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Abstract: Because soil thermal properties depend on 

soil moisture, soil temperature is strongly controlled by 

soil moisture. This provides a possibility to derive soil 

moisture from soil temperature measurements. 

Following this motive, this study develops a system to 

inversely estimate soil moisture profile from soil 

temperature profile. The forward model is a 

single-source land surface model to simulate land 

surface and subsurface processes. The cost function 

is a non-dimensional function to describe the 

discrepancy between measured and model-predicted 

values of soil temperatures. Besides the soil moisture 

profile, the estimated parameters also include soil 

hydraulic and thermal parameters. Applications at one 

synthetic case and three field cases (two in Tibet, and 

one in Iowa) show the inverse method can reproduce 

observed soil moisture when the soil properties can 

be described by soil hydraulic and thermal function 

used in this study. In addition, this method can 

simultaneously produce reasonable surface energy 

partition.  

Key words: Inverse approach, soil moisture 

estimation, soil vertical heterogeneity, surface energy 

partition. 
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1. INTRODUCTION 

At many experimental sites of field projects such 

as GAME (GEWEX Asian monsoon experiments), 

CEOP (Coordinated Enhanced Observing Period 

Project), and SMEX (Soil moisture experiments), soil 

moisture and temperature profiles were 

simultaneously measured. Using these data, effective 

soil thermal and hydraulic properties, and surface 

energy partition can be derived by inverse methods 

(Yang et al., 2004c). On the other hand, the soil 

temperature is strongly controlled by soil moisture, 

because soil thermal properties depend on soil 

moisture. This provides a possibility to derive soil 

moisture from soil temperature. Zhang et al. (2004) 

presented an inverse method and successfully 

applied it to two sites within the Oklahoma 

ARM–CART central facilities. However, the soil 

thermal diffusivity is not a monotonic function of soil 

water content, and, particularly, its value is not 

sensitive to soil moisture when the soil becomes wet. 

Yang and Koike (2004b) point out that this may lead to 

multi-solutions if only the thermal diffusion equation is 

solved. They suggest introducing a heat flux condition 

in the inverse estimation, because the thermal 

conductivity is a monotonic function of soil moisture 

and is sensitive to soil moisture.  

This study is an attempt in this aspect. We use a 

single-source land surface model to predict soil 

moisture, soil temperature, and surface fluxes, a cost 

function to calculate the discrepancy between 
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observed and model-predicted values of soil 

temperature, and an efficient scheme to search the 

global minimum of the cost function.  

The paper is organized as follows: first, we present 

the inverse approach. It consists of three main steps, 

comprised of (1) a land surface model (Section 2), (2) 

a cost function (Section 3), and (3) an efficient 

minimization scheme (Section 4). Then, the inverse 

approach is applied to one synthetic dataset and three 

in situ datasets (Section 5). Finally, we summarize the 

results (Section 6). 

 

2. A SINGLE-SOURCE LAND SURFACE MODEL 

 

Figure 1 Schematic of the single-source land surface 

model used in this study. There are three soil domains 

(Top, Mid, Deep), each of which contains multiple 

computational layers. All the symbols have their 

common meaning. 

 

A single-source model does not distinguish the 

separate contribution to the turbulent fluxes from the 

vegetation and from the ground, and it usually has 

fewer parameters to be calibrated than a dual-source 

model. Yang et al. (2004a) indicates that a 

single-source model is applicable to bare soil surfaces 

or sparsely and shortly vegetated surfaces. The model 

structure used in this study is shown in Figure 1 and 

has three distinct features.  

(1) Single-source flux parameterizations for bare 

soils and/or shortly vegetated surfaces are improved 

based on recent experiments in the Tibetan Plateau 

(Yang et al., 2002; Yang et al., 2003).  

