
NUSDAS - METEOROLOGICAL DATABASE FOR OPERATIONAL WEATHER SERVICE
18.12

Eizi Toyoda*
University of Wisconsin-Madison, Madison, Wisconsin

1. INTRODUCTION

NuSDaS (Numerical Prediction Standard
Dataset System) is a database system of Japan
Meteorological Agency (JMA) that has been used in
operational weather service since the main
supercomputer of JMA was replaced with
UNIX-based HITACHI SR8000 in 2001. Use of
NuSDaS is mandatory in the JMA operational suites
of numerical prediction, in order to standardize data
format, data access subroutine, and terms of data
structure.

NuSDaS was originally developed as a
standalone database, which has no network
functionality. HTTP-based remote data access
extension is implemented afterwards. Using same
API (application interface), an application program
can access both local file and remote data with little
limitations. This extension is also deployed in some
experimental operations.

Currently a great deal of effort was being
put into redesigning of file format and extension of
API, aimed at the next replace of supercomputer of
JMA planned in early 2006. Following argument
will include the author’s findings through experience,
from which some improvements are planned.

2. DATA STRUCTURE
2.1 Data Model

Since NuSDaS is not general-purpose
database, the data structure and API are highly
specialized for meteorological data, especially those
of numerical weather prediction. Database consists
of data records, which are numeral (floating point or
integer) data on a two-dimensional grid usually taken

* Corresponding author address: Eiji TOYODA,
Environmental Remote Sensing Center, University of
Wisconsin-Madison, 1225 W Dayton St Atmospheric
and Oceanic Science Bldg #1219, Madison, WI
53706; email: toyoda@wisc.edu. The author is
dispatched from Japan Meteorological Agency.

horizontally. A data record is identified by following
identifiers:
1) data type name (16 character string),
2) reference time (initial time for forecast),
3) member name (of ensemble forecast; otherwise

blank is used),
4) valid time,
5) level name, and
6) element name (parameter as in GRIB, also

known as variable name).
Data type name identifies a dataset, and the others
identify a data record in the dataset. In digital
representation, reference time and valid time are
integer in minutes from 0:00 UTC January 1, 1801,
and the other identifiers are all character string with
fixed length.

Data type name includes some description
of dataset structure. Twelve of sixteen letters in the
type name describe the nature of dataset (Appendix
C.2.1), which loosely corresponds to Section I of
GRIB Edition 1. However, it was quite unpopular
that the snapshot quantity (such as temperature)
and time-integrated quantity (such as precipitation)
cannot be stored in one dataset, hence the
time-integrated quantities are accommodated in the
“guise” of snapshot quantities (see Appendix C.2.5
for detail).

Although some of the identifiers (reference
time, valid time, and level, usually) are considered to
be “dimension” in the viewpoint of physics, they are
handled differently from horizontal (X-Y) dimensions,
because NuSDaS must manage “allowed”
combinations of “possible values” of identifiers. For
example, element “RAIN” in three-dimensional
forecast dataset is usually allowed only at surface
level, and is not allowed at the initial time. This
feature makes NuSDaS quite different from grid
based data models such as NetCDF (Rew et al.,
1997). However, there is urging demand of XYZ
three dimensional I/O not only for convenience but

also for performance, and there will be some
modification to allow three (or possibly four)
dimensional records.

2.2 File Format

A NuSDaS dataset is implemented as a
directory tree with one definition file and data files.
It is called NRD (NuSDaS rood directory).

Definition file (see Appendix A) is a plain
text file that describes structure of NuSDaS dataset.
Definition file must be prepared before creating
dataset, and it will remain in the dataset to provide a
quick-look of data structure for human
administrators.

There are several variant formats for data
file. The most typical one is similar to sequential
file of Fortran. Unfortunately that has been
incompatible since the record length field (4 octets)
is larger by 8 than that in Fortran file, and the author
plan to make it Fortran-compatible in the next
release.

The data file (see Appendix B) consists of
three kinds of records that are identified with
four-letter label: records to define structure of file
(“NUSD”, “INDX”, and “END”), metadata (“CNTL”,
“SUBC”, and “INFO”), and DATA record. Records
in the first group will be considerably redesigned
since it caused the file size limitation of two gigabyte,
which became inappropriate in today’s
supercomputing of telaflops processing and
petabyte storage.

Data records are stored in separated data
files for different data type, reference time and, by
optional configuration, member or valid time. This
feature is required since the operational suite has a
rule that two or more batch jobs should not write
onto one data file, in order to avoid loss of data when
second or later job are aborted while writing file.
Although this feature works well in most cases, the
author and colleagues found difficulty in seasonal
forecast, which has often nearly one thousand valid
times.

3. APPLICATION INTERFACE (API)

The application interface (see Appendix C)

for NuSDaS is provided for both C and Fortran. In
comparison to general-purpose API’s (such as
NetCDF API), NuSDaS API is in higher level, or in
other words, is designed for limited range of usage.

Data access routines (such as
NUSDAS_READ) take arguments for record
identifiers directly. Users do not have to convert
character string (such as data type name or element
name) into index. Although frequent conversion
from string to index might cause inefficiency, the
overhead has been negligible and improves
readability of application program considerably.

Another user-friendly feature is that no
initialization function call is needed before the data
access routines. Unfortunately users must call
output buffering flush routines
(NUSDAS_ALLFILE_CLOSE etc.), if output
buffering is enabled. Buffering improves output
performance remarkably, and is mandatory in
operational suites.

The API also has weakness. One
example is that functions to browse dataset are
poorly organized and incomplete. Hence tools for
data browsing and manipulation, often have to
bypass the API touching data files directly, and they
tend to be ad-hoc or inefficient. The author
advocates that further clarification of the data model
is needed, and supposes the data model should be
expressed as RDB-like collection of grid data.

4. IMPLEMENTATIONS
4.1 Standalone Implementations

The NuSDaS interface is written in C,
including Fortran interface. Although the first
version was designed only for HITACHI systems,
recent implementations include configure script for
automatic C-Fortran linkage and runtime automatic
byte swapping.

There is another standalone
implementation that is entirely written in Ruby, an
object-oriented scripting language.
4.2 Server-Client Implementations

In order to facilitate data access from
remote computers, a data transfer protocol using
HTTP was developed (announced in Toyoda, 2002).

The protocol is designed so that Web browser can
be used as data browser. The data server has
functionalities of automatic data format conversion
into not only numerical formats but also image files.
The users are also able to browse metadata in
several text formats.

Another new feature is traffic control. The
server can relay a request for data to another server
that has the data requested, and then the servers
negotiate about which host convert the data format
using content negotiation framework defined in
HTTP.
4.3 Conversion from/to Other Data Models

Converter tools between GRIB (originally
for edition 1, and later edition 2) and NuSDaS has
been developed from the early history of NuSDaS.
Although the data model of NuSDaS is largely
influenced from that of GRIB, there is still a little
discrepancy that makes it difficult to convert data
automatically. Firstly, data identifiers and metadata
have not always one-by-one correspondence (see
note below Table C.2.1F for an example). Secondly,
there is some expediential use of assigned name for
identifiers (such as “snapshot guise” discussed in
Section 2.1). Finally, users often willfully assign
different name or units for elements.

Currently the author and colleagues have
little experience in data exchange from/to other data
models, such as NetCDF, OpenDAP, or GIS data
standards. There are, however, many potential
benefits, including time-saving in data handling and
new visualization software. The author advocates
that mutual comparison of data model and metadata
standard is the key to further progress.

RREFERENCES

Toyoda, E., 2002: Technical development
for the management of a NWP routine system.
Proceedings of Tenth Workshop on the Use of High
Performance Computing in Meteorology, 4-8
November 2002, ECMWF.
[PDF presentation is available at
http://www.ecmwf.int/publications/library/ecpublicati
ons/proceedings/high_performance_computing_200
2/toyoda_eizi.pdf]

Rew, R., D. Glenn, S. Emmerson, and H.
Davies, 1997: NetCDF User's Guide for C. University
Corporation for Atmospheric Research, Boulder, CO.,
pp. 149.

ACKNOWLEDGEMENT

Design and implementation of NuSDaS of
the first version was mainly work of Mr. Norihisa
Fujikawa. The network extension is made by
collaboration with Mr. Masaki Hasegawa and Dr.
Tabito Hara.

APPENDIX A: DEFINITION FILE FORMAT
NuSDaS definition file is a plain text file that

describes structure of NuSDaS dataset. The
definition file looks like free format. More precisely,
the file is interpreted line by line. Each line is broken
down to words by spaces (ASCII SPC). Note that
TAB character is not allowed in the definition file. A
line starting with keyword (listed below, case
insensitive) starts statement. Following lines without
keyword at the top of themselves are continued lines
and interpreted as one statement with starting line. A
line that begins with number sign ('#', also known as
sharp or pound) is a comment line and will be safely
ignored.

Statements can be omitted, unless noted
'mandatory'. There is a limitation in order of the
statements. Since they are not (and cannot be
easily) documented, the author recommends
describing statements in order of following
description.
A.1 Definition Statements

nusdas version
Specifies version of NuSDaS. If not omitted, it
must be 10. And if not omitted, it is highly
recommended to place this statement at the
top of definition file; in future versions of
NuSDaS, there may be incompatible
extension to the definition file, and this
version will describe what version of NuSDaS
you are using.

path ...
specifies the directory at which data files will
be located. It is relative path from NRD. One
of following syntax list is used for words.

path relative_path template
The relative path will be template. See
Pathname Expansion for special symbols. By
default this style is assumed,
and ”/_model/_attribute/_space/_time/_name”
is used as template.

path nwp_path_s
Equivalent to statements
“path relative_path/_3d_name” and
“filename _validtime”.

path nwp_path_vm

Equivalent to statements
 “path relative_path/_3d_name”
 and “filename _member”.

path nwp_path_m
Equivalent to statements
 “path relative_path/_3d_name/_member”
and “filename _validtime”.

path nwp_path_bs
Equivalent to statements
 “path relative_path/_3d_name/_basetime”
and “filename _validtime”.

filename filename
Name of data file will be filename. Pathname
expansion will be applied to filename. By
default, _basename is assumed.

creator creator
Specifies information on creator of the data. It
will written in NUSD record after prepending
user name and host name.

type1 _model _2d _3d
This statement cannot be omitted. Word
_model is four name characters (alphabet,
number, and underline) representing model
name or creation process. Word _2d is two
name characters representing horizontal grid
name. Word _3d is two name characters
representing vertical grid name. See
Appendix C for table of possible values.

type2 _attribute _time
This statement cannot be omitted. Word
_attribute is two name characters
representing data attribute. Word _time is two
name characters representing time attribute.
See Appendix C for table of possible values.

type3 _name
This statement cannot be omitted. Word
_name is four name characters. You can use
arbitrary name for this field; it does not affect
behavior of library nor conventional meaning.
Name "STD1" is used for the most typical
operational dataset. Note: when _name is
less than 4 letters, space character is
appended in internal operation, such as
contents of CNTL record. However, in
Pathname Expansion, underline ("_")

character is prefixed.
member n_dc inout

Word n_dc is number of members (1
assumed by default). When inout is in,
records for different members are stored in
one file, and when inout is out, records for
different members are stored in separated
files.

memberlist member member ...
lists up members.

basetime YYYYmmddHHMM
This statement is omitted in most cases. It
specifies base time. Format of
YYYYmmddHHMM is same as
+%Y%m%d%H%M in UNIX date(1) or
strftime(3).

validtime n_vt inout unit
This statement cannot be omitted. This
specifies number of valid times n_vt and unit,
units of numbers in following validtime1 and
validtime2 statements. Word unit should be
one of min, hour, day, pen, mon, week, jun.
When inout is in, records for different valid
times are stored in one file, and when inout is
out, records for different valid times are
stored in separated files.

validtime1 arithmetic initial step
validtime1 all_list vt1 vt2 vt3 ...

