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Abstract: The Coordinated Enhanced Observing 

Period (CEOP) project provides an integrated, 

globally covered dataset. The dataset obtained in 

CEOP buildup phase 1 includes in-situ data at 16 

reference sites, model outputs at two numerical 

weather prediction centers as well as satellite 

products that cover the period from July to September, 

2001. Based on this dataset at the reference sites, we 

indicate that gaps between prediction and observation 

are less for some variables (air temperature, humidity, 

and net radiation) than for other variables (shortwave 

radiation, and longwave radiation, sensible heat, 

latent heat). These gaps are not only caused by 

observing errors and modeling errors, but also by the 

footprint mismatching. Through the comparison, we 

suggest that downward shortwave radiation is 

generally overestimated, and downward longwave 

radiation is underestimated. However, the differences 

between observations and model output cannot be 

simply deemed as model errors in most cases. 

Instead, their differences may be related to the 

representativeness of in situ observations. Model 

intercomparisons suggest that the representative 

scales may be correlated with model uncertainties.  
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1. INTRODUCTION 

To achieve a more accurate determination of the 

water cycle in association with climate variability and 

change, as well as baseline data on the impacts of this 

variability on water resources, the Coordinated 

Enhanced Observing Period (CEOP) was launched 

on July 1, 2001. CEOP is seeking to achieve a 

database of common measurements from both in situ 

and satellite remote sensing measurements, as well 

as matching model output that includes Model Output 

Location Time Series (MOLTS) data along with 

four-dimensional data analyses (4DDA; including 

global and regional reanalysis) for each specified 

period (Koike, 2002; Koike, 2004). In this context, a 

number of carefully selected reference stations are 

linked closely with the existing network of observing 

sites involved in the GEWEX Continental Scale 

Experiments (CSE), which are distributed around the 

world (Fig. 1). CEOP has identified two scientific 

objectives, i.e., monsoon system studies, and water 

and energy simulation and prediction (Lau and 

Yasunari, 2002; Road and Marengo, 2002). CEOP is 

being developed and implemented within GEWEX of 

the World Climate Research Programme, and has 

also been endorsed by the Integrated Global 

Observing Strategy Partnership (IGOS-P) as the first 

element of the IGOS Water Cycle Theme (Bosilovich 

and Lawford, 2002). 
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Figure 1 CEOP reference sites selected from GEWEX CSE sites. The attributes of each site are accessible via 

http://www.joss.ucar.edu/ghp/ceopdm/ref_site.html. 

 

CEOP comprises a buildup phase from July 1 to 

September 31, 2001, and two annual cycle periods 

from October, 2002 to September, 2004. The dataset 

for the buildup phase (CEOP EOP1, 92 days) has 

documented in-situ data at 16 CSE sites, two hourly 

MOLTS products, respectively, from NASA Goddard 

Earth Observing system (GEOS3) and Global Land 

Data Assimilation System  (GLDAS), and satellite 

products. These CSE sites are indicated in Fig.1 with 

number 3 (Mongolia), 9 (Himalayas), 10 (South China 

sea), 16 (North Slope of Alaska or NSA), 17 

(Berms-spruce), 18 (Fort Peck or Ftpeck), 19 

(Bondville), 20 (Southern Great Plains or SGP), 23 

(Caxiuana), 25 (Manaus), 26 (Rondonia), 27 (Brasilia), 

28 (Pantanal), 30 (Lindenberg), 31 (Cabauw), and 34 

(Tropical Western Pacific-Manus or TWP-Manus). Site 

attributes are described in 

http://www.joss.ucar.edu/ghp/ceopdm/ref_site.html. 

Based on CEOP EOP 1 data, this study investigates 

model predictability by comparisons between in situ 

data and two model outputs and model uncertainties 

by model inter-comparisons, and explores possible 

relationships between model predictability, model 

uncertainties, and spatial scale of prognostic variables. 