(2) Soil subsurface water and heat flows are 

simulated by a multi-layer scheme. Richards’ Law is 

used to calculate soil water flow, and thermal diffusion 

equation is used to calculate soil heat flow. The 

hydraulic functions (hydraulic conductivity and 

retention curve) are described by Clapp and 

Hornberger (1978). The thermal conductivity is 

described by Johansen (1975) and heat capacity by a 

formula recommended in the Global Soil Data Task 

(2000).  

(3) Soil vertical heterogeneity is parameterized. 

Soil structures are not only horizontally 

heterogeneous but also often vertically 

heterogeneous. The top layer of a soil can have 

different soil textures and amounts of organic matters 

from the deep layer. A typical example is the prairie in 

the Central and Eastern Tibetan Plateau, where the 

surface is covered by short vegetation. The vegetation 

develops very plentiful roots in the top 10 to 20 

centimeters to adapt the harsh climate in the plateau. 

Yang et al. (2004c) pointed out that existence of 

dense vegetation roots in topsoils may significantly 

reduce thermal conductivity, increase soil water 

potential, and enhance surface evaporation. 

Numerical experiments (Koudelova, 2003; Gao et al., 

2004) have shown the difficulties in producing 

observed soil moisture, ground temperature, and 

surface energy partition at several plateau sites. 

Therefore, the vertically heterogeneous soil column is 

approximated by two uniform domains – a 

near-surface soil domain and a bottom soil domain, 

and a transitional domain between the two. 

To accurately simulate soil heat flow and water 
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flow, each domain consists of a number of layers, 

thinner in the top domain (~1 cm) and thicker in the 

bottom domain (~10 cm). The number of 

computational layers is adjustable. In our case studies 

(Section 5), there are 30 or 40 computational layers, 

and the total soil depth is 1.6 m. The LSM is integrated 

over 2~3 months with a time step of several minutes. 

More details are presented in the case studies 

(Section 5). The process parameterizations have been 

described in Yang et al. (2004c), and will not be 

duplicated here.  

 

3. INVERSE MODEL 

 

3.1 Input data 

Input data of the inverse model include forcing 

data to drive the LSM, soil temperature for model 

calibration, soil moisture and/or heat fluxes for 

validations. The forcing data are routinely measured 

at an automatic weather station (AWS). Soil moisture 

and temperature are measured by a soil moisture and 

temperature measuring system (SMTMS). The 

SMTMS consists of multiple temperature sensors 

(accuracy ~ 0.1 K) and TDR (time domain 

reflectometry) moisture sensors (accuracy ~ 0.03), 

and the sampling frequency can be 30 ~ 60 minutes or 

finer. Additional details about the case studies are 

presented in Section 5. 

3.2 Optimized parameters 

There are many parameters in the LSM. Surface 

albedo can be derived from measured downward and 

upward short-wave radiations, or estimated by 

empirical formulas (Pleim and Xiu, 1995). 

Aerodynamic roughness length can be derived from 

wind profiles (Kohsiek et al., 1993; Yang et al., 2003). 

The surface emissivity is specified as 0.97 since it 

does not significantly affect simulated results. Soil 

hydraulic parameters are estimated by empirical 

formula (Cosby et al., 1984): 

153.1884.6 s m 100556.7 −+−×= sand
sK , (1) 

m1001.0 31.188.1 sand
s

−×−=ψ , (2) 

clayb 9.1591.2 += ,  (3) 

where sand and clay  denote percentage of sand 

and clay in a dry soil. 

The optimized parameters are listed in Table 1. 

They are: the soil porosity sθ , the soil bulk density 

dρ , the maximum soil thermal conductivity mλ , the 

boundary depths of transitional domain ( 1d , 2d ), 

and sand and clay . The initial profile of soil water 

content is nonlinearly interpolated by soil water 

content at the surface 01θ  and at the surface and the 

bottom n0θ . Both 01θ  and n0θ  are optimized. 

 

3.3 Objective function 

TRMSEF = ,   (4) 

where TRMSE  represents the root mean square 

errors of soil temperature over all measuring depths 

during the optimizing period.  