This statement cannot be omitted. At least
and just one of above two formes should
appear. This statement specifies list of the
first part of valid time, called valid1 in
Application Interface. When the second word
is arithmetic, the valid1 is an arithmetical
series with specified initial and step value.
When the second word is all_list, following
words are interpreted as list of valid times.
Usually the list is written in ascending order.
All of the arguments initial, step, vt1, ... are in
units declared in previous validtime
statement.

validtime2 ft1 ft2 ft3 ...
validtime2 -dt

At least and just one of above two formes
should appear. This statement specifies list of

the second part of valid time, called valid2 in
Application Interface. When the former form is
used, the list of valid2 will be (vt1 + ft1), (vt2 +
ft2), (vt3 + ft3), and so on. Usually the list is
written in ascending order. When the latter
form is used, the list of valid2 will be (vt1 + dt),
(vt2 + dt), (vt3 + dt), and so on. All of the
arguments dt, ft1, ft2, ... are in units declared
in previous validtime statement. If this
statement is omitted, the special value -1 is
assumed as valid2.

plane n_lv
This statement cannot be omitted.
Specifies the number of planes.

plane1 name name name ...
This statement cannot be omitted.
Specifies the list of first plane. The list should
have n_lv items. Usually the list is written in
ascending order in height. It looks like
descending order if pressure coordinate is
used, (e.g. SURF 1000 950 900 ...).

plane2 name name name ...
Specifies the list of second plane. The list
should have n_lv items. If this statement is
omitted, the same list to that in plane1
statement is assumed.

element n_el
This statement cannot be omitted.
Specifies the number of elements.

elementmap elemname elementmap
This statement cannot be omitted, and will
appear n_el times. It describes where is the
element elemname allowed to write. See
section Elementmap for detail.

size nx ny
This statement cannot be omitted, It
indicates that the number of grid points is nx
in X direction, and ny in Y direction. In most
cases X is taken eastward and Y northward,
although that is dependent to what coordinate
system (_2d in type1 statement) you use.

basepoint ix iy lon lat
This statement indicates that the location of
grid numbered (ix, iy) is positioned (lon, lat).
Both of ix, iy must be real number, lon must

be real number with 'E' or 'W' appended, lat
must be real number with 'N' or 'S' appended,
Note that this statement is used with the
geographical meaning shown above even if
the 2D grid is taken vertically. In order to
describe vertical grid point locations, SUBC
record might be used.

distance dx dy
Indicates horizontal distance (in X and Y
directions) between adjacent grid points. The
units is degree when the grids are
latitude-longitude grids, and is meter when
map projection is applied. When the 2D grid is
taken vertically, one of dx, dy shall be ignored.
Note that the meridional grid distance dy is
taken southward. It is positive in most JMA
models: grid points with the smallest Y index
are located at the northern end of 2D grid. On
the contrary, if dy is negative, grid points with
the smallest Y index are located at the
southern end of 2D grid.

standard lon lat lon2 lat2
Specifies standard longitude/latitude. They
are parameters of map projection, and only a
part of them is used in some cases. It is
dependent to horizontal grid style whether this
statement is required or not. See following
description of others.

others lon3 lat3 lon4 lat4
Specifies 3rd or 4th longitude/latitude.
Meaning of parameters is dependent to
projection. It is also dependent to horizontal
grid style whether this statement is required
or not.

in case of _2d=LM
The Lambert conformal projection has 3
parameters; use "standard LoV Latin1 LoV
Latin2", where LoV is Y-axis longitude, and
Latin1 and Latin2 is the first/second latitude
where the secant cone cuts the earth. In most
cases of JMA, it looks like “standard 140.0E
30.0N 140.0E 60.0N”.

in case of _2d=PS
The polar stereographic projection has 2
parameters; use "standard LoV LaD 0E 0N",

where LoV is Y-axis longitude, and LaD is the
latitude where grid point distance is defined.
In most cases of JMA, it looks like “standard
140.0E 30.0N 0E 0N”.

in case of _2d=MR
The Mercator projection has one parameter;
use "standard 0E LaD 0E 0N", where LaD is
the latitude where grid point distance is
defined.

in case of _2d=OL
The Lambert conformal projection has 3
parameters; use "standard LoV Latin1 LoV
Latin2" and "others LoP LaP RotAngE 0N",
where LoV is Y-axis longitude, (Latin1, Latin2)
is the first/second latitude where the secant
cone cuts the earth, (LoP, LaP) is
longitude/latitnude of the projection southern
pole, and RotAng is the angle of rotation after
projection. Unfortunately, the practice in JMA
has been failed to write this parameter
properly and you may have data with
zero-filled corresponding fields (as in
2003-03-07).

in case of other horizontal grids
Since there is no projection parameters,
standard or others statements should not be
written.

value representation
Describes how gridded data represents field.
Word representation should be one of them:

value PVAL
values at grid point. This is the default.

value MEAN
average over volume/area around grid point

value REPR
representative value obtained with another
method

packing pack_mode
Describes encoding scheme to be used in
DATA record. See "Packing Type" in the
Application Interface for table of possible
values. By default, 2PAC is assumed.

missing miss_mode
Describes how missing value is to be
represented. Word miss_mode should be one

of them:
missing NONE

There is no method for missing value in this
case. This is the default.

missing UDFV
A certain value is missing value, and grids
with the value should be regarded missing.
see NUSDAS_PARAMETER_CHANGE for
detail.

missing MASK
Grid points with valid data are indicated with
bitmap for each DATA record. See
NUSDAS_MAKE_MASK in the Application
Interface for detail.

information group filename
If the definition file has this statement, INFO
record will be written at the time of data file
creation. It can be stated as many as needed.
Size and contents of the INFO record will be
that of file specified with a relative path
filename. Word group should be a
four-character name that identifies the INFO
record.

subcntl num group size group size ...
If the definition file has this statement, SUBC
record is allocated at the time of data file
creation. Each SUBC record is secified with a
pair of group (four-character name that
identifies the SUBC record) and size (size of
the SUBC record). Word num specifies the
number of group-size pairs.

forcedlen size
This statement is required if you use ES
interface. If the definition file has this
statement, each records in data file will have
size bytes. Padding of (size - (payload size))
bytes is used after record payload. Error
occurs if a record exceeds the specified size.
By default, records are aligned contiguously
(without padding between record payload and
4-byte record trailer).

A.2 Pathname Expansion

Pathname of data file is determined by
path ... and filename filename statements in the

definition file, after substitution of following keywords
to values of data identifier.

Table A.2: Keywords of Pathname Expansion
Keyword Meaning
_model model name, first 4 characters of type1
_2d 2D grid structure, 5th and 6th

characters of type1
_3d 2D grid positioning, 7th and 8th

characters of type1
_attibute first two characters of type2
_time time attribute, last two characters of

type2
_name type3
_space equivalent to '_2d_3d'
_base base time
_valid valid time
_member Member

Note that plane and element is not used in

pathname expansion, since they cannot 'split' file.
Similarly, using '_valid' or '_member' will cause
malfunction if you declare 'valid ... in' or 'member ...
in' respectively. On the other hand, if you declare
'valid ... out' or 'member ... out', you must use
'_valid' or '_member' respectively in path ... or
filename filename statements; otherwise data files
for different valid times or members will collide (have
same names and may cause malfunction).
A.3 Elementmap

Elementmap defines whether a certain
element is allowed or not for certain combination of
member, valid time, and plane. To understand
elementmap, first think of a bitmap of size M * V * P
(or Fortran logical array with DIMENSION(P, V, M)),
where M, V, P are total number of members, valid
times, and planes. For each bit, '1' declares that the
element is allowed, and '0' does oppositely.
Elementmap written in the definition file is the bitmap
in a kind of run-length-encoding (RLE) compression.

The syntax of elementmap is written in BNF
as follows:

elementmap := member_loop | vtime_loop |
vtime_line
member_loop := 3 (nmember
member_block)+
member_block := vtime_loop | list_line
vtime_loop := 2 (nvtime bit_list)+
vtime_line := list_line | contiguous_line
list_line := 1 bit_list
bit_list := ('0' | '1')+
contiguous_line := 0
nmember := positive integer
nvtime := positive integer

They are interpreted as follows:
 contiguous_line tells that the element is allowed

for all planes for certain valid time and member.
 list_line tells that the element is allowed only for

planes indicated with symbol 1 in bit_list. The
size of bit_list should be the number of planes.

 either contiguous_line or list_line, as vtime_line,
can be used for elementmap even if the dataset
has many valid times or members: it is assumed
that the contiguous_line specification is
repeated as many as needed.

 vtime_loop tells that the elementmap depends
on the valid time. Sum of repeated nvtime
numbers must be the number of valid times. If
all nvtime's are 1, bit_list describes elementmap
subarray for each valid time of corresponding
order. When nvtime is more than 1, bit_list is
treated as if it is repeated nvtime times.

 member_loop tells that the elementmap
depends on the member. Sum of repeated
nmember numbers must be the number of
members. If all nmember's are 1,
member_block describes elementmap subarray
for each valid time of corresponding order.
When nmember is more than 1, member_block
is treated as if it is repeated nmember times.

