ENVIRONMENTAL ACCOUNTING HOUSEKEEPING (EAH) BOOKS OF DOMESTIC WASTEWATER: A CASE STUDY OF CHIBA CITY, CHIBA PREFECTURE, JAPAN

Yoshiaki TSUZUKI *

(Formerly) Utsunomiya University, Japan (Current address) Chiba City, Chiba Pref., Japan

1. INTRODUCTION

Several programs and projects have been conducted in the field of international marine water pollution. Global Programme of Action (GPA) for the Protection of the Marine Environment from Land-based Activities was established in 1995 for the purpose of investigation and activities of countermeasures against marine pollution (UNEP, 2003). Global International Waters Assessment (GIWA) led by UNEP and conducted by Kalmar University, Sweden conducted researches in 66 coastal area and enabled Global Environment Facility (GEF) budget used in the marine environment protection. Prior to these programs, UNEP has launched Regional Seas Programme in 1974 after UN Environment Summit (Rio-De-Janeiro, Brazil) in 1972. More than 140 countries are participating programs and/or agreements on marine water pollution (UNEP/GPA Coordination Office, 2002).

In the United States, a Total Maximum Daily Load (TMDL) has been introduced pollutant reductions policy (EPA, 2004). States report over 40 percent of assessed waters are still too polluted for fishing or swimming even after 28 years of water pollution control effects. TMDL is a calculation of the maximum amount of a pollutant that a waterbody can receive and still meet water quality standards, and an allocation of that amount to the pollutant's sources. In Japan, gross pollutant loads control policy has been developed to control pollutant loads flowing into the enclosed coastal zones (National Environmental Conference, 1999). In European countries, England, urban runoff and wastewater pollutant reduction manual has been prepared in 1998. In Germany,

In regards to land based water pollutants flowing into Tokyo Bay, much portions are occupied by domestic wastewater (ex. Ministry of Environment, 2002), which is similar circumstances for many enclosed coastal zones especially along the developed countries, in which industrial wastewater treatment measurements have been advanced. Therefore, measurements to reduce the domestic wastewater pollutant loads are considered to be effective to reduce total pollutant loads running into Tokyo Bay.

In regards to domestic wastewater treatment and urban river water, domestic wastewater pollutants reduction measurements at kitchen have been said to reduce BOD and COD discharge by 20-30% (Ogura ed., 1993). Water quality of urban river water is considered not to improve so much in a decade while pollutant loads reduction measurements of domestic wastewater are introduced (Sudo, 2000). This paper highlights quantitative relations between pollutant emissions derived from domestic wastewater and pollutant loads in the rivers.

Pollutants reduction effect in the rivers have been studied by many researchers including established classical research by Streeter and Phelps (1943) including reaction velocity coefficients. Many researches on pollutant purification reaction have been conducted (Sueyoshi, 1977). Pollutant loads and pollutant emissions have also been studied by many researchers (Fujita, 1999).

As dissemination and environmental education methods in the fields of river and coastal zone water pollution problems, miscellaneous activities including clean up activities along rivers and coastal lines and committees on water environments in which citizens are participating have been held. It is sometimes pointed out that wastewater treatment plants (WTP) are pollutant load sources. It is not mistake, however, more scientific approach and quantitative information dissemination would be preferable in regards to the diversities of characteristics of drainage areas and performances of domestic wastewater treatment methods. То elaborate such participations by citizens, I think, as а professional. quantitative information dissemination would be useful for ordinary citizens to decide on their participations.

Pollutant loads per capita flowing into a tidal coastal zone (Tsuzuki and Ogawa, 2004; Tsuzuki 2004b) are more friendly and easy indexes to be understood by citizens.

^{*} Corresponding author address: Yoshiaki Tsuzuki, (Formerly) Utsunomiya University, (Current Address) Masago 5-16-5-908, Mihama Ward, Chiba City, Chiba 261-0011, Japan; e-mail: <u>tsuzuki.voshiaki@nifty.ne.jp</u>.

Drainage area No.	Drainage area	Measurement points
1	Miyako River, upper drainage area	Takanebashi Bridge 🛛 📝
2	Miyako River, middle drainaga area	Aoyagibashi Bridge
3	Miyako River and Yoshikawa River, lower drainage area	Miyakobashi and Nihonbashi Bridges
4	Miyako River, branch stream	Shin-Miyakobashi Bridge
5	Sakatsuki River	Nabetamaebashi Bridge
6	Yoshikawa River, upper drainage area	Chiba Municipal Zoo
7-1	Kashimagawa River, upper drainage area	Simo-Ohwada
7-2	Hirakawa River, upper drainage area	Hirakawabashi Bridge
8	Kahimagawa River and Hirakawa River, middle and lower drainage area	Simoizumibashi Bridge
9	Hanamigawa River, upper drainage area	Hanashimabashi Bridge
10	Hanamigawa River, lower drainage area	Shin-Hanamigawabashi Bridge
11	Muratagawa River	Takamotodanibashi Bridge
12	Hamadagawa River	Simo-Yasakabashi Bridge
13	Hanazonogawa River (Kusano water stream)	Takasubashi Bridge
14	Hamanogawa River	Hamanobashi Bridge

Fig.1 Rivers, drainage areas and measurement points in Chiba City.

Domestic wastewater management manuals or environmental accounting housekeeping (EAH) books of domestic wastewater will be effective tools for citizens to reduce water pollutant loads (Tsuzuki and Ogawa, 2004; Tsuzuki, 2004b). EAH books for reduction of CO₂ emission as a countermeasure to the global climate change are examples of administrative measurements to reduce pollutant loads emission from municipal lives, which are introduced in Japan by local governments, environmental NGOs, companies and so on.

While output of EAH books for CO_2 reduction is one parameter, i.e. CO_2 waste amount, those of domestic wastewater would be a few parameters including BOD, COD, T-N and T-P. This is a little complicated characteristics, however, it would be a worth tool to let ordinary citizens to understand complicated aspects of water pollution problems. Important and necessary points for the preparation of EAH books for domestic wastewater have been considered as the followings: (1) tables are prepared for each domestic wastewater treatment method; (2) basic parameters of water quality are COD (or BOD), T-N and T-P; (3) citizens can easily fill the tables with the effective actions to reduce pollutant loads; (4) pollutant loads reduction effects can be easily calculated; and (5) EAH books should be prepared for each drainage area, because pollutant loads per capita running into coastal zones or rivers by wastewater treatment methods are dependent on the drainage area.