 

Table 1 Optimized parameters of the land surface 

model. 

Symbol Unit Lower 

bound 

Upper 

bound 

sθ
 

33 mm −

 
0.25

 
0.7

 

dρ  kg m-3 )1(1900 sθ−  
)1(2650 sθ−

sand — 5
 

95
 

clay — 3
 

60
 

mλ  1-1 K mW − 0.5
 

3
 

1d  m 0 0.3 

2d  m m 02.01 +d  1.6 

01θ . 
33 mm −

 rsdθ  sθ
 

n0θ  
33 mm −

 rsdθ  sθ
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4. OPTIMIZATION ALGORITHM 

Optimizing parameters is a tough task in inverse 

problems of soil parameters because cost functions 

usually have multi-parameters and are highly 

nonlinear, non-derivable and even discontinuous. The 

parameter space usually contains multiple minima. To 

find the global minimum, the Levenberg-Marquardt 

method (Marquardt, 1963) is widely used in inverse 

models (e.g., Parkin et al., 1995; Simunek and van 

Genuchten, 1996; Hopmans et al., 2002), but the 

inverse solution is sensitive to initial parameter 

guesses. To overcome this problem and to find 

globally optimal parameters, several effective 

methods has been developed in past twenty years, 

such as the simulated annealing [Kirkpatrick et al., 

1983], the annealing-simplex method (Pan and Wu, 

1998), genetic algorithms (Goldberg, 1989), the 

sequential uncertainty fitting inverse (Abbaspour, et al., 

1997). This study adopts the Shuffled Complex 

Evolution method developed at The University of 

Arizona (SCE-UA) (Duan et al., 1992; Duan et al., 

1993). This method is based on a synthesis of four 

concepts: (1) combination of deterministic and 

probabilistic approaches; (2) systematic evolution of a 

‘complex’ of points spanning the parameter space, in 

the direction of global improvement; (3) competitive 

evolution; (4) complex shuffling. The synthesis of 

these elements makes the SCE-UA method effective 

and robust, and also flexible and efficient. It has been 

widely used in parameter calibration of various 

models.  

 

5. CASE STUDIES 

The inverse approach described above is used to 

calibrate the land surface model to two types of data 

sets. The first is a numerically generated data set 

(hereafter identical twin). The second is field-collected 

data set at a GAME-Tibet site (Anduo), a CEOP-Tibet 

site (Naqu), and a SMEX02 site (WC33). The 

following introduce the results of these case studies. 

 

5.1 Identical twin 

5.1.1 Data set. The experiment design is very similar 

to that of the GAME-Tibet observations (see section 

5.2.1). We assume that the total soil depth is 1.6 m 

and that this total depth is represented by three soil 

layers with thickness values of 0.10, 0.15, 1.35 meters 

(in other words, m 1.01 =d , m 25.02 =d ). We 

also assume that the topsoil is a typical clay loam with 

a higher porosity and water potential and the bottom 

soil is a typical sandy loam with a lower porosity and 

water potential. The ground is a bare soil surface, 

which is wetted by two-day continuous precipitation 

every 10 days in the first month, and dried in other 

days. A diurnally varying wind speed, temperature, 

radiations, and a constant specific humidity are used 

to drive the model.  

Table 2 Parameter values of the identical twin study 

in the forward run. 