The author admits the rule above is far from
human understanding. Indeed, terms vtime_loop or
member_loop are hardly used. If you are not sure,
declare elements with contiguous_line. It will look
like following:

element 4
elementmap PSEA 0
elementmap T 0
elementmap U 0
elementmap V 0

Allowing too much data records does not

mean increase of data file size or data access
speed/latency. Thus you can safely declare
elements with 'no limitation' settings.

APPENDIX B: DATA FILE FORMAT
B.1 Common Record Structure

Common structure of records of NuSDaS
data file is shown in the Table B.1.

Table B.1: Record Structure
Offset Length
byte Byte

Type Description

0 4 Integer n: record size
4 4 character Kind of record
8 4 integer m: payload size
12 4 integer Creation date and

time in time_t value
16 m – 8 — PAYLOAD of record;

see Table B.2–B.7
for detail

8 + m N – m
– 8

— Padding; should be
ignored

n – 4 4 integer n: record size
Note that the `Type' is written in strange

notation deliberately. They should NOT be directly
interpreted as a type name of certain programming
language, like C or Fortran.

character
Byte value should be interpreted as character
code of ISO 646 IRV. Meaning of byte whose
MSB is set is currently undefined.

integer
Certain number (usually 4) of bytes
represents signed integer value. Negative
value is represented with complement of 2.
Note that big endian ordering of bytes is
always used in NuSDaS data file.

unsigned integer
Certain number (usually 4) of bytes
represents unsigned integer value.

floating
Bits in 4 or 8 bytes are used to compose IEEE
754 floating point value
.

Some field is array, and that is indicated in
notation like C. For example, a field noted character
[2][n_lv][6] is equivalent to memory image of
unsigned char [2][n_lv][6] in C or

CHARACTER(LEN = 6), DIMENSION(N_LV, 2) in
Fortran. However, one-dimensional array notation
'[size]' for scaler character field is omitted for
simplicity.

Following tables describes various kinds of
PAYLOAD part in Table B.1. Note that hereafter
the symbol ‘∆’ denotes a space (ASCII SPC).
B.2 NUSD Record

NUSD record conveys some metadata and
information on file structure.
Table B.2: NUSD Record Format (only Payload
shown)
Offset Length
Byte Byte

Type Description

16 80 Character creator host and
user name.

96 4 Integer NuSDaS version:
currently 10

100 4 unsigned
integer

total number of
bytes in file

104 4 Integer number of records
in file

108 4 Integer number of INFO
records in file

112 4 Integer number of SUBC
records in file

B.3 CNTL Record
CNTL Record provides metadata mainly on

georeference.
Table B.3: NuSDaS v1.0 CNTL Record Format (only

Payload shown)
Offset Length
Byte Byte

Type Description

16 16 character data type
32 12 character base time in format

like "date
+%Y%m%d%H%M"

44 4 integer base time in
sequential minute
from
1801-01-01T000Z

48 4 character time unit for valid
times

52 4 integer n_dc: number of
members

56 4 Integer n_vt: number of valid
times

60 4 Integer n_lv: number of
planes

64 4 Integer n_el: number of
elements

68 4 character Map projection
72 2 * 4 Integer [2] nx and ny: number

of grid points in X
and Y directions

80 2 * 4 Floating
[2]

grid index of
reference point

88 2 * 4 Floating
[2]

latitude/longitude of
reference point

96 2 * 4 Floating
[2]

latitude/longitude
distance between
grid points

104 2 * 4 Floating
[2]

1st standard
latitude/longitude of
map projection

112 2 * 4 Floating
[2]

2nd standard
latitude/longitude of
map projection

120 2 * 4 Floating
[2]

3rd standard
latitude/longitude of

map projection
128 2 * 4 Floating

[2]
4th standard
latitude/longitude of
map projection

136 4 Character PVAL:
representation
method of grid

140 2 * 4 --- reserved for future
use of map
projection

148 6 * 4 --- reserved for future
use

172 n_dc *
4

character
[n_dc][4]

list of member name

(1) n_vt *
8

Integer
[2][n_vt]

list of valid time pair

(2) n_lv *
12

character
[2][n_lv][6]

list of plane pair

(3) n_el *
6

character
[n_el][6]

List of element name

172 + 4 * n_dc
172 + 4 * n_dc + 8 * n_vt
172 + 4 * n_dc + 8 * n_vt + 12 * n_lv
B.4 INDX Record

Payload of INDX record is an array of 32bit
unsigned integer whose size is n_dc * n_vt * n_lv *
n_el. It provides byte offset of records in the
datafile. Value zero indicates that the record is not
written. Value -1 indicates that the record is
prohibited by elementmap statements.
B.5 SUBC Record

SUBC records convey various kind of
metadata. They are subclassified with four-letter
identifier.

B.5.1 SUBC ETA/SIGM record
This kind of SUBC record is employed to

describe vertical grid structure. You can get pressure
by p[k] = b[k] * (p_surface - c) + a[k], where k is the
index of vertical plane and p_surface the surface
pressure.
Table B.5.1: SUBC ETA/SIGM Record Format (only
Payload shown)
Offset Length
byte Byte

Type Description

16 4 Character "ETA∆" or
"SIGM"

20 4 Integer number of
planes

24 (n_lv + 1)
* 4

float [n_lv +
1]

parameter a

... (n_lv + 1)
* 4

float [n_lv +
1]

parameter b

... 4 Float parameter c
B.5.2 SUBC Z* record
Table B.5.2: SUBC Z* Record Format (only Payload
shown)
Offset Length
Byte Byte

Type Description

16 4 character "Z*∆∆"
20 2 * 4 integer nx and ny: number

of grid points in X
and Y directions

28 4 integer number of planes
32 (n_lv +

1) * 4
float [n_lv
+ 1]

z-star location for
each plane

... 4 Float height of model top

... (nx *
ny) * 4

float [nx *
ny]

Surface height

B.5.3 SUBC TDIF record
This kind of SUBC record is employed

when time integration/average product (the
_attribute should be AV or MV) is stored in a dataset
for snapshot value (the _attribute is SV). The size of
SUBC TDIF record depends on parameters n_dc
(members) and n_vt described in CNTL record.

DATA records that refers this SUBC TDIF
record has its element name beginning with
underline ('_') in addition to that of the element name

table.
Table B.5.2: SUBC TDIF Record Format (only
Payload shown)
Offset Length
byte Byte

Type Description

16 4 Character "TDIF"
32 4 * n_dc

* n_lv
integer
[n_dc][n_lv]

dt (in seconds)

... 4* n_dc
* n_lv

float
[n_dc][n_lv]

span: integration
time span (in
seconds)

 the beginning of integration time is given by
valid1 + dt - span.

 the end of integration time is given by valid1 +
dt.

B.5.4 SUBC RADR record
This kind of SUBC record is used for

datasets of radar observation. The size of SUBC
RADR record depends on parameters n_dc
(members), n_vt, n_lv, and n_el described in CNTL
record.
Table B.5.4: SUBC RADR Record Format (only
Payload shown)
Offse
t

Lengt
h

Byte Byte

Type Descriptio
n

16 4 Character "RADR"
32 4*

n_dc *
n_vt *
n_lv *
n_el

integer
[n_dc][n_vt][n_lv][n_
el]

Flags

Value of flags has these means:
0

ND.
1

Echo exists.
2

No echo exists.
3

No operation.
B.5.5 SUBC ISPC record

This kind of SUBC record is used for
datasets of synthesized multiple radar observations.

The size of SUBC ISPC record depends on
parameters n_vt, n_lv, and n_el described in CNTL
record.
Table B.5.5: SUBC ISPC Record Format (only
Payload shown)
Offse
t

Lengt
h

byte Byte

Type Descriptio
n

16 4 Character "ISPC"
32 512 *

n_vt *
n_lv *
n_el

Integer
[n_vt][n_lv][n_el][12
8]

Flags

B.6 DATA Record
DATA record is reclassified with its method

of representing missing value.
B.6.1 DATA NONE record

DATA NONE record has no missing value.
Table B.6.1: DATA NONE Record Format (only
Payload shown)
Offset Length
byte Byte

Type Description

16 4 character member name
20 8 integer [2] valid times
28 12 character

[2][6]
plane names

40 6 character element name
46 2 --- Reserved
48 2 * 4 integer[2] nx and ny: number

of grid points in X
and Y directions

56 4 Character packing scheme
such as "2PAC"

60 4 Character "NONE"
64 PACKED DATA: see

following description

B.6.2 DATA UDVF record
DATA UDVF record has one missing value.

All grids with this missing value should be
considered to be missing.
Table B.6.2: DATA UDFV Record Format (only
Payload shown)
Offset Length
Byte Byte

Type Description

16 4 character member name
20 8 integer [2] valid times
28 12 character

[2][6]
Plane names

40 6 character element name
46 2 --- Reserved
48 2 * 4 integer[2] nx and ny:

number of grid
points in X
and Y
directions

56 4 character packing
scheme such
as "2PAC"

60 4 character "UDFV"
64 (various) integer/floating Missing value
... PACKED

DATA: see
following
description

B.6.3 DATA MASK record
DATA MASK record represents missing

grids using a bitmap whose number of bits is equal
to the number of grids.
Table B.6.3: DATA MASK Record Format (only
Payload shown)
Offset Length
byte Byte

Type Description

16 4 character member name
20 8 integer [2] valid times
28 12 character

[2][6]
plane names

40 6 character element name
46 2 --- Reserved
48 2 * 4 integer[2] nx and ny: number

of grid points in X
and Y directions

56 4 character packing scheme
such as "2PAC"

60 4 character "MASK"
64 4 integer n_ms: number of

bytes used for mask
bitmap

68 N_ms bitmap mask bitmap
... PACKED DATA: see

following description
B.6.4 Packed Data Format

When the packing scheme is 1PAC, 2PAC,
or 2UPC, two 4-byte floating-point field base and
amp is followed by an array of packed type. See
Application Interface about the packed type.
Unpacking is adding base after multiplying amp.

When the packing scheme is 4PAC, it is
similar to 2PAC but base and amp is 8-byte
floating-point value.