In this paper, pollutant loads per capita flowing into public waterbodies was analyzed in the drainage areas in Chiba City, Chiba Prefecture, which faces Tokyo Bay, mainly to conduct comparative study on the index and to obtain

Targeted items	Data and Information Sources (in Japanese)
Pollutant loads of the	Chiba City, 1997: Pollutant loads analysis tables, p.37, <i>in</i> Report of basic research for preparation of environment reservation plan, 218p.
rivers	Chiba City, 1999: Environment reservation plan, 146p. Chiba City, 2004: Rivers and sea in Chiba City, http://www.city.chiba.jp/ env/water/suisitu/index.htm. (Accessed on 1st Aug., 2004)
Population by wastewater treatment methods	Chiba City, 1997: Pollutant loads analysis tables, p.37, <i>in</i> Report of basic research for preparation of environment reservation plan, 218p.
Pollutant removal rates	Chiba Prefecture Wastewater Treatment Corporation Foundation, 1998-2002: Imbanuma drainage area wastewater treatment system Hanamigawa second WTP maintenance and management annual report.
	Wastewater Treatment Bureau of Chiba City, 2003: Wastewater Treatment in Chiba City, 132p.
Water pollutant reduction effects in households	Funabashi City, 2000: Leaflet, Funabashi city promotion plan of domestic wastewater measurement, Diet Water, Housewife Mariko's domestic wastewater measurements manual, 10p.

Fig.2 Overall framework of the pollutant loads analysis of domestic wastewater. (Modified from Tsuzuki, 2004b)

basic data to prepare EAH books of domestic wastewater in Chiba City area.

2. METHODS

2.1 Overall Framework of the Pollutant Loads Analysis

There are 17 drainage areas defined by administrative in Chiba City, of which 14 drainage areas are subjected in this study (Fig .1). Total area of 14 drainage areas subjected in this study was 218 km², population was 607,500 persons, and population density was 2,784 persons km² ⁻¹. Areas of 14 drainage area were 6.1-38.1 km², populations were 6,200-117,400 persons, and population densities were 297-9,630 persons km² ⁻¹.

Pollutant loads per capita of organic carbon flowing into public water body were calculated in these drainage areas based on the available data and information (Table 1) except for some areas with difficulty of calculation because of data deficiency or geological reason. BOD and COD are analyzed in this research because of their data availability. The data investigated were water quality and quantity data in 1994, when the Water Environment Preservation Plan of Chiba City (Chiba City, 1999) was based on the basic water quality and quantity data. Overall framework of the pollutant loads analysis and EAH books of domestic wastewater in this paper is summarized in Fig. 2.

2.2 Pollutant Emissions by Domestic Wastewater Treatment Methods

Fig. 3 Flow chart of pollutant loads per capita analysis. (Modified from Tsuzuki, 2004b)

Pollutant emissions of domestic wastewater were calculated based on the basic units of pollutants and removal rates of each domestic wastewater treatment methods. Basic units of domestic wastewater pollutant loads are derived from Fujimura and Nakajima (1998). There are four WTP treating domestic wastewater in Chiba City, Hanamigawa River 1st and 2nd, Central and South WTP. BOD, COD, T-N and T-P removal rates were calculated as weighted average by treatment amount of the four WTP. based on the WTP management data (Table 1) and WTP populations of the drainage areas (Table 1). For combined and simple jokaso and night soil treatment population, basic discharge units is derived from Fujimoto (1988) and Fujimura (1996). Polluntant emissions other than domestic wastewater including nonpoint sources and livestock wastewater were derived from the administrative data (Table 1).

BOD loads in the river were calculated using three-year average from 1993 to 1995 of BOD concentration and flow rate estimated from those in 1990 and 2000. BOD emissions in the drainage areas were calculated based on the administrative data on basic research for the municipal water environmental preservation planning (Table 1). Reaching ratios of the measurement points were calculated by three methods: 1) pollutant loads in the river of drainage area(s) above the measurement points and total pollutant emissions above the measurement points, 2) pollutant loads in the river of each drainage area and emissions in each drainage area, and 3) pollutant loads above the measurement points and pollutant emissions above the measurement points. Pollutant load per capita was calculated only when the

calculated reaching ratio was from zero to 100%. In the first and second calculation above, the measurement points in the drainage area are supposed to positioned at the end of the drainage area, i.e. all the pollutant emissions in the drainage area are flowing into the measurement points. In the third calculation, the percentages of the pollutant emissions above and below the measurement points in the drainage area were considered. The values of the percentages were voluntarily determined from the geological area above and below the measurement points.

For the third method, the following calculations with equations (1) to (3) were conducted. Emission loads in a drainage area was calculated as emission loads in the upper area of the measuring point of the each drainage area with the following equation (1):

$$PE = PEj \times \frac{Aja}{Aj} \tag{1}$$

where

PE: pollutant emissions above the measurement point in a drainage area (kg day⁻¹),

PE_j: total pollutant emissions in a drainage area (kg day⁻¹),

 A_{ja} : area above the measurement point in the drainage area (km²), and

 A_i : total area in the drainage area (km²).

For drainage areas which have upper drainage area(s), total pollutant emissions were calculated with the following equation (2):

$$PE = \sum_{i} PEi + PEj \times \frac{Aja}{Aj}$$
(2)

Table 2 Pollutant emissions of pollutant loads per capita by domestic wastewater treatment methods, which are emitted into wastewater treatment plants or public water bodies. (Calculated by author based on Fujimura and Nakajima, 1998, Fujimoto, 1988 and Fujimura, 1996)

Pollutant Emission from domestic wastewater (g person ⁻¹ day ⁻¹)	BOD	COD	ΤN	TP
Basic units of domestic wastewater	45	23	8.5	1.0
Night soil	16	10	7.0	0.70
Kitchen, bath, washing clothes etc.	29	13	1.5	0.30
Emission of wastewater treatment plant population	45	23	8.5	1.0
Emission of combined jokaso population	3.2	4.6	7.0	0.88
Emission of simple jokaso population	32.2	16.5	7.5	0.97
Emission of simple jokaso population derived from night soil	3.2	3.5	6.0	0.67
Emission of night soil treatment population	29	13	1.5	0.30

 Table 3
 Pollutant load per capita and other parameters for WTP population.