Parameter Top domain 

(Clay loam) 

Bottom domain 

(Sandy loam) 

sθ  (m3 m-3) 0.476 0.416 

dρ  (kg m-3) 1309 1460 

rθ  (m3 m-3) 0.141 0.043 

sK  (m s-1) 61031.1 −×  61011.7 −×  

n  1.35 1.41 

α (cm-1) 0.00435 0.0230 

mλ (W m-1 K-1) 1.59 2.16 

Soil depth (m) 0~0.1 0.25~1.6 

To examine the sensitivity of the inverse 

estimation, we deliberately introduce “measurement” 

errors and model errors. “Measurements” errors are 

introduced by using a coarse spatial resolution (30 

layers) and temporal resolution (400 s) in the forward 

run, while using a fine resolution (40 layers, 200 s) in 

the inverse estimation. Model errors are introduced by 
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using different soil thermal and hydraulic functions in the forward run and the inverse runs.  
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Figure 2 Comparison of soil moisture between the truth run (from the forward run) and the optimized values (from 

the inverse calibration) for the synthetic dataset.

(a) Sensible heat flux H (W m-2)
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Figure 3 Comparison of sensible heat flux and latent heat flux between the truth run (from forward run) and the 

optimized values (from the inverse calibration) for the synthetic dataset. 

 

The “true” values of soil parameters used in the 

forward run are shown in Table 2. Soil moisture is 

initialized by the residual values rθ , and soil 

temperatures are initialized with a constant 
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temperature of 298 K. The model is then integrated 60 

days (hereafter forward run). Soil moistures at five 

depths (0.04, 0.2, 0.6, 1.0, 1.6 m), and soil 

temperatures at nine depths (0.0, 0.04, 0.2, 0.4, 0.6, 

0.8, 1.0, 1.3, 1.6 m) are recorded hourly, analogous to 

measurements at the GAME-Tibet experiments. 

These data are used as input data in the inverse 

estimation. 

5.1.2 Estimated soil moisture and surface energy 

budget. Figure 2 shows a good agreement between 

estimated soil moisture and “measured” one at five 

depths. Figure 3 present the comparisons of energy 

partition between the “truth” run and the optimized run. 

The derived sensible heat fluxes and latent heat 

fluxes are close to the true values.  

 

5.2 GAME-Tibet Anduo site 

5.2.1 Description of site and data set. The 

GAME-Tibet Anduo site (Lat. o241.32 N, Lon. 
o635.91 E, Alt. 4700m) locates at the central Tibetan 

Plateau. This site is covered by sparse and short 

grasses in the summer, but vegetation. roots share a 

large volume of the surface soil layer in all seasons 

and the bulk density of the soil is therefore much lower 

than the deeper soil. This discontinuity of the soil 

structure is also found at other GAME-Tibet sites. 

Observations show soil water content is high near the 

surface, decreases in the transitional soil, and 

increases again in the deep soil. By a sensitivity study 

using a dual-source land surface model, Yang et al. 

(2004a) show that the vegetation can change the 

energy partition between the vegetation and the 

ground surface, but the surface energy partition 

between the sensible heat and the latent heat is 

insensitive to the leaf area index and the vegetation 

coverage for the plateau sparse and short prairie, and 

thus a single-source model is applicable to this site. 

 

Table 3 Measurement items and levels at the GAME- 

Tibet Anduo site, 1998. 

Items Height or depth (m) 

Planetary Boundary Layer (PBL) station 

(30 min. average): 

Wind speed and 

direction 

1.90, 6.00, 14.10 

Air Temperature 1.55, 5.65, 13.75 

Humidity 1.55, 5.65, 13.75 

Pressure Surface 

Precipitation Surface 

Radiation 14.0 

Turbulent fluxes 2.85 

Soil temperature 0.0, 0.05, 0.1, 0.2 

SMTMS (60 min. average): 

Soil moisture 0.05, 0.2, 0.6, 1.0, 

1.6, 2.58 

Soil temperature 0.05, 0.2, 0.4, 0.6, 

0.8, 1.0, 1.3, 1.6 

 

To understand the land-atmosphere interactions 

on the plateau, intensive observations were carried 

out at Anduo during May-Sepetember 1998. Table 3 

lists the field-collected data concerning the inverse 

estimation, including 30-minute-recorded forcing data 

for driving the LSM, hourly-recorded soil temperature 

and moisture profiles for the inverse estimation. 