When the packing scheme is RLEN, three
4-byte integer field nbit, maxv, num is followed by
octet stream containing compressed bit stream.

When the packing scheme is GRIB, the
GRIB octet stream itself will be the packed data;
although this feature is not implemented yet.

Otherwise, the packed data is array of
packed type. Note that if the packing scheme is
'N1I2' the packed value is 10 times of unpacked
value.
B.7 END Record

END record is located at the end of data file.
The contents are shown in Table 6.

Table B.7: NuSDaS v1.0 END Record Format (only
Payload shown)
Offset Length
Byte Byte

Type Description

16 4 Unsigned
integer

total number of
bytes in file

20 4 Integer Number of
records in file

APPENDIX C: APPLICATION INTERFACE
C.1 Function Interface

 Application program is supposed to include
“nusdas.h” in C, and “nusdas_fort.h” in
Fortran.

 Symbol N_SI4 in following text is typedef-ed
name in "nusdas.h". It means 32bit signed
integer type, and is equivalent to int in most
environments.

 In Fortran, subroutine arguments given to place
declared as CHARACTER(n) must have at
least n characters length.

 In C, function arguments given to place
declared as const char * must have at least the
same size to corresponding Fortran interface.
Character array have not to be terminated with
NUL ('¥0') character.

 In NuSDaS interface functions/subroutines, the
first 3-10 arguments and the last argument in
Fortran have common meaning. They looks like
as following.

/* C */
int nusdas_xxx(type1, type2, type3, btime,
memb, vtime1, plane1, elem, ...)
int nusdas_xxx2(type1, type2, type3,
btime, memb, vtime1, vtime2, plane1,
plane2, elem, ...)
 const char type1[8];
 const char type2[4];
 const char type3[4];
 N_SI4 *btime;
 const char memb[4];
 N_SI4 *vtime1;
 N_SI4 *vtime2;
 const char plane1[6];
 const char plane2[6];
 const char elem[6];
! Fortran
SUBROUTINE NUSDAS_XXX(type1,
type2, type3, btime, memb, vtime1, plane1,
elem, ..., iostat)
SUBROUTINE NUSDAS_XXX2(type1,
type2, type3, btime, memb, vtime1, vtime2,
plane1, plane2, elem, ..., iostat)
 CHARACTER(8):: type1
 CHARACTER(8):: type2
 CHARACTER(4):: type3
 INTEGER:: btime

 CHARACTER(4):: memb
 INTEGER:: vtime1
 INTEGER:: vtime2
 CHARACTER(6):: plane1
 CHARACTER(6):: plane2
 CHARACTER(6):: elem
 INTEGER, INTENT(OUT):: iostat

Meaning of arguments are as follows.
Table C.1 Common arguments

symbol Description
type1 Data type, 1st component
type2 Data type, 2nd component
type3 Data type, 3rd component
btime Base time
memb Member name
vtime1 Valid time, start
vtime2 Valid time, end
plane1 Plane name, upper
plane2 Plane name, lower
elem Element name

Some subroutines/functions have two

forms: name of one ends with '2', and the other
without '2'. In such a case, the with-2-form is the
essential interface. Calling the latter, the no-2-form,
is equivalent to that of the with-2-form with vtime2
and plane2 set to 1 and plane1 respectively.

C.1.1 NUSDAS_READ
Reads a two-dimensional array from

NuSDaS dataset.
SYNOPSIS

/* C */
int nusdas_read(type1, type2, type3,
btime, memb, vtime1, plane1, elem, udata,
utype, usize)
int nusdas_read2(type1, type2, type3,
btime, memb, vtime1, vtime2, plane1,
plane2, elem, udata, utype, usize)
 void *udata;
 N_SI4 utype;
 N_SI4 usize;
! Fortran
SUBROUTINE NUSDAS_READ(type1,
type2, type3, btime, memb, vtime1, plane1,
elem, udata, utype, usize, iostat)
SUBROUTINE NUSDAS_READ2(type1,
type2, type3, btime, memb, vtime1, vtime2,
plane1, plane2, elem, udata, utype, usize,
iostat)
 ! udata may be any type
 INTEGER, INTENT(IN):: utype
 INTEGER, INTENT(IN):: usize

ARGUMENTS
The vtime1 value -1 can be used as

wildcard: first record found in the dataset was
returned.

udata
user data array, to which the requested

data will be copied.
utype

see table of User Data Array Type.
usize

number of array elements allocated user
data. It must equal to or be larger than that of
dataset.

RETURN VALUE
> 0 Succeeded. The value is number of array

elements obtained.
0 Warning: requested data record not written

yet in existing data file.
-1 Warning: requested data file not created

yet.
-2 Warning: "requested data is not registered

yet".

-3 Error: inconsistency between CNTL and
DATA records.

-4 Error: insufficient size of user array.
-5 Error: conversion to specified data type is

not supported.
-6 Error: malformed run-length encoded data.
-7 Error: malformed CNTL or INDX record.
-10 to
-99

(see error code table)

DESCRIPTION

NUSDAS_READ and NUSDAS_READ2
reads a data record to user data array udata. If you
are going to read data in a layer or a time span, use
NUSDAS_READ2.

C.1.2 NUSDAS_WRITE
Writes a two-dimensional array into

NuSDaS dataset.
SYNOPSIS

/* C */
int nusdas_write(type1, type2, type3,
btime, memb, vtime1, plane1, elem, udata,
utype, usize)
int nusdas_write2(type1, type2, type3,
btime, memb, vtime1, vtime2, plane1,
plane2, elem, udata, utype, usize)
 void *udata;
 N_SI4 utype;
 N_SI4 usize;
! Fortran
SUBROUTINE NUSDAS_WRITE(type1,
type2, type3, btime, memb, vtime1, plane1,
elem, udata, utype, usize, iostat)
SUBROUTINE NUSDAS_WRITE2(type1,
type2, type3, btime, memb, vtime1, vtime2,
plane1, plane2, elem, udata, utype, usize,
iostat) ! udata may be any type
 INTEGER, INTENT(IN):: utype
 INTEGER, INTENT(IN):: usize

ARGUMENTS
udata

user data array, from which the requested
data will be copied.

utype
see table of User Data Array Type.

usize
number of array elements allocated user

data. It must equal to than that of dataset.
RETURN VALUE

> 0 Succeeded. The value is number of array
elements written.

-2 Warning: requested data is not registered
yet.

-3 Error: size of user data array is too small.
-4 Error: conversion to specified data type is

not supported.
-5 Error: data record size exceeds fixed

record size.
-6 Error: invalid missing value style.
-7 Error: mask bit pattern undefined.
-8 Error: overflow in packing.

-9 Error: invalid compression scheme.
-10 to
-99

(see error code table)

DESCRIPTION

NUSDAS_WRITE and NUSDAS_WRITE2
writes a data record from user data array udata. If
you are going to write data in a layer or in a time
span, use NUSDAS_WRITE2.

C.1.3 NUSDAS_ALLFILE_CLOSE
SYNOPSYS

/* C */
int nusdas_allfile_close(closemode)
 int closemode;
! Fortran
SUBROUTINE
NUSDAS_ALLFILE_CLOSE(closemode,
iostat)
 INTEGER:: clodemode

ARGUMENTS
closemode

one of following symbols:
N_FOPEN_READ

all files opened as read-only are closed.
N_FOPEN_WRITE

all files opened as writable are closed.
N_FOPEN_ALL

all files are closed.
RETURN VALUE

> 0 Succeeded. The value is number of files
successfully closed.

< 0 Error: the absolute value is number of files
that cause error.

C.1.4 NUSDAS_ESF_FLUSH

flushes write buffer to ES files and close it.
SYNOPSIS

/* C */
int nusdas_esf_flush(type1, type2, type3,
btime, memb, vtime1);
int nusdas_esf_flush2(type1, type2,
type3, btime, memb, vtime1, vtime2);
! Fortran
SUBROUTINE
NUSDAS_ESF_FLUSH(type1, type2,
type3, btime, memb, vtime1, iostat)
SUBROUTINE
NUSDAS_ESF_FLUSH2(type1, type2,
type3, btime, memb, vtime1, vtime2, iostat)

C.1.5 NUSDAS_GRID
SYNOPSIS

/* C */
int nusdas_grid(type1, type2, type3,
btime, memb, vtime1, proj, gridsize,
geometry, tattr, io)
int nusdas_grid2(type1, type2, type3,
btime, memb, vtime1, vtime2, proj, gridsize,
geometry, tattr, io)
 char proj[4];
 N_SI4 gridsize[2];
 float geometry[7][2];
 char tattr[4];
 char io[4];
SUBROUTINE NUSDAS_GRID(type1,
type2, type3, btime, memb, vtime1, proj,
gridsize, geometry, tattr, io, iostat)
SUBROUTINE NUSDAS_GRID2(type1,
type2, type3, btime, memb, vtime1, vtime2,
proj, gridsize, geometry, tattr, io, iostat)
 CHARACTER(4):: proj
 INTEGER:: gridsize(2)
 REAL:: geometry(2, 7)
 CHARACTER(4):: tattr
 CHARACTER(4):: io

ARGUMENTS
proj

four-character symbol of projection type. The
name is different from that in type1 string, and
listed in Table C.1.5.

gridsize
grid size.

geometry
byte offset 80--135 in CNTL record.

tattr
four-character symbol which denotes how
grid point value represents physical field with
regard to spatial dimensions. Note that it is
different from symbols in type2 string. See
value statement in the definition file
description for possible values.

io
one of following symbols

N_IO_PUT
writes SUBC record.

N_IO_GET

reads SUBC record.

RETURN VALUE
0 Succeeded.
-1 Error: requested file not exist.
-2 Error: requested file malformed.
-5 Error: invalid argument.
-10 to -99 (see error code table)

C.1.6 NUSDAS_INQ_CNTL
SYNOPSIS

/* C */
int nusdas_inq_cntl(type1, type2, type3,
btime, memb, vtime1, param, value, vsize)
int nusdas_inq_cntl2(type1, type2, type3,
btime, memb, vtime1, vtime2, param,
value, vsize)
 int param;
 void *value;
 N_SI4 *vsize;
! Fortran
SUBROUTINE
NUSDAS_INQ_CNTL(type1, type2, type3,
btime, memb, vtime1, param, value, vsize,
iostat)
SUBROUTINE
NUSDAS_INQ_CNTL2(type1, type2,
type3, btime, memb, vtime1, vtime2,
param, value, vsize, iostat)
 INTEGER:: param
 ! value may be different type
 INTEGER:: visze

DESCRIPTION

Meaning of arguments is same to that of
NUSDAS_INQ_DEF. However, only following
parameter symbols are acceptable:
N_MEMBER_NUM, N_MEMBER_LIST,
N_VALIDTIME_NUM, N_VALIDTIME_LIST,
N_PLANE_NUM, N_PLANE_LIST,
N_ELEMENT_NUM, and N_ELEMENT_LIST. See
also NUSDAS_GRID to get grid information from
CNTL record.