Parameters for WTP population Water quality	BOD	COD	ΤN	ΤP
Pollutant emission per capita (g person ⁻¹ day ⁻¹)	45	23	8.5	1.0
Removal rate at WTP (%)	98.1	90.1	60.5	69.1
PL ¹⁾ per Capita flowing into public water body (g person ⁻¹ day ⁻¹)	0.83	2.3	3.4	0.31

Note: 1) PL: pollutant load

For drainage area with a river water or wastewater treatment facility including a riverside purification facility and a agriculture village wastewater purification facility, pollutant emission of the drainage area was calculated using the removal rate of each facility and treated and untreated river water or wastewater volume in the treatment facility using the following equation (3):

$$PE = PEj \times \frac{\{(1-R) \times Qi + Qj\}}{Qi + Qj}$$
(3)

where

R: removal rate of the treatment facility (-),

Q_i: treated river water or wastewater volume in the treatment facility (m³ day⁻¹), and

Q_j: untreated river water or wastewater volume in the treatment facility (m³ day⁻¹).

The values of R were supposed to be 0.80 for BOD and 0.70 for COD, respectively, and Q_i and Q_j were supposed to be equal volumes, i.e. a half of the subjected river water or wastewater was supposed to be treated by a treatment facility in this study. Natural purification effect in the river was considered as the reaching ratios in the drainage areas in this study.

COD loads in the rivers were calculated using the following equation (4) derived from BOD (5.9-37 gBOD m⁻³) and COD (8.1-31 g-COD m⁻³) data of similar inner city rivers.

$$COD = 0.4682 \times BOD + 5.6338$$
 (4)
(N = 289, R² = 0.6642)

The calculation methods of the reaching ratios of the measurement points were the same as those of BOD loads. COD load per capita was calculated only when the reaching ratio was between zero and a hundred.

2.3 Pollutant Loads per Capita by Domestic Wastewater Treatment Methods

Pollutant loads per capita flowing into public water bodies at each measurement point of the drainage area and each river mouth of drainage areas for combined *jokaso*, simple *jokaso* and night soil treatment populations were calculated based on the reaching ratios of domestic wastewater and pollutant emissions calculated above (Fig. 3). For night soil treatment population, pollutant loads through rivers and those through the treatment plants were added to obtain total pollutant loads per capita.

2.4 Environmental Accounting House keeping (EAH) Books of Domestic Wastewater

Formats of EAH books for domestic wastewater for WTP, combined *jokaso*, simple *jokaso* and night soil treatment populations were prepared based on the pollutant loads per capita flowing into public water body calculated above and some information on the reduction of pollutants loads from household activities (Table 1). The pollutant loads on which the EAH books were based were supposed to the populations weighted average of pollutant loads per capita flowing into public water body by the domestic wastewater treatment methods.

	BOD load at measurement	BOD load of each drainage	BOD emissions	Total BOD emissions above	Reaching ratio ²⁾		
Drainage area No.	points ¹⁾	area	area	measurement points	(1) and (4) (2) and (3) I	Eqs(1)-(3)
		(kg-BO	D day ⁻¹)			(%)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
1	200	200	506	506	39	39	44
2	1,065	447	490	1,812	59	91	141
3	1,577	-627	424	3,508	45	-148	66
4	326	326	572	572	57	57	63
5	418	418	816	816	51	51	51
6	814	814	701	701	116	116	166
7-1	107	107	188	188	57	57	118
7-2	136	136	191	191	71	71	143
8	237	-7	454	833	28	-1	38
9	942	942	1,264	1,264	75	75	124
10	749	-194	294	1,558	48	-66	-387
11	54	54	208	208	26	26	37
12	211	211	134	134	158	158	158
13	282	282	233	233	121	121	121
14	165	165	515	515	32	32	36
Sum	-	-	6,992	-	-	-	-

Table 4 BOD loads at the measurement points and BOD emissions in drainage areas.

Note: 1) Three year average of BOD loads at measurement points between 1993 and 1995; 2) Reaching ratios were calculated using columns (1) and (4), columns (2) and (3) of Table 4, and equations (1)-(3), natural purification effect in the river was considered as the reaching ratios in the

Table 5	Reaching ratios and BOD	loads per capita	flowiing into	public water	bodies for	combined
	jokaso, simple jokaso and	night soil treatme	ent populatio	n.		

	BOD loads per capita flowing into public water body ¹⁾													
	Calcul	ated bas	ed on (5)	Calcu	lated base	ed on (6)	Calculated using Eqs (1)-(3)							
Drainage area No.	Combined <i>Jokaso</i>	Simple <i>Jokaso</i>	Night soil treatment	Combined <i>Jokaso</i>	d Simple <i>Jokaso</i>	Night soil treatment	Combined <i>Jokaso</i>	l Simple <i>Jokaso</i>	Night soil treatment					
	(g-BOD person ⁻¹ day ⁻¹)													
	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)					
1	1.3	12.7	11.7	1.3	12.7	11.7	1.4	14.1	13.0					
2	1.9	18.9	17.3	2.9	29.4	26.8	-	-	-					
3	1.4	14.5	13.3	-	-	-	2.1	21.3	19.5					
4	1.8	18.3	16.8	1.8	18.3	16.8	2.0	20.4	18.6					
5	1.6	16.5	15.2	1.6	16.5	15.2	1.6	16.5	15.2					
6	-	-	-	-	-	-	-	-	-					
7-1	1.8	18.3	16.8	1.8	18.3	16.8	-	-	-					
7-2	2.3	23.0	21.0	2.3	23.0	21.0	-	-	-					
8	0.9	9.1	8.5	-	-	-	1.2	12.3	11.4					
9	-	-	-	2.4	24.0	21.9	-	-	-					
10	1.5	15.5	14.2	-	-	-	-	-	-					
11	0.8	8.3	7.8	0.8	8.3	7.8	1.2	11.9	11.0					
12	-	-	-	-	-	-	-	-	-					
13	-	-	-	-	-	-	-	-	-					
14	1.0	10.3	9.6	1.0	10.3	9.6	1.1	11.5	10.6					
Average ²⁾	1.5	15.2	13.7	2.1	19.4	16.0	1.4	13.3	12.7					
S.D.	0.5	4.6	4.1	0.7	6.8	6.2	0.4	4.1	3.7					

Note: **1)** the subjected public water body is the measurement point in each drainage area, and removal rates of water purification facilities are not included in the values in the table; 2) Weighted average with population.

