

16.1a

 A RELAX NG Way to Live: The Story of Updating the Live Access Server Configuration XML

Roland H. Schweitzer*, A. Manke1, K. O'Brien1, J. Mclean1, J. Callahan1, S. Hankin2

Weathertop Consulting, LLC*

College Station, TX

JISAO/University of Washington, Seattle, WA1

NOAA Pacific Marine Environmental Laboratory, NOAA/OAR/PMEL, Seattle, WA2

1. INTRODUCTION

The Live Access Server is a general purpose Web-
server for geo-science data sets. Data providers can
use the three tiered LAS architecture (see Figure 1) to
build custom Web interfaces to their scientific data.
Users can then access the LAS site to search the
provider’s on-line data holdings, make plots of data,
create sub-sets in a variety of formats, compare data
sets and perform analysis on the data.

Figure 1. The LAS Architecture

The Extensible Markup Language (XML) has been a
part of the LAS design and implementation for much of
the history of the product. Early on LAS was able to
take advantage of the flexibility and ease of
implementation that comes with using XML and to use
some the myriad of tools available for XML
manipulation. That said, just as LAS has not stood still
with many new and innovative features being added
with each release, XML has advanced as well. Part of
the recent advances in XML have to do with schema
languages used to define the contents of XML
documents. The LAS team has decided that it is
important to take advantage of these new tools and to

*Corresponding author address: Roland H. Schweitzer,
Weathertop Consulting, LLC, 2802 Cimarron Ct.,
College Station, TX 77845. E-mail:
Roland.Schweitzer@noaa.gov

undertake a redesign of the XML used to configure
LAS. This paper will explore the process of redesigning
the LAS XML. It will offer many insights in to the
process of choosing an XML schema language and
designing a schema that is both easy to use and flexible
enough to handle the complex needs of LAS
configuration.

2. XML Schema Languages

Part of the power of using XML for configuration
information comes from the fact that software exists in
many languages that can parse XML documents.
These parsers can enforce two characteristics of the
document: that they are well-formed and that they are
valid.

A well-formed document is simply a document that has
the proper nesting of elements and other details of the
basic XML syntax. A valid document is one that
conforms to a structure that is specified either by a DTD
or a schema. For the purposes of our XML redesign
project we did not consider using a DTD although the
schema language we chose can be easily translated
into a DTD specification by freely available software.
Before talking about the specifics of our project we will
continue with a brief discussion of schema languages.

2.1 W3C XML Schema

The W3C XML Schema specification is what most
people think of when then encounter the term XML
schema. In fact this schema formalization is a popular
method for specifying the structure of XML documents.
Additionally, many popular open source and commercial
XML authoring software programs can be used to
create W3C schemas.

Even so, many in the XML development community
have criticized XML Schema. The specification is
difficult to read and understand and often uses
constructs which are not intuitive to even computer
scientists. Furthermore, the XML Schema is missing
some important features and has a poor abstraction.
The debate about the merits and cons of XML Schema
is certainly not over, but these issues were enough for
us to look at other schema implementations.

2.2 RELAX NG

RELAX NG purports to be a simple, easy to use
schema language. It is based entirely on XML syntax
and has a solid theoretical basis. RELAX NG also
addresses some of the noted shortcoming of XML
Schema. RELAX NG has the ability to specify
unordered and mixed content and to treats attributes
and elements uniformly. XML Schema does not.

2.3 Our Implementation

We decided to implement the schema for our
redesigned XML using RELAX NG. One fundamental
concept our XML must implement is the ability to
uniquely identify elements within the document and to
refer to those elements again in other places in the
document. Elements can be uniquely identified using
the XML Schema Datatype library (also supported by
RELAX NG). Additionally, creating elements that were
either the originally specification of the element
including the specifying the unique ID, or creating an
element that referred to an existing element using the
IDREF data type was easy to implement using RELAX
NG, but was impossible using XML Schema.

2.4 A Few Brief Examples

So, for example a collection of LAS grid and axis
element can be defined as follows:

<grid ID="myGrid">
 <xAxis ID="x1" units="degrees_east">
 <arange size="180" start="1" step="2"/>
 </xAxis>
 <yAxis ID="y1" units="degrees_north">
 <arange size="90" start="-89" step="1"/>
 </yAxis>
 <tAxis ID="t1" units="month">
 <arange size="12" start="1-1-1" step="1"/>
 </tAxis>
</grid>
<grid ID="otherGrid">
 <xAxis IDREF="x1"/>
 <yAxis IDREF="y1"/>
 <tAxis ID="t2" units="month">
 <arange size="5" start="1990-01-01"
 step="1"/>
 </tAxis>
</grid>

In the second grid element, the x-axis and y-axis
definition are recycled by referring to the previously
defined <xAxis> and <yAxis> elements, while an
entirely new t-axis is defined within the second grid
element.