RETURN VALUE
>= 0 Succeeded. Value is number of array

elements retrieved.
-1 Error: size of value array insufficient.
-2 Error: value array not allocated
-3 Error: invalid argument.
-10 to
-99

(see error code table)

C.1.7 NUSDAS_INQ_DATA
Note that this function is not provided in the

first version.
SYNOPSIS

/* C */
int nusdas_inq_data(type1, type2, type3,
btime, memb, vtime1, plane1, elem, param,
value, vsize)
int nusdas_inq_data2(type1, type2, type3,
btime, memb, vtime1, vtime2, plane1,
plane2, elem, param, value, vsize)
! Fortran
SUBROUTINE
NUSDAS_INQ_DATA(type1, type2, type3,
btime, memb, vtime1, plane1, elem, param,
value, vsize, iostat)
SUBROUTINE
NUSDAS_INQ_DATA2(type1, type2,
type3, btime, memb, vtime1, vtime2,
plane1, plane2, elem, param, value, vsize,
iostat)

DESCRIPTION
This subroutine inquires metadata about

the DATA record. Use NUSDAS_INQ_CNTL or
NUSDAS_INQ_DEF to inquire about CNTL record,
and use NUSDAS_INQ_DEF about definition file.

ARGUMENTS
param

may be following values
N_GRID_SIZE

Grid size of the DATA record will be stored at
value.

N_PC_PACKING
Four letters indicating Packing Type will be
stored at value. Note that the symbol
N_PACKING is absent in header file of the
operational version.

N_MISSING_MODE
Four letters indicating missing value handling
will be stored at value. Possible values are
NONE, UDFV, or MASK. See missing
statement of the definition file description.
Note that the symbol N_PACKING is absent
in header file of the operational version.

N_MISSING_VALUE
Missing value of the DATA record will be

stored at value. This query is available only
when previous query of N_MISSING_MODE
returns UDFV.

value
array to which parameter will be stored.

vsize
number of elements (not byte size) of array
value.

RETURN VALUE
>= 0 Succeeded. Value is number of array

elements retrieved.
-1 Error: size of value array insufficient.
-2 Error: value array not allocated
-3 Error: invalid argument.
-10 to
-99

See error code table

C.1.8 NUSDAS_INQ_DEF
SYNOPSIS

/* C */
int nusdas_inq_def(type1, type2, type3,
param, value, vsize)
 void *value;
 N_SI4 vsize;
! Fortran
SUBROUTINE NUSDAS_INQ_DEF(type1,
type2, type3, param, value, vsize, iostat)
 ! value may be any type
 INTEGER:: vsize

ARGUMENTS
param

one of following symbols:
N_MEMBER_NUM

number of members. value is assumed to be
INTEGER.

N_MEMBER_LIST
list of members. that is assumed to be array
of CHARACTER(4).

N_VALIDTIME_NUM
number of valid times. value is assumed to be
INTEGER.

N_VALIDTIME_LIST
list of forecast time (offset of valid time from
base time). The value is assumed to be array
of INTEGER. Note that the value is NOT
ALWAYS IN MINUTES.

N_VALIDTIME_UNIT
four-letter symbol of unit of time, which is
used in interpreting N_VALIDTIME_LIST.
value is assumed to be CHARACTER(4).

N_PLANE_NUM
N_PLANE_LIST
N_ELEMENT_NUM
N_ELEMENT_LIST
N_ELEMENT_MAP
N_PROJECTION
N_GRID_SIZE
N_GRID_DISTANCE
N_GRID_BASEPOINT
N_STAND_LATLON
N_SPARE_LATLON

value
array to which parameter will be stored.

vsize
number of elements (not byte size) of array
value.

RETURN VALUE
>= 0 Succeeded. Value is number of array

elements retrieved.
-1 Error: size of value array insufficient.
-2 Error: value array not allocated
-3 Error: invalid argument.
-10 to
-99

See error code table

C.1.9 NUSDAS_INQ_NRDBTIME
get list of basetime

SYNOPSIS

/* C */
int nusdas_inq_nrdbtime(type1, type2,
type3, bdata, bsize, verbose)
 N_SI4 *bdata;
 N_SI4 *bsize;
 ! verbose should be constant macro
defined in the header file
! Fortran
SUBROUTINE
NUSDAS_INQ_NRDBTIME(type1, type2,
type3, bdata, bsize, verbose, iostat)
 INTEGER:: bsize
 INTEGER:: bdata(bsize)

ARGUMENTS
bdata

array to which the list of base time will be
stored.

bsize
element number (not byte size) of array bdata

verbose
one of following symbols:

N_ON
message is output while search is proceeding

N_OFF
message is suppressed

RETURN VALUE
>= 0 Succeeded. Value is number of array

elements retrieved.
-1 Error: size of value array insufficient.
-2 Error: value array not allocated
-3 Error: invalid argument.
-4 Error: cannot open file or directory.
-10 to
-99

See error code table.

LIMITATION
 Current implementation cannot handle dataset

which has more base times than 999.
 The first version of this function does not work in

some path styles.

C.1.10 NUSDAS_INQ_NRDVTIME
Get list of valid time in specified dataset.

/* C */
int nusdas_inq_nrdvtime(type1, type2,
type3, bdata, bsize, verbose)
 N_SI4 *bdata;
 N_SI4 *bsize;
 ! verbose should be constant macro
defined in the header file
! Fortran
SUBROUTINE
NUSDAS_INQ_NRDVTIME(type1, type2,
type3, bdata, bsize, verbose, iostat)
 INTEGER:: bsize
 INTEGER:: bdata(bsize)

ARGUMENTS
bdata

array to which the list of valid time will be
stored.

bsize
element number (not byte size) of array bdata

verbose
one of following symbols:

N_ON
message is output while search is proceeding

N_OFF
message is suppressed

RETURN VALUE
See NUSDAS_INQ_NRDBTIME.

LIMITATION
The first version does not support this
function.

C.1.11 NUSDAS_IOCNTL
SYNOPSIS

/* C */
int nusdas_iocntl(param, value)
! Fortran
SUBROUTINE NUSDAS_IOCNTL(param,
value, iostat)

ARGUMENTS
param

Should be one of following symbols defined in
header file.

N_IO_MARK_END
If value is N_ON, the END record is written to
data file for each call of NUSDAS_WRITE
functions. That is the default; it is safer, but
slower. If value is N_OFF, the END record is
written only when the data file is closed.
Though it makes NUSDAS_WRITE faster,
files may be corrupt and unreadable if writing
program exits without closing the file. Note
that N_ON is assumed when parameter
N_IO_W_FCLOSE is set to N_ON.

N_IO_W_FCLOSE
If value is N_ON, data file opened for write is
closed for each call of NUSDAS_WRITE
functions. That is the default; it is safer, but
slower. If value is N_OFF, such data files will
be closed only when either
NUSDAS_ONEFILE_CLOSE or
NUSDAS_ALLFILE_CLOSE is called
explicitly. Though it makes NUSDAS_WRITE
faster, files may be corrupt and unreadable if
writing program exits without closing the file.
And you will also have to care about shortage
of file handle resource: if too many files are
opened simultaneously, further open may fail.

N_IO_R_FCLOSE
If value is N_ON, data file opened for read is
closed for each call of NUSDAS_WRITE
functions. That is the default; it is safer, but
slower. If value is N_OFF, such data files will
be closed only when either
NUSDAS_ONEFILE_CLOSE or
NUSDAS_ALLFILE_CLOSE is called

explicitly. You will have to care about shortage
of file handle resource.

N_IO_WARNING_OUT
If value is N_ON, subroutines in the NuSDaS
interface output messages on waring/error to
the standard error handle. That is the default.
If value is N_OFF, such messages are
suppressed.

value
Should be N_ON or N_OFF defined in header
file.

RETURN VALUE
NUSDAS_IOCNTL returns 0 when

succeeded, or -1 when error (invalid argument).

C.1.12 NUSDAS_MAKE_MASK
SYNOPSIS

/* C */
int nusdas_make_mask(udata, utype,
usize, bitmap, bitmapsize)
 void *udata;
 N_SI4 *usize;
 char *bitmap;
 N_SI4 *bitmapsize;
! Fortran
SUBROUTINE
NUSDAS_MAKE_MASK(udata, utype,
usize, bitmap, bitmapsize, iostat)
 ! udata may be any type
 INTEGER:: usize
 CHARACTER:: INTENT(OUT)::
bitmap(*)
 INTEGER:: bitmapsize

ARGUMENTS
udata

user data array from which the bitmap is
created. Array elements where data is
missing should be set to the missing value for
the User Data Array Type. For example,
elements equivalent to N_MV_R4 are
regarded as missing if udata is REAL/float
array.

utype
see table of User Data Array Type.

usize
number of array elements allocated user data.

bitmap
character array to which the bitmap will be
stored.

bitmapsize
size of bitmap in bytes.

RETURN VALUE
NUSDAS_MAKE_MASK returns 0 when

succeeded, or -1 when error (bitmap size too small).

C.1.13 NUSDAS_ONEFILE_CLOSE
SYNOPSIS

/* C */
int nusdas_onefile_close(type1, type2,
type3, btime, memb, vtime1)
int nusdas_onefile_close2(type1, type2,
type3, btime, memb, vtime1, vtime2)
! Fortran
SUBROUTINE
NUSDAS_ONEFILE_CLOSE(type1, type2,
type3, btime, memb, vtime1, iostat)
SUBROUTINE
NUSDAS_ONEFILE_CLOSE2(type1,
type2, type3, btime, memb, vtime1, vtime2,
iostat)

RETURN VALUE
1 Specified file is not opened.
0 Succeeded.
-2 Warning: requested data is not registered

yet.
-3 Error: inconsistency between CNTL and

DATA records.
-4 Error: array size too large.
-5 Error: array type mismatch.
-6 Error: too large value in RLE

compression.
-7 Error: malformed CNTL or INDX record.
-10 to
-99

(see error code table)

DESCRIPTION
NUSDAS_ONEFILE_CLOSE closes one

data file specified with the arguments. It should be
called before the end of the calling program which
have called NUSDAS_WRITE series and have
cleared N_IO_W_FCLOSE flag using
NUSDAS_IOCNTL.

