built-in profile data calculations

Figure 4. NQuery preferences for handling variable names and units from different lexicons and settings for how to

handle missing values for variables required computing new variables (e.g., theta, density, NO, and PO)

Figure 5. NQuery variable selection window

Figure 6. Scalar and integral calculated variables available for profile data

Figure 7. Settings for interpolating a measured variable onto a value of another variable

Figure 8. Settings for integrating a variable between surfaces of another variable (e.g., this illustrates integrating

salinity between the 1000 and 2000 decibar pressure surfaces)

Figure 9. Settings for calculating the depth of the mixed layer

Figure 10. Dialog allows naming that on-the-fly database and attaching an optional comment. A database document

file will be created on disk with this name and at the location specified.

Figure 11. Select dataset panel of Dapper Wizard. Use this panel to specify the URL of a Dapper server. A list of

datasets available on the selected server is shown in the middle panel.

Figure 12. Select domain panel of Dapper Wizard. Use this panel to specify the spatial and temporal domain of

profiles to return from the Dapper server.

Figure 13. Select stations panel of Dapper Wizard uses NdEdit (Osborne and Denbo, 2002) to filter results from

Dapper and select those profiles (shown in blue in this figure) to use to create NQuery database.

Figure 14. NQuery database document window. This window shows progress of database creation (top panel) for

new database and allows construction of SQL queries (see Figure 15) for both new databases and saved databases.

Figure 15. About Database window shows summary information for current database.

Figure 16. Database document window showing a simple query in the middle panel, the actual SQL command in

lower panel, and the results of the query in the top, message panel.

Figure 17. Query results window. Click the Save button to save query results as XML pointer file.

Figure 18. Database document that illustrate more complex query constructed with the query interface in middle

panel.

APPENDIX 1: DTD SPECIFICATION FOR EPIC XML POINTER FILES

<!--DTD for EPIC Profile and Time-Series Data -->
<!-- ? = optional, not repeatable -->
<!-- + = required and repeatable -->
<!-- * = optional and repeatable -->

<!ELEMENT epicxml(domain, varlist?, fileset+, attribute*, comment*)>
<!ATTLIST epicxml version CDATA #REQUIRED
 type (profile | time-series | grid | other) #REQUIRED
 URI CDATA #IMPLIED
 lexicon CDATA #IMPLIED>

<!-- domain for epicxml must consist of location=”north”, “south”, “east”,
“west”, “top”, “bottom”, “start”, and “end” for latitude, longitude, vertical,
and time, respectively -->
<!ELEMENT domain(latitude+, longitude+, vertical+, (time | date)+, attribute*,
comment*)>

<!ELEMENT deltat (#PCDATA)>
<!ATTLIST deltat units CDATA #IMPLIED "minutes"> <!-- acceptable units are
seconds, minutes, hours, days, unacceptable units include months, years -->

<!ELEMENT time (#PCDATA)>
<!ATTLIST time location (start | end | point) #REQUIRED “point”
 units CDATA #IMPLIED >

<!ELEMENT date EMPTY>
<!ATTLIST date location (start | end | point) #REQUIRED “point”
 year CDATA #REQUIRED
 month CDATA #REQUIRED
 day CDATA #REQUIRED
 hour CDATA #IMPLIED
 min CDATA #IMPLIED
 secs CDATA #IMPLIED>

<!ELEMENT latitude (#PCDATA)>
<!ATTLIST latitude location (north | south | start | end | point) #REQUIRED
“point”
 units (degrees_north | degrees_south) #IMPLIED
“degrees_north”>

<!ELEMENT longitude (#PCDATA)>
<!ATTLIST longitude location (east | west | start | end | point) #REQUIRED
“point”
 units (degrees_east | degrees_west) #IMPLIED “degrees_east”>

<!ELEMENT vertical (#PCDATA)>
<!ATTLIST vertical location (top | bottom | start | end | point) #REQUIRED
“point”
 units CDATA #REQUIRED
 positive CDATA "down">

<!ELEMENT varlist ((variable | variableref)+, attribute*, comment*)>
<!ATTLIST varlist lexicon CDATA #IMPLIED>

<!ELEMENT variable (attribute*, comment*)>

<!ATTLIST variable name ID #REQUIRED
 units CDATA #REQUIRED
 description CDATA #IMPLIED
 lexicon CDATA #IMPLIED>

<!ELEMENT variableref EMPTY>
<!ATTLIST variableref refname IDREF #REQUIRED>

<!ELEMENT fileset (varlist?, station*, grid*, track*, attribute*, comment*)>
<!ATTLIST fileset id CDATA #REQUIRED
 URI CDATA #IMPLIED>

<!-- time should have location=”start”, “end” for time series, “point” for
profile,
vertical should have location=”top”, “bottom” for profile, “point” for time
series,
latitude and longitude should have location=”point” -->
<!ELEMENT station (varlist?, (time | date)+, latitude, longitude, vertical+,
deltat?, stationvalues*, attribute*, comment*)>
<!ATTLIST station id CDATA #REQUIRED
 cast CDATA #IMPLIED
 URI CDATA #IMPLIED
 bottom CDATA #IMPLIED
 reference CDATA #REQUIRED>

<!-- domain for grid must consist of location=”north”, “south”, “east”, “west”,
“top”, “bottom”, “start”, and “end” for latitude, longitude, vertical, and time,
respectively -->
<!ELEMENT grid (varlist?, domain, attribute*, comment*)>
<!ATTLIST grid id CDATA #REQUIRED
URI CDATA #IMPLIED
reference CDATA #REQUIRED>

<!-- domain for track must consits of location=”start” and location=”end” for the
latitude, longitude, vertical, and time elements -->
<!ELEMENT track (varlist?, domain, attribute*, comment*)>
<!ATTLIST track id CDATA #REQUIRED
URI CDATA #IMPLIED
reference CDATA #REQUIRED>

<!ELEMENT stationvalue (attribute*, comment*)>
<!ATTLIST stationvalue cast CDATA #REQUIRED
 name CDATA #REQUIRED
 units CDATA #REQUIRED
 method CDATA #IMPLIED
 lexicon CDATA #IMPLIED
 value CDATA #REQUIRED>

<!ELEMENT attribute EMPTY>
<!ATTLIST attribute name CDATA #REQUIRED
 value CDATA #REQUIRED>

<!ELEMENT comment (#PCDATA)>