Moreover, there are two sets of observed energy 

partitions for verifying model output: in one set, the 

sensible heat fluxes were measured by the 

eddy-correlation technique, and the latent heat fluxes 

were derived from the surface energy budget equation 

(Note: the latent heat fluxes were actually measured 

by the eddy-correlation, but the measurements are not 

trustable due to a sensor problem, see Yang et al. 

(2004a) for more details); the other set was calculated 

from the observed air temperature and humidity profile 

by the Bowen ratio method.  
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5.2.2 Estimated soil moisture and surface energy 

budget. Figure 4 shows the comparison between 

estimated soil moisture and “measured” one at five 

depths; Figure 5 presents the scatter-plots showing 

the comparisons of energy partition between the 

simulation and the observation by eddy-correlation 

technique (or by Bowen ratio method). Both retrieved 

soil moisture and surface energy partition are 

comparable to the observed ones. Particularly, the 

optimized sensible heat fluxes ranges between the 

two sets of observations (by the eddy-correlation and 

by the Bowen ratio), i.e., larger than the observation 

by the eddy correlation while smaller than the 

observation by the Bowen ratio method. However, 

SiB2 cannot produce observed soil moisture, surface 

temperature, and energy partition, as demonstrated 

by Koudelova (2003). These comparisons in surface 

energy budget suggest that the inverse approach 

considering soil vertical heterogeneity successfully 

provides a reasonable estimate to the turbulent fluxes, 

while fails to do when the vertical heterogeneity is 

ignored. The dense vegetation roots in the topsoil lead 

to high latent heat fluxes while low sensible heat 

fluxes. This, in turn, suggests the importance of soil 

vertical heterogeneity in controlling surface soil state 

and thus surface energy partition. 
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Figure 4 Comparison of soil moisture between observation (Obs) and the retrieved one from soil temperature 

(Opt) for the GAME-Tibet Anduo site, 1998. 
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(a2) Sensible heat flux H (W m-2)
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(a1) Sensible heat flux H  (W m-2)
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(b1) Latent heat flux lE (W m-2)
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Figure 5 Comparison of sensible heat flux and latent heat flux between the observations and the optimized values 

(from the inverse calibration) for the GAME-Tibet Anduo site during 16 June ~ 30 August, 1998. 

 

5.3 CEOP-Tibet Naqu site 

5.3.1 Description of site and data set. The 

CEOP-Tibet Naqu site (Lat. 31.379ºN, Lon. 91.900ºE, 

Alt. 4580 m) locates at the central Tibetan Plateau. 

This site is covered by sparse and short grasses in the 

summer, but vegetation roots are not as dense as at 

Anduo site. A distinct feature is that below the root 

layer, gravels share a big volume, which makes 

difficulties in measuring soil moisture and also 

describing soil thermal and hydraulic behaviors.   

Data collection at this site was implemented from 

September 2000 to August 2002, but failed 

occasionally in wintertime. Table 4 lists the 

field-collected data concerning the inverse estimation. 

Turbulent fluxes can be derived from Bowen ratio 

method by temperature and specific humidity profiles. 

 

Table 4 Measurement items and levels at the 

CEOP-Tibet Naqu site, 2001. 

Items Level (m) 

AWS (average of 50:05～60:00 of each hour): 

Wind speed and 

Direction 

0.5, 2.0, 10.0 

Air Temperature 0.5, 2.0 

Humidity 0.5, 2.0 

Pressure Surface 

Precipitation Surface 

Radiation  

Soil temperature 0.0, 0.04, 0.1, 0.2, 0.4 

SMTMS (60 min. average): 

Soil moisture 0.05, 0.2, 0.6, 1.0, 1.6, 2.10 

Soil temperature 0.05, 0.2, 0.4, 0.6, 0.8, 1.0, 

1.3, 1.6 
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Figure 6 Same as Figure 4, but for CEOP-Tibet Naqu site, 2001. 
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Figure 7 Comparison of sensible heat flux and latent heat flux between the values derived from Bowen ratio and 

the optimized values (from the inverse calibration) for the CEOP-Tibet Naqu site during 1 July ~ 30 August, 1998. 