	COD load at measurement	COD load of each drainage	COD emissions	Total COD emissions above	Reaching ratio ²⁾			
Drainage area No.	points ¹⁾	area	area	measurement points	(1) and (4)	(2) and (3)	Eqs(1)-(3)	
		(kg-CC)D day⁻¹)			(%)		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
1	99.1	99.1	302.6	302.6	32.8	32.8	36.4	
2	504.3	203.8	323.8	1,084.9	46.5	62.9	79.6	
3	744.1	-305.0	271.5	2,201.8	33.8	-112.3	226.3	
4	158.0	158.0	356.1	356.1	44.4	44.4	49.3	
5	201.4	201.4	458.5	458.5	43.9	43.9	43.9	
6	386.7	386.7	489.3	489.3	79.0	79.0	112.9	
7-1	55.8	55.8	141.3	141.3	39.5	39.5	49.6	
7-2	69.4	69.4	139.7	139.7	49.7	49.7	71.2	
8	116.4	-8.8	352.5	633.5	18.4	-2.5	25.1	
9	446.9	446.9	861.9	861.9	51.8	51.8	86.4	
10	356.2	-90.6	177.0	1,038.9	34.3	-51.2	-393.0	
11	30.8	30.8	156.8	156.8	19.6	19.6	28.1	
12	104.6	104.6	88.5	88.5	118.2	118.2	118.2	
13	137.8	137.8	200.8	200.8	68.6	68.6	68.6	
14	83.0	83.0	315.4	315.4	26.3	26.3	29.2	
Sum	-	-	4,639	-	-	-	-	

 Table 6
 COD loads at the measurement points and COD emissions in drainage areas.

Note: 1) Three year average of BOD loads at measurement points between 1993 and 1995; 2) Reaching ratios were calculated using columns (1) and (4), columns (2) and (3) of Table 6, and equations (1)-(3), natural purification effect in the river was considered as the reaching ratios in the drainage areas in this study.

 Table 7
 Reaching ratios and COD loads per capita flowiing into public water bodies for combined jokaso, simple jokaso and night soil treatment population.

	COD loads per capita flowing into public water body ¹⁾												
	Calcu	lated base	d on (5)	Calcu	lated base	ed on (6)	Calculat	ed using E	Eqs (1)-(3)				
Drainage area No.	Combined	Combined Simple Nig		Combined	Simple	Night soil	Combined	Simple	Night soil				
	JUKASU	JUKASU	liealment	JUKASU	Dinaraan	$^{-1}$ dov $^{-1}$	JUKASU	JUKASU	liealment				
				(g-CC	D person	uay)							
	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)				
1	1.5	5.4	5.2	1.5	5.4	5.2	1.7	6.0	5.7				
2	2.1	7.7	7.0	2.9	10.4	9.2	3.7	13.1	11.3				
3	1.6	5.6	5.4	-	-	-	-	-	-				
4	2.0	7.3	6.8	2.0	7.3	6.8	2.3	8.1	7.4				
5	2.0	7.2	6.7	2.0	7.2	6.7	2.0	7.2	6.7				
6	3.6	13.0	11.3	3.6	13.0	11.3	-	-	-				
7-1	1.8	6.5	6.1	1.8	6.5	6.1	2.3	8.2	7.4				
7-2	2.3	8.2	7.4	2.3	8.2	7.4	3.3	11.8	10.3				
8	0.8	3.0	3.4	-	-	-	1.2	4.1	4.3				
9	2.4	8.6	7.7	2.4	8.6	7.7	4.0	14.3	12.2				
10	1.6	5.7	5.4	-	-	-	-	-	-				
11	0.9	3.2	3.5	0.9	3.2	3.5	1.3	4.6	4.6				
12	-	-	-	-	-	-	-	-	-				
13	3.2	11.3	9.9	3.2	11.3	9.9	3.2	11.3	9.9				
14	1.2	4.3	4.4	1.2	4.3	4.4	1.3	4.8	4.8				
Average ²⁾	1.7	6.1	5.8	1.2	4.0	4.3	3.0	9.6	7.4				

Note: 1) the subjected public water body is the measurement point in each drainage area, and removal rates of water purification facilities are not included in the values in the table; 2) Weighted average with population.

3. RESULTS

3.1 Wastewater Treatment Plants (WTP) Population

Pollutant emissions of WTP population are the same as basic units of domestic wastewater based on the assumption that there are no degradation of organic carbon, T-N and T-P concentrations between houses and WTP (Table 2). Based on the management data and populations whose wastewater is treated by three WTP, removal rates were calculated as BOD: 98.1, COD: 90.1, T-N: 60.5 and T-P: 69.1%. Pollutant loads per capita flowing into public water body are calculated as shown in Table 3 based on the pollutant emissions and the removal rates. Pollutant loads per capita of WTP population flowing into public water body were calculated as 0.83 g-BOD person⁻¹ day⁻¹ 2.3 g-COD person⁻¹ day⁻¹, 3.4 g-TN person⁻¹ day⁻¹ and 0.31 g-TP person⁻¹ day⁻¹, respectively.

3.2 Combined *jokaso,* Simple *Jokaso* and Night Soil Treatment Populations

BOD loads at the measurement points of the rivers and BOD emissions in the drainage areas are shown in Table 4. Column (2) of Table 4 indicates BOD loads of the drainage area simply calculated as the difference of BOD loads at the measurement points shown in column (1). Column (4) of Table 4 indicates total BOD emissions above the measurement points calculated from BOD emissions in each drainage area shown in column (3). Reaching ratios shown in column (5) of Table 5 are calculated with BOD loads at the measurement points, column (1) of Table 4, and total BOD loads above and in the drainage area, column (4) of Table 4. Reaching ratios shown in column (6) of Table 5 are calculated with BOD loads of the drainage area calculated form BOD loads at the points measurement and the upper measurement point(s), column (2) of Table 4, and total BOD loads in the drainage area, column (3) of Table 4.