In early studies, a lot of evaluations have been done 

through analyzing dense observed data (e.g., 

Bosilovich, 2002), sensitivities studies on parameters 

and schemes (e.g. Maynard and Royer, 2004), and 

various international projects of model comparisons 

(e.g., Global Soil Wetness Project (Dirmeyer et al., 

1999), Project for Intercomparison of Land-surface 

Parametrization Schemes (Pitman et al., 1999), 

Atmospheric Model Intercomparison Project (Gates et 

al., 1999). However, CEOP provides a unique 

opportunity for verifying model, evaluating model 

uncertainties in the global climate variability. 

 

2. ANALYSIS METHOD 

The variables of interest are air temperature, air 

humidity, surface radiations, and surface heat fluxes. 

The high spatial variability of surface temperature and 

precipitation and their prediction difficulties have been 
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widely known, so their comparison will not be shown 

in this study.  

The 10-day mean value of each variable is applied 

to evaluating model performance. It may be calculated 

by either 
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where i  is the index of hour in a day and in  is the 

number of available data of variable x  at hour i  in 

the 10 days of interest. 

 

Eq. (1) and Eq. (2) give the same mean value if no 

data are missed. However, if some data are missed, 

the result from Eq. (1) can be sensitive to the number 

and the value of missed data. An example is the net 

radiation at Lindenberg site, where the observed net 

radiation was calculated from four radiation 

components. Because some observed data of 

shortwave radiation at noon were missed, some high 

values of net radiation were thus missed. As a result, 

the 10-day mean values of net radiation from Eq. (1) is 

unrealistically low (Fig. 2a), while the values from Eq. 

(2) are reasonably comparable to the NASA model 

outputs (Fig. 2b). Therefore, we adopt Eq. (2) to 

calculate 10-day mean values. 

 

Figure 2 10-day mean net radiations from observation, NASA/GEOS3 and NASA/GLDAS at Lindenberg during 

CEOP EOP1 

 

3. MODEL PREDICTABILITY 

Fig. 3 shows the comparison of 10-day mean 

values of eight variables between GLDAS output and 

in-situ observations at the 16 CEOP reference sites. 

The result of comparison between GEOS3 and in-situ 

observations is similar to Fig.3 and thus it is not 

shown. A schematic figure of the relative deviations of 

model output from in situ observations is shown in 

Fig.4. In general, the comparisons show good 

agreements for air temperature (Tair), humidity (qair), 

and surface net radiation (Rnsfc), while worse for net 

shortwave radiation (SWN) (positive downward), net 

longwave radiation (LWN) (positive downward), 

surface sensible heat (Hsfc), surface latent heat 

(lEsfc), and soil heat flux (Gsfc). Therefore, the 

agreement between the model outputs and the 

observations significantly varies with the variables. 

The following gives a brief analysis on these results.  

3.1 Observing errors 
In general, air temperature, air humidity and net 

radiations can be measured with relatively high 

accuracy, whereas it is much more difficult to 

accurately measure surface heat fluxes. It has been 

widely reported that direct measurements of heat flux 

often result in the so-called energy unclosure problem 
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(e.g., Yang et al. 2004). In addition, surface soil heat 

flux is usually not measured at the reference sites due 

to technique problems. The so-called “observed” soil 

heat flux in Fig. 3(f) was deduced from the energy 

budget equation using other measured energy fluxes, 

and therefore all the errors in the measured fluxes are 

overlapped to the “observed” soil heat flux, resulting in 

large “observation” error and large scattering in Fig. 