The root mean square error and bias are indicated for each variable. 

 

5.3.2 Estimated soil moisture and surface energy 

budget. Figure 6 shows the comparison between 

estimated soil moisture and “measured” one at five 

depths; Figure 7 presents the scatter-plots showing 

the comparisons of energy partition between the 

simulation and the observation by Bowen ratio method. 

We can see the surface soil moisture is well 

reproduced by the inversion, but observed soil 

moisture in deep layers is obviously less than the 

retrieved one. We suspect that the normal soil 

hydraulic and thermal functions used in this model are 

not suitable for the mixture of sandy particles and 
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gravels at this site. Since the surface state (soil 

moisture and temperature) are well reproduced, the 

surface energy partition looks comparable to the 

fluxes derived from Bowen ratio method. 

 

5.4 SMEX02-WC33 site 

5.4.1 Description of site and data set. The SMEX02 

was conducted during the summer (middle June – 

middle July). At SMEX02 WC33 site (Lat. 41.978ºN, 

Lon. 38.642ºE, Alt. 318m), the University of Tokyo 

collected ground data and microwave brightness 

temperatures for developing algorithm to derive soil 

moisture from satellite data. Although this site was 

covered by soybean and corn during the experimental 

period, vegetation on a small area is cleared, where 

soil moisture and temperature were measured. The 

measurements are shown in Table 5, including soil 

moistures were measured at six depths, and soil 

temperatures were measured at 10 depths. Flux data 

was not available. 

 

Table 5 Measurement items and levels at the 

SMEX02 WC33 site, 2002. 

Items Level (m) 

AWS (10 min. average): 

Wind speed and 

Direction 

2.0 

Air Temperature 2.0 

Humidity 2.0 

Pressure Surface 

Precipitation Surface 

Radiation  

SMTMS (10 min. average): 

Soil moisture 0.015, 0.04, 0.08, 0.15, 0.25, 

0.50 

Soil temperature 0.0, 0.015, 0.04, 0.06, 0.08, 

0.10, 0.15, 0.25, 0.50 

 

 

5.4.2 Estimated soil moisture. Figure 8 shows a 

good consistence between the measured and the 

estimated soil moisture at all depths except at 4 cm. 

The moisture at 4cm is lower than the moisture in the 

shallower layer (at 1.5cm) and the deeper layer (8cm). 

This observed complex moisture profile cannot be 

reproduced by our simple sandwich-soil structure. 

 

6. CONCLUSIONS 

This work develops an inverse system to derive 

soil moisture and surface energy budget from soil 

temperature. It consists of a single-source land 

surface model to predict soil moisture and 

temperature profiles and surface fluxes, a cost 

function to calculate the discrepancy between 

observed and model-predicted values of soil 

temperature, and an efficient scheme SCE-UA to 

search the global minimum of the cost function. We 

parameterize vertically heterogeneous soils by a 

sandwich-like model structure (two uniform domains 

and a transitional domain). Unlike early studies that 

solves the thermal diffusion equation, we introduce 

surface heat flux as the upper boundary condition 

from surface energy balance, which can lead to more 

reliable soil moisture estimation. 

We apply this system to a numerical synthetic 

data set and three field sites. The results suggest that 

the inverse method can reproduce observed soil 

moisture when the soil properties can be described by 

normal soil hydraulic and thermal functions. In 

particular, surface soil moisture, which is our most 

concerning, can be derived quite reliably. The method 

also simultaneously produces reasonable surface 

energy partition. The results may serve to simplify field 

experiment design in the future. 
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Figure 8 Same as Figure 4, but for SMEX02 WC33 site, 2002. 
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