BOD loads per capita flowing into pubic water bodies were calculated for combined and simple *jokaso* and night soil treatment populations were calculated as shown in Table 5. The BOD loads calculated from the reaching ratios based on the total BOD loads and total BOD emissions above and in the drainage area(s), which are shown in columns (8)-(10) of Table 5, are calculated as from 0.8 to 2.3 (1.5, values in the parentheses are populations weighted average) g-BOD person⁻¹ day⁻¹ for combined *jokaso* population, 8.3 to 23 (15) gBOD person⁻¹ day⁻¹ for simple *jokaso* population, and 7.8 to 21 (14) g-BOD person⁻¹ day⁻¹ for night soil treatment. The BOD

loads per capita calculated from the reaching ratios based on the corresponding BOD loads and BOD emissions in the drainage area, which are shown in columns (11)-(13), are calculated as from 0.8 to 2.9 (2.1) g-BOD person⁻¹ day⁻¹ for combined jokaso population, 8.3 to 29 (19) g BOD person⁻¹ day⁻¹ for simple *jokaso* population, and 7.8 to 27 (16) g-BOD person⁻¹ day⁻¹ for night soil treatment population. The BOD loads per capita considering the removal rates of riverside purification facilities and agriculture village wastewater treatment facilities, and percentages of geological area above and below the measurement points in the drainage area, which are shown in columns (14)-(16) of Table 5, are calculated as from 1.1 to 2.1 (1.4) g-BOD person⁻¹ day⁻¹ for combined *jokaso* population, 12 to 21 (13) gBOD person⁻¹ day⁻¹ for simple jokaso population, and 11 to 20 (13) g-BOD person⁻¹ day⁻¹ for night soil treatment population. Populations weighted averages and standard deviations of pollutant loads per capita were shown in Table 5.

COD loads at the measurement points, COD loads corresponding to the drainage areas, COD emissions in the regions and COD emissions above the drainage area are summarized in Table 6.

Reaching ratios of COD loads are shown in column (5)-(7) of Table 6, of which calculation methods are the same as those of BOD loads shown in Table 5. COD loads per capita flowing into public water bodies are summarized in Table 7. The COD loads per capita flowing into public water bodies calculated from total COD loads in the river and total COD emissions above the drainage area, shown in columns (8)-(10) of Table 7, are from 0.8 to 3.6 (1.7) g-COD person⁻¹ day⁻¹ for combined *jokaso* population, 3.0 to 13 (6.1) g-COD person⁻¹ day⁻¹ for simple *jokaso* population, and 3.5 to 11 (5.8) gCOD person¹ day⁻¹ for night soil treatment population. The COD loads per capita calculated from corresponding COD loads of each drainage area and COD emissions in each drainage area, shown in columns (11)-(13) of Table 7, are from 0.9 to 3.6 (1.2) g-COD person⁻¹ day⁻¹ for combined *jokaso* population, 3.2 to 13 (4.0) g COD person⁻¹ day⁻¹ for simple *jokaso* population, and 3.5 to 11 (4.3) g-COD person⁻¹ day⁻¹ for night soil treatment population. COD loads per capita considering the removal ratios of the riverside purification facilities and the agriculture village wastewater treatment facilities, shown in columns (14)-(16), are from 1.3 to 4.0 (3.0) g COD person⁻¹ day⁻¹ for combined jokaso population, 4.1 to 14 (9.6) g COD person¹ day for simple *jokaso* population, and 4.3 to 11 (7.4)

Simple <i>jokaso</i>	PL ratio ¹⁾	Pollutant loads flowing into pubic water body ²⁾		Today's decrease		Decreas mor	e in this hth	Estimation for calcualtion	
	0/	BOD	COD	BOD	COD	BOD	COD	•	
Nilada e al	%	mg	mq	mg	ma	a	a		
Nightsoli	30	3990	2000	000	0	04.0	474		
Bath	20	2660	<u>1920</u>	800	<u> </u>	24.0	17.4	The degraphic effect to be 200/	
Vitebor	40	5220	000	000	360	24.0	04.0	The decrease effect to be 30%	
No use of detergent	40	830	<u> </u>	370	010		24.3	The previous used amount to be 5ml person ⁻¹ day ⁻¹ (2g-BOD and COD person ⁻¹ day ⁻¹)	
Decrease detergent		415	0					Decrease to half	
Do not drain rice washing water		830	10					Pollutant loads of rice washing water to be 2g-BOD and COD person ⁻¹ day ⁻¹)	
Use paper filter for kitchen		370	810	370	810	11.1	24.3	The removal rate to be 7 % (BOD, COD)	
Use net for kitchen		160	580					The removal rate to be 3% (BOD, COD)	
Treatment during and after cooking		2660	1920					The removal rate to be 50%	
Do not drain residual liquid									
Dressing 5ml		1360	27						
Chinese noodle soup 50ml		540	11						
Used edible oil 10ml		6900	138						
Washing clothes	10	1330	960						
Decrease detergent		540	0					The decrease to be 5g person $^{-1}$ day $^{-1}$ (1.3g-BOD and COD person $^{-1}$ day $^{-1}$)	
Total of pollutant load per capita	100	13300	9600	12130	8790	364	246		
Decrese of pollutant load per capita	-	-	-	1170	810	35	42		
Decrese of pollutant load for a family of four	-	-	-	-	-	140	167		

Table 8 A format of environmental house accounting (EAH) books of domestic wastewater treatment: Simple *jokaso* population, prepared based on population average of pollutant loads per capita flowing into the public water body in Chiba City.

Note: 1) Source of pollutant loads (PL) ratios is Ministry of Environment (2002); 2) Public water body is supposed to the measurement points of the drainage area, and pollutant loads per capita are supposed to be the population weighted average.

Table 9Pollutant loads per capita by domestic wastewater treatment methods, which are
compared with those running into Sanbanze tidal coastal zone, Tokyo Bay, and
those at the mouth of Ebigawa River. (Tsuzuki and Ogawa, 2004; Tsuzuki, 2004b)

Pollutant loa	ds \	Pollutants	COD	T-N	T-P
Pollutant loads to To	okyo Bay (kg day ⁻¹)	247,000	254,000	21,100	
Pollutant loads to Sa	anbanze tidal zone	$(kg day^{-1})^{2}$	6,243	4,948	-
Pollutant loads at th	e river mouth of Eb	igawa River (kg day ⁻¹) ³⁾	951	797	88.5
Pollutant loads by d Ebigawa River (kg d	omestic wastewate av ⁻¹) ⁴⁾	r at the mouth of	770	642	71.4
	Wastewater treatm	nent plant	2.3	3.7	0.22
Dellutent leade per	Combined jokaso		1.5	3.6	0.39
Pollutant loads per	Simple jokaso		5.2	3.9	0.43
the exected zone	Nightsoil treatmen	it	5.1	4.3	0.41
$(n = n = n = n^{-1} = n^{-1} + 1)^{4}$	Combined jokaso	+ Riverside purification	0.3	2.5	0.28
(g person day) '	Simple jokaso + R	liverside purification	1.0	2.7	0.30
	Nightsoil treatmen	t + Riverside purification	1.8	4.1	0.37

References: 1)National Environmental Conference Water Department Gross Pollutant Loads Control Professional Committee (1999); 2)Chiba prefecture (1998); 3)Tsuzuki (2003); 4)Tsuzuki and Ogawa (2004) and Tsuzuki (2004b).

g-COD person⁻¹ day⁻¹ for night soil treatment population. Populations weighted averages and standard deviations of pollutant loads per capita were shown in Table 7.