3(f). We will visit Fig. 3(f) again in Section 3.3. 
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(b) qair
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(c) SWN

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350 400
Observed net shortwave radiation (W m-2)

G
LD

A
S 

ne
t s

ho
rtw

av
e 

ra
di

at
io

n 
(W

 m
   -2

)

Lindenberg Cabauw
Mongolia China_sea
Himalayas SGP
Bondville Ftpeck
Rondonia Manaus
Caxiuana Pantanal
Brasilia BERMS_Spruc
NSA TWP_Manus

 

(d) LWN
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(e) Rnsfc

-50

0

50

100

150

200

250

-50 0 50 100 150 200 250
Observed net radiation (W m-2)

G
LD

A
S 

ne
t r

ad
ia

tio
n 

(W
 m

  -2
)

Lindenberg Cabauw
Mongolia China_sea
Himalayas SGP
Bondville Ftpeck
Rondonia Manaus
Caxiuana Pantanal
Brasilia BERMS_Spruc
NSA TWP_Manus

 

(f) Gsfc
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(g) Hsfc
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(h) lEsfc
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Figure 3 Comparison of 10-day mean values between GLDAS output and in-situ observations at 16 CEOP 

reference sites 

σ

Tair qair Rnsfc GsfcLWNSWN Hsfc Esfc

σ

Tair qair Rnsfc GsfcLWNSWN Hsfc Esfc  

Figure 4 Schematic of deviation from in situ observations 

 

3.2 Model errors 

The complexities in meteorological modeling 

systems bring about a number of uncertainties in 

describing physical processes and specifying model 

parameters. Fig. 3(c) and 3(d) show that the modeled 

net shortwave radiation is systematically higher than 

in situ data while net longwave radiation is lower than 

in situ data. Although the spatial representativeness of 

in situ observations, which will be discussed in 3.3, 

may account for a part of these gaps, these global 

systematic deviations of model outputs from 

observations may be attributed to incorrect description 

of cloud optical properties or under-predicting cloud 

fraction in the model. In addition, the inconsistency of 

turbulent fluxes in Fig. 3(g) and 3(h) may partially be 

associated with the modeling errors of land surface 

processes. 

3.3 Spatial representativeness of in situ 

observations 

The model outputs represent an average over 

~100km grids, but observations are usually carried out 

at a point-scale. If the specified land and vegetation 

parameters in the model grid differ from the ones at 

the observing site, then there is a so-called footprint 

mismatch problem. Such a problem occurs, more or 

less, at almost all the sites. For example, the 

Himalayas site is partially covered by vegetation and 

TWP-Manus is an island site, but they are specified as 

glacier and sea surface in GLDAS, respectively. 

Therefore, it is not surprising that the model outputs 
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disagree with observations. Even though suffering the 

same footprint mismatch problem, we still notice the 

fact that some variables agree with observations while 

others do not, as shown in Fig. 3. This implies that the 

spatial representativeness of in situ observations may 

be different for each variable. In other words, each 

variable may have a different spatial variability or 

spatial scale. The following factors can significantly 

contribute to the spatial variability.  
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Figure 5 Spatial scale of each variable represented by 

in situ data. 

 

(1) Surface heterogeneity (land cover, soil type 

and terrain variability). They are the major factors 

determining the spatial scale of the surface variables 

like surface temperature and soil moisture, surface 

wind, and energy budget.  

(2) Spatial heterogeneity (convective cloud and 

rainfall). Their scales are strongly associated with the 

scale of shortwave radiation, longwave radiation, and 

rainfall event. 

(3) Horizontal advection. If the wind is very weak, 

the surface air temperature and humidity would 

strongly determined by surface conditions; however, 

strong horizontal advection can play a dominant role 

in upscaling these variables, and makes them 

represent an average over an area much larger than 

other surface variables.  

(4) Physical internal relationships. Shortwave 

radiation can be reduced by cloud while longwave 

radiation can be enhanced by cloud. As a result, the 

net radiation can represent a spatial scale larger than 

that for individual radiation components. Soil heat flux 

is affected by many factors such as soil thermal 

properties and soil moisture, but the dominant factor is 

the surface net radiation and thus has a scale close to 

the net radiation (Ma et al., 2003).  