C.1.14 NUSDAS_PARAMETER_CHANGE
This function changes one of parameters of

NuSDaS. Note that all parameters have global
effect: once some parameter is changed, the effect
remains until the end of calling process, even when
different data type is accessed. Take care of yourself,
especially on changing N_PC_PACKING,
N_PC_SIZEX, and N_PC_SIZEY.

SYNOPSIS

/* C */
int nusdas_parameter_change(param,
value)
! Fortran
SUBROUTINE
NUSDAS_PARAMETER_CHANGE(param
, value, iostat)

ARGUMENTS
param

specifies what parameter to change. It should
be one of them:

N_PC_MISSING_UI1
missing value when user data array is char.
The value should be (pointer to) the same
type. The default value is UCHAR_MAX.

N_PC_MISSING_SI2
missing value when user data array is short
int (INTEGER*2). The value should be
(pointer to, in C) the same type. The default
value is SHRT_MIN.

N_PC_MISSING_SI4
missing value when user data array is integer.
The value should be (pointer to) the same
type. The default value is LONG_MIN.

N_PC_MISSING_R4
missing value when user data array is float.
The value should be (pointer to) the same
type. The default value is FLT_MAX.

N_PC_MISSING_R8
missing value when user data array is double.
The default value is DBL_MAX. The value
should be (pointer to) the same type.

N_PC_MASK_BIT
bitmap for missing grid points. The value
should be created as bitmap of

NUSDAS_MAKE_MASK. Default value for
the parameter is meaningless, since writing
without initializing bitmap fails (if bitmap
required), or otherwise simply ignored.

N_PC_ID_SET
NRD number to/from which further access is
done. This is useful in switching among many
NRD's providing same data type. N_OFF is
the default.

N_PC_PACKING
packing scheme. See the packing type table
for acceptable values. N_OFF is the default.

N_PC_SIZEX
grid size in X direction. N_OFF is the default.

N_PC_SIZEY
grid size in Y direction. N_OFF is the default.

value
Value to be set as parameter. If NULL is given,
it is equivalent to the default value. If you are
using Fortran interface, be careful to tricky
implementation of NULL in nusdas_fort.h
due to consideration to compilers that does
not support Fortran 95. It will override the
built-in function NULL of Fortran 95 standard,
hence subroutines using NuSDaS interface is
not allowed to use NULL function.

C.1.15 NUSDAS_SUBC_ETA
Setting and reference of SUBC metadata

record for eta vertical coordinate system.
SYNOPSYS

/* C */
int nusdas_subc_eta(type1, type2, type3,
btime, memb, vtime1, nlev, a, b, c, io)
int nusdas_subc_eta2(type1, type2,
type3, btime, memb, vtime1, vtime2, nlev,
a, b, c, io)
 N_SI4 *nlev;
 float *a;
 float *b;
 float *c;
! Fortran
SUBROUTINE
NUSDAS_SUBC_ETA(type1, type2, type3,
btime, memb, vtime1, nlev, a, b, c, io,
iostat)
SUBROUTINE
NUSDAS_SUBC_ETA2(type1, type2,
type3, btime, memb, vtime1, vtime2, nlev,
a, b, c, io, iostat)
 INTEGER nlev;
 REAL:: a(nlev);
 REAL:: b(nlev);
 REAL:: c(nlev);

DESCRIPTION
Features of this function, including

arguments and return value, is the same to those of
NUSDAS_SUBC_SIGM, except for the function
name.

C.1.16 NUSDAS_SUBC_INFO
SYNOPSIS

/* C */
int nusdas_subc_info(type1, type2, type3,
btime, memb, vtime1, infogroup, idata,
isize, io)
int nusdas_subc_info2(type1, type2,
type3, btime, memb, vtime1, vtime2,
infogroup, idata, isize, io)
 char infogroup[4];
 char *iodata;
 N_SI4 *isize;
! Fortran
SUBROUTINE
NUSDAS_SUBC_INFO(type1, type2,
type3, btime, memb, vtime1, infogroup,
idata, isize, io, iostat)
SUBROUTINE
NUSDAS_SUBC_SRF2(type1, type2,
type3, btime, memb, vtime1, vtime2,
infogroup, idata, isize, io, iostat)
 CHARACTER(4):: infogroup
 CHARACTER:: iodata(isize)
 INTEGER:: isize

ARGUMENTS
infogroup

four-letter string that identifies the INFO
record in the data file.

io
one of following symbols

N_IO_PUT
It makes the function write SUBC record.

N_IO_GET
It makes the function read SUBC record.

RETURN VALUE

>= 0 Succeeded. Value is size of INFO record
retrieved.

-1 Error: requested file not exist.
-2 Error: requested file malformed.
-5 Error: invalid argument.
-10 to
-99

(see error code table)

C.1.17 NUSDAS_SUBC_PRESET1
defines the default content of SUBC

records for eta and sigma coordinates.
SYNOPSIS

/* C */
int nusdas_subc_preset1(type1, type2,
type3, subcgroup, nlev, a, b, c)
 char subcgroup[4];
 N_SI4 *nlev;
 float *a, *b, *c;
! Fortran
SUBROUTINE
NUSDAS_SUBC_PRESET1(type1, type2,
type3, subcgroup, nlev, a, b, c, iostat)
 CHARACTER(4):: subcgroup
 INTEGER:: nlev
 REAL:: a, b, c

ARGUMENTS
subcgroup

must be "SIGM" or "ETA∆".
nlev

number of levels
a
b
c

vertical coordinate parameters.

RETURN CODE
0 Succeded
-1 invalid subcgroup value
-2 Too many SUBC records written.
-10 to -99 (see error code table)

C.1.18 NUSDAS_SUBC_SIGM
Setting and reference of SUBC metadata

record for sigma vertical coordinate system.
SYNOPSYS

/* C */
int nusdas_subc_sigm(type1, type2,
type3, btime, memb, vtime1, nlev, a, b, c,
io)
int nusdas_subc_sigm2(type1, type2,
type3, btime, memb, vtime1, vtime2, nlev,
a, b, c, io)
 N_SI4 *nlev;
 float *a;
 float *b;
 float *c;
! Fortran
SUBROUTINE
NUSDAS_SUBC_SIGM(type1, type2,
type3, btime, memb, vtime1, nlev, a, b, c,
io, iostat)
SUBROUTINE
NUSDAS_SUBC_SIGM2(type1, type2,
type3, btime, memb, vtime1, vtime2, nlev,
a, b, c, io, iostat)
 INTEGER nlev;
 REAL:: a(nlev);
 REAL:: b(nlev);
 REAL:: c(nlev);

ARGUMENTS
nlev

number of levels
a
b
c

vertical coordinate parameters
io

one of following symbols
N_IO_PUT

writes SUBC record made from a, b, and c
N_IO_GET

reads SUBC record to a, b, and c
RETURN VALUE

0 Succeeded.
-1 Error: requested file not exist.
-2 Error: requested record not exist.
-3 Error: specified size is different to that of

definition file.

-4 Error: specified number of level is smaller
than that in file.

-5 Error: invalid argument.
-10 to
-99

(see error code table)

C.1.19 NUSDAS_SUBC_SRF

/* C */
int nusdas_subc_srf(type1, type2, type3,
btime, memb, vtime1, plane1, elem,
subcgroup, idata, io)
int nusdas_subc_srf2(type1, type2, type3,
btime, memb, vtime1, vtime2, plane1,
plane2, elem, subcgroup, idata, io)
 char infogroup[4];
 N_SI4 *idata;
! Fortran
SUBROUTINE
NUSDAS_SUBC_SRF(type1, type2, type3,
btime, memb, vtime1, plane1, elem,
subcgroup, idata, io, iostat)
SUBROUTINE
NUSDAS_SUBC_SRF2(type1, type2,
type3, btime, memb, vtime1, vtime2,
plane1, plane2, elem, subcgroup, idata, io,
iostat)
 CHARACTER(4):: infogroup
 INTEGER:: iodata(*)

ARGUMENTS
subcgroup

must be "RADR" or "ISPC"
io

one of following symbols
N_IO_PUT

writes SUBC record.
N_IO_GET

reads SUBC record.

RETURN VALUE
0 Succeeded.
-1 Error: requested file not exist.
-2 Error: requested record not exist.
-3 Error: specified size is different to that of

definition file.
-4 Error: invalid subc group name.
-5 Error: invalid argument.
-10 to
-99

(see error code table)

C.1.20 NUSDAS_SUBC_TDIF
SYNOPSIS

/* C */
int nusdas_subc_tdif(type1, type2, type3,
btime, memb, vtime1, dtime, atime, io)
int nusdas_subc_tdif2(type1, type2,
type3, btime, memb, vtime1, vtime2, dtime,
atime, io)
 N_SI4 *atime, *dtime;
! Fortran
SUBROUTINE
NUSDAS_SUBC_TDIF(type1, type2,
type3, btime, memb, vtime1, dtime, atime,
iostat)
SUBROUTINE
NUSDAS_SUBC_TDIF2(type1, type2,
type3, btime, memb, vtime1, vtime2, dtime,
atime, iostat)
 INTEGER:: atime(*), dtime(*)

ARGUMENTS
dtime

difference of real valid time from nominal valid
time in minutes.

atime
accumulation time in seconds.

io
one of following symbols

N_IO_PUT
writes SUBC record.

N_IO_GET
reads SUBC record

RETURN VALUE

0 Succeeded.
-1 Error: requested file not exist.
-2 Error: requested record not exist.
-3 Error: specified size is different to that of

definition file.
-10 to
-99

(see error code table)

C.2 Tables
C.2.1 Data Identifier

MODEL NAME
This horizontal grid name is used as 1st

through 4th letter of function argument type1 or
_model for type1 statement in the definition file.