3.3 Environmental Accounting Housekeeping (EAH) Books of Domestic Wastewater

A format of EAH books of domestic wastewater was prepared for simple jokaso populations, and drainage areas in Chiba City (Table 8) as an example. The BOD and COD loads per capita flowing into the public water bodies in Table 8 are populations weighted averages. In Table 8 the initial pollutant loads per capita before pollution reduction activities are supposed to be populations weighted average of simple jokaso population in the drainage area. BOD loads per capita flowing into public water body, 13,300 mg-BOD person⁻¹ day⁻¹, was divided into four kinds of household activities: 3,990 mg person⁻¹ day⁻¹ from night soil, 2,660 mg person⁻¹ day⁻¹ from bath, 5,320 mg person⁻¹ day⁻¹ from kitchen and 1,330 mg day⁻¹ person⁻¹ from washing clothes. When the person decreases the amount of shampoo and soap in the bath, decreased amount of BOD load is supposed to be 800 mg-BOD person⁻¹ day¹. Pollutant loads decrease in a month would be 24 g person⁻¹ month⁻¹. In the same way, when the person use paper filter for kitchen, decreased amount of pollutant loads are calculated to be 370 mg-BOD person⁻¹ day⁻¹, and 11g-BOD person⁻¹ month⁻¹. The decreased pollutant loads in a month with the two measurements described above would be 35 g-BOD person⁻¹ month⁻¹. The decrease amounts would be four times for the family of four, 140 g-BOD month⁻¹. COD loads reduction calculation is the same procedures with BOD loads reduction calculation.

4. DISCUSSION

The pollutant loads per capita flowing into public water body by wastewater treatment methods were calculated for drainage areas in Chiba City, Chiba Prefecure (Table 3, 5 and 7). The pollutant loads per capita were found to be different by the drainage area even the domestic wastewater treatment method is the same as Tsuzuki (2004b) pointed out as an important point of EAH books. Pollutant loads per capita flowing into public waterbody have been proposed more friendly indexes to ordinary citizens (Tsuzuki and Ogawa, 2004; Tsuzuki, 2004b).

Of the three methods used in this paper, the third calculation is sonsidered to be more precise than other two methods because of the applied calculation methods. The ratios of standard deviations and means are form 0.29 to 0.39 for BOD loads per capita, and 0.34 to 0.73 for COD loads per capita. Variation of COD loads per capita was found to be larger than thar of BOD.

The reaching ratios less than zero were in the lower drainage areas of the rivers. Flow rates of rivers are affected by tide near the river mouth, and flow rates and, therefore, pollutant loads were considered as underestimated. The reasons of the reaching ratios lager than a hundred percent were considered as larger daytime populations, some activities with pollutant emissios which were not considered in this study, or estimation errors of the pollutant emissions or pollutant loads in the river.

Tsuzuki (2004b) calculated pollutant loads per capita in Ebigawa River drainage area (Table 9).

PL ratio ¹⁾	Pollutant looads flowing into coastal zone			Today's decrease			Decrease in this month			
	COD	T-N	T-P	COD	T-N	T-P	COD	T-N	T-P	Estimation for calcualtion
%	mg	mg	mg	mg	mg	mg	g	g	g	-
30	1560	1170	130							
20	1040	780	90	310	0	0	9.4	0	0	
	310	0	0	310	0	0	9.4	0	0	The decrease effect to be 30%
40	2080	1560	170	150	330	10	4.5	9.9	0.3	
	450	0	0							The previous used amount to be 5ml person ⁻¹ day ⁻¹ (2g- COD person ⁻¹ day ⁻¹)
	225	0	0							Decrease to half
	450	10	1							Pollutant loads of rice washing water to be 2g-COD person ⁻¹ day ⁻¹ , 24mg-TN person ⁻¹ day ⁻¹ and 2mg-TP person ⁻¹ day ⁻¹
	150	330	10	150	330	10	4.5	9.9	0.3	The removal rate to be 7(COD), 21(T-N), 4(T-P)%
	60	230	3							The removal rate to be 3(COD), 15(T-N), 2(T-P)%
	1040	780	86							The removal rate to be 50%
	750	15	8							
	290	6	3							
	3800	76	0							
10	520	390	43							
	290	0	0							The decrease to be 5g person ⁻¹ day ⁻¹ (1.3g-COD person ⁻¹ day ⁻¹)
100	5200	3900	430	4740	3570	420	142	107	12.6	
-	-	-	-	460	330	10	14	10	0.3	
-	-	-	-	_	_	-	55	40	1.2	
	PL ratio ¹⁾ - % 30 20 40 40 -	PL Pollutan into COD % mg 30 1560 20 1040 310 40 2080 450 225 450 150 60 1040 - 750 290 3800 10 520 - - - -	$\begin{array}{c c c c c c c } PL & Pollutant looads f \\ into coastal zc \\ \hline COD & T-N \\ \hline & mg & mg \\ \hline & 30 & 1560 & 1170 \\ \hline & 20 & 1040 & 780 \\ \hline & 310 & 0 \\ \hline & 310 & 0 \\ \hline & 40 & 2080 & 1560 \\ \hline & 450 & 10 \\ \hline & 450 & 0 \\ \hline & 450 & 10 \\ \hline & 225 & 0 \\ \hline & 450 & 10 \\ \hline & 225 & 0 \\ \hline & 450 & 10 \\ \hline & 150 & 330 \\ \hline & 60 & 230 \\ \hline & 100 & 520 & 390 \\ \hline & - & - \\ \hline \end{array}$	PL Pollutant looads flowing into coastal zone COD T-N T-P % mg mg mg 30 1560 1170 130 20 1040 780 90 310 0 0 0 40 2080 1560 170 450 0 0 0 450 10 1 150 330 10 60 230 3 1040 780 86 750 15 8 290 6 3 3800 76 0 10 520 390 430 290 0 0 0	PL ratio ¹⁾ Pollutant looads flowing into coastal zone Today Today COD T-N T-P COD % mg mg mg mg 30 1560 1170 130 10 20 1040 780 90 310 20 1040 780 90 310 40 2080 1560 170 150 450 0 0 0 150 450 10 1 150 60 230 3 150 330 10 150 60 230 3 1040 780 86 10 150 15 8 290 6 3 3800 76 0 10 10 520 390 43 290 0 0 0 1 10 10 10 10 10 10 10 10 10 10 10 10	PL ratio ¹⁾ Pollutant looads flowing into coastal zone Today's decr $^{\circ}$ mg mg <th< td=""><td>PL ratio¹⁾ Pollutant looads flowing into coastal zone Today's decrease COD T-N T-P COD T-N T-P % mg mg mg mg mg mg 30 1560 1170 130 0 0 0 20 1040 780 90 310 0 0 310 0 0 310 0 0 0 450 0 0 330 10 150 330 10 450 10 1 - - - - - 450 10 1 - - - - - 150 330 10 150 330 10 - - 150 330 10 150 330 10 - - 160 230 3 - - - - - 750 15</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></th<>	PL ratio ¹⁾ Pollutant looads flowing into coastal zone Today's decrease COD T-N T-P COD T-N T-P % mg mg mg mg mg mg 30 1560 1170 130 0 0 0 20 1040 780 90 310 0 0 310 0 0 310 0 0 0 450 0 0 330 10 150 330 10 450 10 1 - - - - - 450 10 1 - - - - - 150 330 10 150 330 10 - - 150 330 10 150 330 10 - - 160 230 3 - - - - - 750 15	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