The ability to define an element which allows only one
attribute (in this case the IDREF attribute) or all of the
other attributes and sub-elements needed to define the
element (the ID and units attributes) is only possible
using the RELAX NG.

To complete the discussion, the RELAX NG schema
definition for the <xAxis> element is shown below.

 <define name="XAXIS">
 <element name="xAxis">
 <choice>
 <attribute name="IDREF">
 <data type="IDREF"/>
 </attribute>
 <group>
 <attribute name="ID">
 <data type="ID"/>
 </attribute>
 <attribute name="units"/>
 <choice>
 <oneOrMore>
 <ref name="V"/>
 </oneOrMore>
 <ref name="RANGE"/>
 </choice>
 </group>
 </choice>
 </element>
 </define>

Note that the first block in the definition is a RELAX NG
<choice> element which means the xAxis element can
either be written using the information in the first block
of the choice (using the IDREF attribute only) or the
xAxis element can be written using information in the
second block (denoted by the <group> element). This
second block of information is all of the information
needed to define the xAxis element.

3. LAS improvements from using RELAX NG

Of course, all of this technical discussion of XML and
XML schema languages is all for naught unless we can
realize some significant improvement in the LAS
software as a direct result of using these tools

3.1 Automatic XML validation

The first and most significant advantage to using a
schema in general and RELAX NG in particular, is that
installers of our software validate their instances of XML
configuration documents using general purpose XML
software. As developers and distributors of software we
can easily validate the configuration XML as the first
step in the process that ingests the XML configuration
into the database. This saves the installer time and
effort since mistakes in structure as well as syntax can
be discovered and corrected right away.

3.2 Element Identification and Reuse

In our old XML we the name of the element was the
thing that uniquely identified the contents of the
element, meaning that we had to write the software the
enforced the uniqueness of the element names. And
when the element was to be reused, a cumbersome
XML XPath name was used to identify the previously
defined element. By using the XML Schema Datatype
library in conjunction with RELAX NG, we can use the
ID and IDREF attribute to identify and refer to elements.

 This can be carried through to all parts of the software
architecture so that operations and data requests can
be made by referring to the ID of the element that
defines the object.

3.3 OO languages and RELAX NG schema

There is a natural relationship between the RELAX NG
definition of an element and collections of elements and
objects in an object oriented programming language like
Java. This allows us to create abstract programming
constructs which easily and intuitively follow the
structure of our RELAX NG XML schema definition
leading to code that is easier to develop and maintain.

4. CONCLUSIONS

Creating a RELAX NG schema definition for the LAS
configuration XML documents has allowed us to add
new features, write better code to implement the
features, validate our configuration files automatically
and to build more robust software.

5. REFERENCES

Hankin, Steve, J. Davison, J. Callahan, D. E. Harrison

and K. O'Brien, 1998: A Configurable Web
Server for Gridded Data: A Framework for
Collaboration, Preprints, Fourteenth
International Conference for Interactive
Information and Processing Systems for
Meteorology, Oceanography, and Hydrology,
Phoenix, AZ., AMS, 417-418

Mertz, David, 2003: XML Matters: Kicking back with
RELAX NG, Part 1, http://www-
106.ibm.com/developerworks/xml/library/x-
matters25.html

Mertz, David, 2003: XML Matters: Kicking back with
RELAX NG, Part 2, http://www-
106.ibm.com/developerworks/xml/library/x-
matters26.html

Mertz, David, 2003: XML Matters: Kicking back with
RELAX NG, Part 3, http://www-
106.ibm.com/developerworks/xml/library/x-
matters27.html

Clark, James and M. Makoto, 2001, RELAX NG
Tutorial, http://www.oasis-
open.org/committees/relax-ng/tutorial.html

Clark, James, The Design of RELAX NG,
http://www.thaiopensource.com/relaxng/design
.html

http://www-106.ibm.com/developerworks/xml/library/x-matters25.html
http://www-106.ibm.com/developerworks/xml/library/x-matters25.html
http://www-106.ibm.com/developerworks/xml/library/x-matters25.html
http://www-106.ibm.com/developerworks/xml/library/x-matters25.html
http://www-106.ibm.com/developerworks/xml/library/x-matters25.html
http://www-106.ibm.com/developerworks/xml/library/x-matters25.html
http://www-106.ibm.com/developerworks/xml/library/x-matters25.html
http://www-106.ibm.com/developerworks/xml/library/x-matters25.html
http://www-106.ibm.com/developerworks/xml/library/x-matters25.html
http://www.oasis-open.org/committees/relax-ng/tutorial.html
http://www.oasis-open.org/committees/relax-ng/tutorial.html
http://www.thaiopensource.com/relaxng/design.html
http://www.thaiopensource.com/relaxng/design.html