Table C.2.1A: Model Name
Value Model description
_GSM global spectral model
_RSM regional spectral model
_MSM Mesoscale model
_TYM typhoon model
_DCD decoded observation bulletins
_SRF very short-range precipitation forecast
_WFM week-range ensemble model
_SF1 month-range ensemble model
_SF4 four-month-range ensemble model
_XXX (reserved for data from unspecified

creation process)

HORIZONTAL GRID NAME
This horizontal grid name is used as 5th and

6th letter of function argument type1 or _2d for type1
statement in the definition file.

Table C.2.1B: Horizontal Grid Name
Name Description
LL latitude-longitude regular grid
LM Lambert conformal projection
PS Polar Stereographic projection
GS Gaussian grids
MR Mercator projection
OL Oblique-axis (rotated) lambert conformal

projection
RD Local Cartesian coordinate for radar
ST Station data
YP Meridional vertical cross section using

pressure coordinate
XP East-west vertical cross section using

pressure coordinate
XX (reserved for data on unknown grids)

VERTICAL GRID NAME
This horizontal grid name is used as 7th and

8th letter of function argument type1 or _3d for type1
statement in the definition file.

Table C.2.1C: Vertical Grid Name
name Description
PP isobaric plane/layer
ET eta vertical coordinate plane/layer
SG sigma vertical coordinate plane/layer
HB hybrid vertical coordinate plane/layer
LA latitude (for vertical cross section data)
LO longitude (for vertical cross section data)
ZZ plane/layer specified by height
TH isentropic plane/layer
ZS Z* vertical coordinate plane/layer
XX (reserved for data on unknown grids)

DATA ATTRIBUTE NAME

This horizontal grid name is used as the
first two letter of function argument type2 or
_attribute for type2 statement in the definition file.

Table C.2.1D: Data Attribute Name
name Description
FC Forecast
EA early analysis
AA cycle analysis
RA Reanalysis
CC Constants
OB Observations
GS Guess
XX (reserved for data of unknown nature

TIME ATTRIBUTE NAME
This horizontal grid name is used as the 3rd

and 4th letter of function argument type2 or _time for
type2 statement in the definition file. When this
value is “MV” or “AV”, special conventions are
applied: please see notes on element name table.

Table C.2.1E: Time Attribute Name
name Description
SV snapshot: the valid time has only one

significant value
MV time-average value for time span specified

by valid1 and valid2
AV summation value for time span specified by

valid1 and valid2
DV Standard deviation value for region

specified by valid1 and valid2
... ...
XX (reserved for data of unknown nature)

PLANE NAME

This horizontal grid name is used as the
function argument plane1 or plane2.

Table C.2.1F: Plane Name
Name Vertical coordinate Description
SURF∆∆ surface (*)
ECTOP∆

Any
echo top of radar

PP Pressure [hPa] Number
Others Level index

(*) The sea level pressure is represented as
element "PSEA " at plane "SURF ", not “PRES” at
the mean sea level.

C.2.2 Packing Type

These symbols are used for packing
specification of NUSDAS_PARAMETER_CHANGE.

Table C.2.2 Packing Type
Symbol deffile Description
N_P_1PAC 1PAC packing to signed 8bit integer
N_P_2PAC 2PAC packing to signed 16bit

integer
"2UPC" 2UPC packing to unsigned 16bit

integer
N_P_4PAC 4PAC packing to signed 32bit

integer

N_P_I1 I1 signed 8bit integer
N_P_I2 I2 signed 16bit integer
N_P_N1I2 N1I2 packing to signed 16bit

integer: factor is 10
N_P_I4 I4 signed 32bit integer
N_P_R4 R4 IEEE 32bit float
N_P_R8 R8 IEEE 64bit float
N_P_RLEN RLEN Run Length Encoding
N_P_GRIB GRIB GRIB version 2 (not

implemented yet)

C.2.3 Error Code of NuSDaS library
All NuSDaS functions in C interface return

int, and subroutines in Fortran interface return
INTEGER through the last argument. Meaning of
the result code is shown in following table. Please
note that the meaning of result code larger than -10
depends on what function you called.

Table C.2.3 Common Error Code
code Description
-10 memory allocation failure
-11 bad type1 or type2
-12 invalid character in type1/type2/type3
-13 non-existent type1/type2/type3
-19 data type1/type2 completion table does not

found
-20 too many definition files are opened
-21 definition file not found nor readable
-31 too large dataset declared by definition file
-32 Memory allocation failure
-33 lines in definition file are missing or not in

correct order
-34 malformed ELEMENTMAP specification
-40 type1 undefined in definition file
-41 type2 undefined in definition file
-42 type3 undefined in definition file
-43 number of valid times undefined in definition

file
-44 list of valid times undefined in definition file
-45 Number of planes undefined in definition file
-46 list of planes undefined in definition file
-47 number of elements undefined in definition

file

-48 list of elements undefined in definition file
-49 size of grid undefined in definition file
-50 invalid base time and valid time combination
-51 data file directory not found or mkdir error
-52 too many data files are opened
-53 cannot create data file
-54 NUSD record malformed or unreadable
-55 CNTL record malformed or unreadable
-56 INDX record malformed or unreadable
-57 END record malformed or unreadable
-60 I/O error (in datafile initialization)
-61 Memory allocation error (in datafile

initialization)
-62 specified data is not allowed by definition file

(in datafile initialization)
-63 record larger than fixed record size (in

datafile initialization)
-64 INFO source file specified but not readable
-65 cannot write NUSD record (in closing of

datafile)
-66 cannot write INDX record (in closing of

datafile)
-67 cannot write END record (in closing of

datafile)
-68 write into read-only file
-69 write into dataset with NRD number 50 or

more
-70 open error in ES routines
-71 write error in ES routines
-72 read error in ES routines
-73 I/O error in ES routines
-76 invalid unit number is used in ES routines
-77 I/O error in ES routines
-78 the file is not ES.
-79 memory allocation failure in ES routines
-99 I/O error

C.2.4 User Data Array Type
Table C.2.4 gives type symbols are used for

argument utype for NUSDAS_READ and
NUSDAS_WRITE subroutines. Missing value
symbols are used as udata value for
NUSDAS_MAKE_MASK.

C.2.5 NuSDaS Element Table

 Table C.2.5 shows the list of registered
elements.

 GRIB1 field shows corresponding GRIB (edition
1) parameter indicator. This can be used in
conversion to GRIB 1. Asterisk '*' before the
code indicates that the NuSDaS element name
is NOT used in case of conversion from GRIB 1,
generally because the units is different from that
in GRIB.

 GRIB parameter indicator more than 127 is local
assignment of Japan Meteorological Agency.

 When you are handling data integrated over
time (i.e. the time attribute in type2 is AV),
multiply [s] to the units in this table.

 Element names beginning with underline
character '_' are used when the time attribute of
type2 is SV, which is properly used for dataset
of snapshot data. They indicate that the element
is time integration (or maybe average). Refer
“SUBC TDIF record” to obtain information on
integration time. In case of such time-integrated
data, you have also to multiply s to the units in
this table.

Table C.1.5: proj parameter values, returned from NUSDAS_GRID

Projection type1
string

proj
parameter

Remarks

Cylindrical
Equidistance

LL LL .

LMN Northern hemisphere (*) Lambert Conformal LM
LMS Southern hemisphere
PSN Northern hemisphere Polar Stereo PS
PSS Southern hemisphere

Mercator MR MER .
Gaussian grid GS GS .
Oblique Lambert
Conformal

OL OL Specified for RADAR data of Japan area. Some parameters
are due to the agreement between the users.

Section of latitude XP XP .
Section of longitude YP YP .
"Free Grid" FG FG .
RADAR site RD RD Peculiar to each site
Station data ST ST .

(*) In case of Lambert Conformal or Polar Stereo, the "N" or "S" character is added to the proj
parameter. The character is decided with the location of the basepoint, indicated in the definition file. The
equator is equated to northern hemisphere.

Table C.2.4: User data array type symbols, see C.2.4 for description.

Symbol type name
Type missing value Fortran C
N_I1 N_MV_UI1 BYTE (strongly discouraged) N_SI1 (signed char)
N_I2 N_MV_SI2 INTEGER(2) N_SI2 (usu. short)
N_I4 N_MV_SI4 INTEGER N_SI4 (usu. int)
N_R4 N_MV_R4 REAL float
N_R8 N_MV_R8 DOUBLE PRECISION double
N_NC --- Obsolete (binary representation as stored in data file)

Table C.2.5: NuSDaS Element Table, see C.2.5 for description.
NuSDaS units GRIB1 Description
P hPa *1
Pres Pa 1

Pressure

PAI - *1 Log pressure
PSEA hPa *2
Pmsl Pa 2

Pressure reduced to MSL

Ptend Pa.s-1 3 Pressure tendency
pVOR K.m2.kg-1.s-1 4 Potential vorticity

sarH m 5 ICAO Standard Atmosphere reference height
PHI m2.s-2 *6
gpH m2.s-2 6

Geopotential

Z m *7
gpH gpm 7

Geopotential height

gmH m 8 Geometrical height
sdH m 9 Standard deviation of height
tOZON Dobson 10 Total ozone
T K 11 Temperature
vT K 12 Virtual temperature
pT K 13 Potential temperature
papT K 14 Pseudo-adiabatic potential temperature
maxT K 15 Maximum temperature
minT K 16 Minimum temperature
dT K 17 Dew-point temperature
TTD K 18 Dew-point depression (or deficit)
TRate K.m-1 19 Lapse rate
VIS m 20 Visibility
Radr1 - 21 Radar spectra (1)
Radr2 - 22 Radar spectra (2)
Radr3 - 23 Radar spectra (3)
PLI50 K 24 Parcel lifted index (to 500 hPa)
Tano K 25 Temperature anomaly
Pano Pa 26 Pressure anomaly
gpHan gpm 27 Geopotential height anomaly
Wave1 - 28 Wave spectra (1)
Wave2 - 29 Wave spectra (2)
Wave3 - 30 Wave spectra (3)
WindD Degree_true 31 Wind direction
WindS m.s-1 32 Wind speed
U m.s-1 33
WindX m.s-1 *33

u-component of wind [X direction]

UU m.s-1 33 u-component of wind [eastward]
V m.s-1 34
WindY m.s-1 *34

v-component of wind [Y direction]

VV m.s-1 34 v-component of wind [northward]
PSI m2.s-1 35 Stream function
CHI m2.s-1 36 Velocity potential
mPSI m2.s-2 37 Montgomery stream function
sVV s-1 38 Sigma coordinate vertical velocity
OMG hPa.h-1 *39
VVPa Pa.s-1 39