 Table 10
 A format of environmental house accounting (EAH) books of domestic wastewater treatment: Simple *jokaso* population, Ebigawa River drainage area. (Tsuzuki and Ogawa, 2004; Tsuzuki, 2004b)

Note: 1) Source of pollutant loads (PL) ratio is Ministry of Environment (2002)

The Ebigawa River drainage area is west of Chiba City, and Ebigawa River is flowing into Sanbanze tidal coastal zone, which is only a tidal coastal zone left in Tokyo Bay after the development with land fillings. Municipal and administrative efforts to preserve and reclaim the tidal coastal zones have been held including a series of the Sanbanze Reclamation Plan Investigation Conference, Sanbanze Roundtable Conference, which has been organized by Chiba Prefecture since April 2003 (Chiba Prefecture, 2004). The Ebigawa River drainage area is 26 km², population in the drainage area was calculated as 220 thousands persons, and population density was 8,460 persons km² -COD and nitrogen loads per capita for WTP populations in Chiba City were almost the same as those in Ebigawa River drainage area, however, phosphorus pollutant loads per capita in this study was larger by about 40% than that in Ebigawa River drainage area. The reason of the differences is phosphorus removal rate in WTP. Pollutant loads per capita flowing into public waterbody can include the effects of water purification facilities as shown in Table 9. Pollutant loads per capita flowing into the coastal zone were calculated based on the pollutant loads at the river mouth of Ebigawa River. The pollutant loads are considered to be affected by tidal and could be underestimated. So, the pollutant loads per capita shown in Table 9 could be underestimated.

The pollutant loads per capita flowing into public water bodies in Table 5 and 7 do not take effects of the riverside purification facilities and agriculture village wastewater treatment facilities into consideration. The pollutant loads of populations with these treatments would be smaller than the values shown in the Tables.

Tsuzuki (2004a) calculated pollutant loads per capita flowing into coastal zones and lakes along the developing countries. Calculated pollutant loads per capita flowing into coastal zone were calculated 0.1-45 kg-BOD person⁻¹ yr⁻¹, 0.1-4.6 kg-TN person⁻¹ yr⁻¹, and 0.01-1.9 kg-TP person⁻¹ yr⁻¹. Most of the pollutant loads per capita flowing into coastal zones and lakes were found to be almost the same with or larger than those in Japan, Ebigawa River drainage area and the drainage areas in Chiba City.

The pollutant loads at the measurement points were based on administrative data, annual means of pollutant concentration and flow rate. Urban runoff pollution analysis has been developed to calculate total pollutant loads in the rivers, streams and sewage pipes. Pollutant loads per capita flowing into public waters can be calculated more precisely with these kinds of analysis and methods.

United States Environmental Protection Agency (EPA) has introduced Combined Sewer Overflow (CSO) Control Policy in 1994 and the policy establishes a consistent national approach for controlling discharges from CSOs to the public waters through the National Pollutant Discharge Elimination System (NPDES) permit program (EPA, 1994, 2004). In Japan, Ministry of National Land and Transportation has established dedicated committee to discuss on and summarize the improvement measurements of combined WTP including CSO problems (Okamoto, 2002). In european countires, the same kinds of CSO pollutant loads reduction measurements have been developed including urban water pollutant loads policy manual of England, design standards of 1998 in wastewater treatment plants (ATV-A128) of 1977 in Germany, and regulations on the procedures of emission permissions of 1993 in France (Okamoto, 2002).

Table 10 shows an example of the EAH books for simple *jokaso* population in Ebigawa River drainage area (Tsuzuki and Ogawa, 2004; Tsuzuki, 2004b). EAH books for other pollutant can be prepared if data on the pollutant emission and the pollutant load in the river is available.

EAH books of domestic wastewater would be effective tools for enlightenment, dissemination and environmental education, because only some basic administrative information and environmental data are necessary for their calculation and preparation. Interests with lives, materials and water quality would increase through the EAH books of domestic wastewater and it would be effective for environmental and scientific education.

5. Conclusions

A format of EAH books of domestic wastewater was prepared for the drainage areas in Chiba City. Pollutant loads per capita flowing into public waterbody were calculated for the purpose of making use of it for preparation of EAH books.