(5) Observing approach. Although surface energy 

budget has a spatial heterogeneity similar to surface 

temperature and soil moisture, heat fluxes measured 

by the eddy-correlation technique usually represent 

values averaged over the distance 100-200 times the 

sensor’s reference height in the upwind direction, so 

the measured turbulent fluxes have a scale much 

larger than that for the surface temperature and the 

soil moisture. 

Based on the above analysis, we propose a 

schematic interpretation of the spatial scale of each 

variable in Fig. 5. The air temperature (Tair), humidity 

(qair), surface net radiation (Rnsfc), and soil heat flux 

(Gsfc) can represent mean values over an area much 

larger than that for other variables, so the footprint 

mismatching problem can be alleviated to some 

extent for them, and thus their model outputs are 

closer to observations than other variables. The 

modeled Gsfc in Fig. 3(f) deviates far from the 

“observed” one because the “observed” Gsfc contains 

more significant errors than the simulated one. 

According to the scale analysis, Gsfc and Rnsfc have 

similar spatial scales, and hence their prediction 

should be of comparable accuracy, as shown in Fig. 

3(e). On the other hand, the measurements of some 

variables like energy budget can only represent mean 

values over a patch-scale rather than mean values 

over a grid scale. Therefore, we cannot simply 

attribute their differences in Fig. 3 to model errors. 
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4. MODELING UNCERTAINTIES  

Fig. 6 and Fig. 7 shows the comparisons between 

the outputs of two NASA models, respectively, for 

variables having a low and a high spatial variability. At 

Himalayas, NSA and TWP-manus sites, different land 

properties are set in the two models, so the 

comparisons at the three sites are removed. Because 

both models output grid-averaged values, their 

comparisons do not suffer a footprint mismatching 

problem. Fig. 6 clearly indicates that the model 

outputs give close values for the variables with a low 

spatial variability (Tair, qair, Rnsfc, Gsfc), suggesting 

small uncertainties. On the other hand, Fig. 7 shows 

the model outputs give quite different values for the 

variables with a high spatial variability (SWN, LWN, 

Hsfc, lEsfc). This contrast suggests that model 

uncertainties are associated with the spatial scale of 

each variable. In other words, high spatial variability 

would increase model uncertainties, probably 

because models may have distinct schemes to 

parameterize sub-grid-scale physical processes or 

have specified different parameters in conceptual 

models. 
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Figure 6 Comparison between GLDAS and GEOS3 at 13 CEOP reference sites for variables with a larger spatial 

scale 
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(c) Hsfc
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(d) lEsfc
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Figure 7 Comparison between GLDAS and GEOS3 at 13 CEOP reference sites for variables with a smaller spatial 

scale 

 

5. Summary 

Based on the analysis of CEOP EOP1 dataset, we 

investigated model predictability by comparing in situ 

data with two model outputs and model uncertainties 

by comparing two model outputs. Modeled values are 

generally consistent with in situ observations for 

surface air temperature, humidity, and net radiation, 

but not so for shortwave radiation, longwave radiation, 

sensible heat flux, and latent heat flux. It looks that the 

over-prediction of net shortwave radiation and 

under-prediction of downward longwave radiation are 

a global problem of numerical models. We suggest 

that the spatial scale is variable–dependent, and thus 

each variable observed in situ may represent a 

different scale. This scale-difference should be taken 

into account when evaluating model predictability. In 

other words, in situ ~ model differences cannot be 

simply interpreted as errors, because the scale 

represented by a variable can be much less than the 

model grid. Model inter-comparisons further indicate 

that model uncertainties also depend on spatial scales, 

and large modeling uncertainties may be related to 

small spatial scales of variables. 

Because evaluating model predictability and 

uncertainties is complicated by the scale problem, an 

improved evaluation in the future needs upscaling 

point-observation to grid-average by incorporating 

satellite data, which have been obtained through 

CEOP project.. 
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