Vertical velocity

VVm m.s-1 40 Vertical velocity
aVOR s-1 41 Absolute vorticity
aDIV s-1 42 Absolute divergence
VOR 10-6.s-1 *43
rVOR s-1 43

Relative vorticity

DIV 10-6.s-1 *44
rDIV s-1 44

Relative divergence

vUS s-1 45 Vertical u-component shear
vVS s-1 46 Vertical v-component shear
CrntD Degree_true 47 Direction of current
CrntS m.s-1 48 Speed of current
CrntU m.s-1 49 u-component of current
CrntV m.s-1 50 v-component of current
Q kg.kg-1 51 Specific humidity
RH % 52 Relative humidity
HMR kg.kg-1 53 Humidity mixing ratio
TPW kg.m-2 54 Precipitable water
VP Pa 55 Vapour pressure
VPVPD Pa 56 Saturation deficit
Evap kg.m-2 57 Evaporation
CIC kg.m-2 58 Cloud ice
RRate kg.m-2.s-1 59 Precipitation rate
ThndP % 60 Thunderstorm probability
RAIN kg.m-2 61
RR10 0.1 mm.min-1 *61
RR60 mm.h-1 *61
RR3H 8 mm.day-1 *61
RR6H 4 mm.day-1 *61
RR1D mm.day-1 *61
RR1M mm.mon-1 *61

Total precipitation

RRfr0 mm *61 Precipitation from last hour 00min
RRL kg.m-2 62
RRLpD mm.day-1 *62

Large scale precipitation

RRC kg.m-2 63
RRCpD mm.day-1 *63

Convective precipitation

SnRWe kg.m-2.s-1 64 Snawfall rate water equivalent
SnWe kg.m-2 65 Water equivalent of accumulated snow depth
SnowD m 66 Snow depth
MLD m 67 Mixed layer depth
tTcD m 68 Transient thermocline depth
mTcD m 69 Main thermocline depth
mTcan m 70 Main thermocline anomaly

CLA % 71 Total cloud cover
CLC % 72 Convective cloud cover
CLL % 73 Low cloud cover
CLM % 74 Medium cloud cover
CLH % 75 High cloud cover
CWC kg.m-2 76
TCWC kg.m-2 *76

Cloud water

BLI50 K 77 Best lifted index (to 500 hPa)
SnC kg.m-2 78 Convective snow
SnL kg.m-2 79 Large scale snow
WatrT K 80 Water temperature
SST K *80 Water temperature [sea surface]
Land Proportion 81 Land cover (1 = land, 0 = sea)
Sldev m 82 Deviation of sea level from mean
Z0 m 83 Surface roughness
Albed % 84 Albedo
SoilT K 85 Soil temperature
SoilW kg.m-2 86 Soil moisture content
Veget % 87 Vegetation
Sali kg.kg-1 88 Salinity
Dens kg.m-3 89 Density
Runof kg.m-2 90
ROF *90

Water run-off

ROFS *90 Water run-off [surface]
ROFD

mm.day-1

*90 Water run-off [gravity drag]
IceC
ICE

Proportion 91 Ice cover (1 = ice, 0 = no ice)

IceD m 92 Ice thickness
IceMD Degree true 93 Direction of ice drift
IceMS m.s-1 94 Speed of ice drift
IceMU m.s-1 95 u-component of ice drift
IceMV m.s-1 96 v-component of ice drift
IceGR m.s-1 97 Ice growth rate
IceDV s-1 98 Ice divergence
SNMlt kg.m-2 99 Snow melt
CWSSH m 100 Significant height of combined wind waves and swell
WWvD Degree true 101 Direction of wind waves
WWvSH m 102 Significant height of wind waves
WWvMP s 103 Mean period of wind waves
SwvD Degree true 104 Direction of swell waves
SwvSH m 105 Significant height of swell waves
SwvMP s 106 Mean period of swell waves

PWvD Degree ture 107 Primary wave direction
PWvMP s 108 Primary wave mean period
2WvD Degree ture 109 Secondary wave direction
2WvMP s 110 Secondary wave mean period
RSNB W.m-2 111 Net short-wave radiation flux (surface)
RLNB W.m-2 112 Net long-wave radiation flux (surface)
RSNT W.m-2 113 Net short-wave radiation flux (top of atmosphere)
RLNT W.m-2 114 Net long-wave radiation flux (top of atmosphere)
RL 115 Long-wave radiation flux
RLUB *115 ibid. [upward, surface]
RLDB *115 ibid. [downward, surface]
RLUT *115 ibid. [upward, top of atm]
RLDT *115 ibid. [downward, top of atm]
RLUTc *115 ibid. [upward, top of atm, clear sky]
RLDBc

W.m-2

*115 ibid. [downward, surface, clear sky]
RS 116 Short-wave radiation flux
RSUB *116 ibid. [upward, surface]
RSDB *116 ibid. [downward, surface]
RSUT *116 ibid. [upward, top of atm]
RSDT *116 ibid. [downward, top of atm]
RSUBc *116 ibid. [upward, surface, clear sky]
RSDBc *116 ibid. [downward, surface, clear sky]
RSUTc *116 ibid. [upward, top of atm, clear sky]
RSDSn

W.m-2

*116 ibid. [downward, in accumulated snow]
GlRad W.m-2 117 Global radiation flux
BrT K 118 Brightness temperature
WNRad W.m-1.sr-1 119 Radiance (with respect to wave number)
WLRad W.m-3.sr-1 120 Radiance (with respect to wave length)
FLLH W.m-2 121 Latent heat flux
FLSH W.m-2 122 Sensible heat flux
BLDsp W.m-2 123 Boundary layer dissipation
FLMU N.m-2 124 Momentum flux, u-component
FLMV N.m-2 125 Momentum flux, v-component
WMixE J 126 Wind mixing energy
Image Brightness Level 127 Image data
WatrT K 128 Water Temperature
CLC2 % 129 Cloud cover
AvTBB K 130 Averaged blackbody temperature
MnTBB K 131 Minimum blackbody temperature
SDTBB K 132 Standard deviation of blackbody temperature
SNCov % 133 Snow cover
Tsun J.m-2 134 Global solar irradiation

HZanP - 140 Probability of high geopotential height anomaly
PSprd - 141 Ensemble spread of pressure
ZSprd - 142 Ensemble spread of geopotential height
TSprd - 143 Ensemble spread of temperature
EAvSLP Pa 200 Ensemble mean sea-level pressue
EAvZ gpm 201 Ensemble mean geopotential height
EAvT K 202 Ensemble mean temperature
EAvU m.s-1 203 Ensemble mean u-component of wind
EAvV m.s-1 204 Ensemble mean v-component of wind
ESDSLP Pa 210 Ensemble standard deviation of pressure
ESDZ gpm 211 Ensemble standard deviation of geopotential height
ESDT K 212 Ensemble standard deviation of temperature
ESDU m.s-1 213 Ensemble standard deviation of u-component of wind
ESDV m.s-1 214 Ensemble standard deviation of v-component of wind
FGSU N.m-2 x-component of momentum flux due to short gravity wave
FGSV N.m-2 y-component of momentum flux due to short gravity wave
FGLU N.m-2 x-component of momentum flux due to long gravity wave
FGLV N.m-2 y-component of momentum flux due to long gravity wave
LTRS W.m-2.s-1 Evaporation
LINT W.m-2.s-1 Interception
MSC m Moisture in canopy
MSG m Moisture in ground or grass
TSC K Temperature in canopy
TSG K Temperature in ground or grass
ISC m Ice or frost on canopy
ISG m Frost on grass
SoilI ? Soil ice content
SoilQ ? Converged heat in soil
TSN K Temperature of accumulated snow surface
SnTmp K Temperature in accumulated snow
SnQ ? Converged heat in accumulated snow
SnW ? Moisture in accumulated snow
SnDen ? Density of accumulated snow
SnFr Proportion *133 Snow cover
KIND - Land surface status code
U1 m.s-1 *33 x-component of wind at the lowest model level
V1 m.s-1 *34 y-component of wind at the lowest model level
T1 K *11 Temperature at the lowest model level
Q1 kg.kg-1 *51 Specific humidity the lowest model level
WET - Wetness
UWV kg.m-1.s-1 Water vapor flux, x-component
VWV kg.m-1.s-1 Water vapor flux, y-component

RCST Radiation forcing (short wave, top of atm)
RCSB Radiation forcing (short wave, surfce)
RCLT Radiation forcing (long wave, top of atm)
RCLB

?

 Radiation forcing (long wave, surfce)
PBLH m Height of planetary boundary layer
CVR Proportion *71 Cloud cover
HRRS Heating rate due to short-wave radiation
HRRL Heating rate due to long-wave radiation
HRCV Heating rate due to convection
HRLC Heating rate due to large-scale condensation
HRVD Heating rate due to vertical diffusion
HRAD

K.day-1

 Heating rate due to adiabatic motion
QRCV Moistening rate due to convection
QRLC Moistening rate due to large-scale condensation
QRVD Moistening rate due to vertical diffusion
QRAD

kg.kg-1.day-1

 Moistening rate due to adiabatic motion
URCV u-component acceleration due to convection
URLC u-component acceleration due to large-scale condensation
URVD u-component acceleration due to vertical diffusion
URAD

m.s-1.day-1

 u-component acceleration due to adiabatic motion
VRCV v-component acceleration due to convection
VRLC v-component acceleration due to large-scale condensation
VRVD v-component acceleration due to vertical diffusion
VRAD

m.s-1.day-1

 v-component acceleration due to adiabatic motion
UMF Upward mass flux
UMB

kg.m-2.s-1
 Upward mass flux at bottom of cloud

CWF J.kg-1 Cloud work function
MXWIN Height of maximum wind speed
TROP1 Height of first tropopause
TROP2 Height of second tropopause
CBTOP

m

 Height of top of cumulonimbus
NUM - Station ID number
LAT degree
MLAT degree

Latitude

LON degree
MLON degree

Longitude

HIGH m Height
AQC - AQC code in AMeDAS
Sunsh s Duration of sunshine
SSfr0 min Duration of sunshine
SEC
CSEC

s

Time

TDDKK - Thunder multiplicity and discharge code
TEC kA Thunder current
SM - Map factor
PI10LV - Radar 10 minutes precipitation index
RR60LV - Radar 60 minutes precipitation index
HIGHLV - Radar echo top height index