It was found that pollutant loads per capita flowing into public waterbody were different between the drainage regions, and variations of COD loads per capita were found to be larger than those of BOD. BOD loads per capita flowing into public waterbody were calculated as 0.83 g-BOD person⁻¹ day⁻¹ for WTP populations, 0.8-2.4 g-BOD person⁻¹ day⁻¹ for combined *jokaso* populations, 8.3-24 g-BOD person⁻¹ day⁻¹ for simple *jokaso* populations, and 7.8-21 g-BOD person⁻¹ day⁻¹ for night soil treatment populations. COD loads per capita flowing into public waterbody were calculated as 2.3 g-COD person⁻¹ day⁻¹ for WTP populations, 0.8-4.0 g-COD person⁻¹ day⁻¹ for combined *jokaso* populations, 3.2-13 g-COD person⁻¹ day⁻¹ for simple *jokaso* populations, and 3.4-12 g-COD person⁻¹ day⁻¹ for night soil treatment populations. The effect of riverside water purification facilities and agriculture village wastewater treatment facilities are not included the pollutant loads per capita for combined and simple *jokaso* populations and night soil treatment facilities.

A format of EAH books of domestic wastewater was prepared for simple *jokaso* populations in the drainage area of Chiba City with populations weighted average pollutant loads per capita flowing into public waterbody. The EAH books should be prepared for each drainage area and domestic wastewater treatment method.

Pollutant loads per capita by domestic wastewater treatment methods and drainage area, and EAH books of domestic wastewater have been proposed as essential indexes and effective tools in the field of water environment education and dissemination.

5. Acknowledgement

Some data and information are obtained from Chiba City.

6. References

- Chiba Prefecture, 2004: Homepage of Chiba Prefecture Sanbanze Conference (<u>http://www.pref.chiba.jp/syozoku/b_seisaku/san_banze/</u>). (in Japanese) (Accessed on Aug 1st, 2004)
- Fujimoto C., 1988: Pollutant loads of rivers flowing into Inbanuma and Teganuma marshes, Basic units of domestic wastewater, Chiba Water Quality Conservation Institute Annual Report of *Syowa* 62 (1987), 89-98. (in Japanese)
- Fujimura Y., 1996: Pollutant loads basic units of domestic wastewater and discharge rate of *jokaso*, Chiba Prefecture Water Quality Conservation Institute Annual Report of *Heisei* 7 (1995), 33-38. (in Japanese)
- Fujimura Y. and Nakajima A., 1998: Domestic wastewater pollutant loads and Combined *jokaso*, Inbanuma Marsh Nature and Culture, (5), 27-34. (in Japanese)

- Fujita, K., 1999: Pollutant loads runoff analysis, *in* Hydraulics Committee of Japan Society of Civil Engineers ed., Maruzen, Tokyo, 367-370. (in Japanese)
- limura A., 1998: Pollutant loads analysis of Mamagawa River drainage area, Chiba Prefecture Water Quality Conservation Institute Annual Reports of *Heisei* 10 (1998), pp.55-62. (in Japanese)
- Ministry of Environment, 2002: Environment white paper of *Heisei* 13 (2001). (in Japanese)
- National Environmental Conference Water Department Gross Pollutant Loads Control Professional Committee, 1999: The way of fifth gross control of water pollutants, Interim report of gross pollutant loads control professional committee. (in Japanese)
- Ogura N. ed., 1993: Tokyo Bay, Environmental fluctuation in a century, *Kouseisyakouseikakų*, Tokyo. (in Japanese)
- Okamoto, S., 2002: New CSO control policy and the comprehensive program to manage wet weather pollution, Journal of Japan Siciety on Water Environment, 25(9), 518-523. (in Japanese)
- Streeter, N.W., Phelps, E.B., 1943: Public health bulletin 146, U.S. public Health Service.
- Sudo, R., 2000: Water environmental policy in 21st century, 39th Seminar of Japan Society of Water Environment, 10p. (in Japanese)
- Sueyoshi, T., 1977: Water quality and hydraulics in water system pollution: *in* Ishihara, T. ed. Water engineering hydraulics, Maruzen, Tokyo, 701-758. (in Japanese)
- Tsuzuki Y., 2003: Proposal on dissemination and environmental education on pollutant loads to Tokyo Bay and Sanbanze tidal coastal zone and municipal lives, Proceedings of 11th Global Environment Symposium, Japan Society of Civil Engineers, 213-218. (in Japanese, with English abstract)
- Tsuzuki Y. and Ogawa K., 2004: Proposal on dissemination and environmental education on water pollutant loads, Proceedings of the 31st Kanto District Annual Meeting CD-ROM VII-18, Japan Society of Civil Engineers. (in Japanese)

- Tsuzuki, Y., 2004a: Water pollutant load per capita running into coastal area and lakes, and economic development level of developing countries, Proceedings of 12th Global Environment Symposium, Japan Society of Civil Engineers, 129-134. (in Japanese, with English abstract)
- Tsuzuki Y., 2004b: Proposal of Environmental Accounting Housekeeping (EAH) Books of Domestic Wastewater Based on Water Pollutant Loads per Capita: a Case Study of Sanbanze Tidal Coastal Zone, Tokyo Bay, Journal of Global Environment Engineering, **10**, 187-196.
- Tsuzuki, Y., 2004c: Performances of Domestic Wastewater Treatments in Japan and Environmental Accounting Housekeeping (EAH) Books for Domestic Wastewater Pollutants Reduction: from the Perspective of Countermeasures against Coastal Zone Water Pollution, 2nd International Symposium on South East Asia Water Environment. (in Press, in Japanese with English abstract)
- UNEP, 2003: Regional Seas Strategies for Sustainable Development, 40p.
- UNEP/GPA Coordination Office, 2002: Water Supply & Sanitation Coverage in UNEP Regional Seas Need for Regional Wastewater Emissions Targets?, 1st DRAFT, 60p.
- United States Environmental Protection Agency (EPA), 1994: Combined Sewer Overflow (CSO) Control Policy; Notice, Federal Register, **59** (75), 18688.
- United States Environmental Protection Agency (EPA), 2004: CSO control policy homepage, <u>http://cfpub.epa.gov/npdes/cso</u> /<u>cpolicy.cfm</u>. (Accessed on Oct. 20, 2004)
- United States Environmental Protection Agency (EPA), 2004: A Total Maximum Pollutant Loads (TMDL) homepage, <u>http://</u> <u>www.epa.gov/owow/tmdl</u>. (Accessed on Aug 1st, 2004)