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1. INTRODUCTION 
The Atmospheric Dynamics Mission (ADM-Aeolus) 

is the third mission in ESA’s Living Planet/Earth 
Explorer Programme and its second Core Mission (ESA 
1999, Stoffelen et al. 2005, more generally 
http://www.esa.int/export/esaLP/index.html).  With a 
launch planned around October 2007 and an envisaged 
lifetime of three years, its objective is to demonstrate the 
capability to measure wind profiles from space using a 
Doppler Wind Lidar (DWL).  Aeolus is designed to 
provide high-quality wind profiles from the surface up to 
27 km, at a rate of around 100 profiles per hour.  In the 
atmosphere’s baroclinic regions, the need for good 
vertical resolution data and the prevalence of cloud 
pose severe challenges for the global observing system.  
Active remote sensing by lidars can potentially meet 
both these challenges.  This paper describes the 
preparations that are being made in order to use Aeolus 
data in global data assimilation and numerical weather 
prediction (NWP) systems.  These preparations include 
detailed simulations of Aeolus data (Marseille and 
Stoffelen 2003, Tan and Andersson 2005a) and 
assimilation ensemble experiments to assess the impact 
of such data in the ECMWF Integrated Forecast System 
(Tan and Andersson 2005b).  
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2. ADM-AEOLUS OBSERVATION REQUIREMENTS 

The Aeolus DWL is known as ALADIN 
(Atmospheric Laser Doppler Instrument).  It is a non-
scanning instrument with an orientation fixed relative to 
the satellite (Figure 1).  For details on the operating 
principles and design characteristics of the Aeolus DWL, 
the reader is referred to Marseille and Stoffelen (2003), 
Stoffelen et al. (2005) and the references therein.  The 
instrument has both a Rayleigh channel, to detect the 
Doppler shift induced by the motion of molecules, and 
also a Mie channel, for the Doppler shift induced by 
particles (primarily cloud and aerosol).  Both channels 
use direct-detection receivers, sharing a transmitter 
laser operating in the ultraviolet (355 nm). 

Under nominal operations the DWL will provide 
layer-averaged wind measurements with a 1000 m 
vertical resolution through most of the atmosphere (i.e. 
from 2 to 16 km), 500 m below 2 km and 2000 m 
between 16 and 20 km.  There is provision to make 
measurements up to at least 27 km, and flexibility to 
adjust the vertical resolution during flight (down to a 
minimum of 250 m).  The primary wind information from 
a non-scanning DWL is a profile of the so-called HLOS 

(horizontal line-of-sight) wind component.  For the 
Aeolus/ALADIN viewing geometry, the HLOS wind 
component is the projection of the wind vector in the 
direction perpendicular to the satellite ground track.  The 
polar orbit planned for Aeolus has an inclination of 
approximately 97 degrees, and so the Aeolus HLOS 
wind information is nearly zonal in the Tropics, nearly 
meridional at very high latitudes, with a gradual 
transition in between (Figure 2).  While the Rayleigh and 
Mie channel Doppler shifts are intended to provide wind 
information, the Mie channel signal strengths may 
themselves provide additional information on cloud and 
aerosol properties (backscatter, extinction, loading).  

 

Figure 1 ADM-Aeolus viewing geometry and vertical 
resolution (Courtesy ESA) 

 
The horizontal and temporal coverage of ADM-

Aeolus data will be determined by the satellite’s orbital 
parameters, the non-scanning viewing geometry, and 
the duty cycle of the DWL.  Successive observation 
locations will be separated in time by 28 seconds and in 
space by 200 km along the observation ground track, 
which itself runs parallel to the satellite ground track.  
Adjacent tracks will be separated in time by the orbit 
period (~90 minutes) and by ~2500 km at the Equator 
(Figure 2).  A non-scanning DWL is a highly directional 

http://www.esa.int/export/esaLP/index.html


instrument and this is further reflected in the disparate 
magnitudes of the horizontal integration lengths, which 
for Aeolus are 50 km along-track and 10m cross-track. 
The integration lengths provide a degree of averaging 
which improves accuracy and representativeness. 
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Figure 2 ADM-Aeolus coverage and HLOS directions (6 
hour period) 

 
The Aeolus observation requirements have been 

developed to meet scientific goals of user communities 
in climate research, atmospheric modeling and 
numerical weather prediction (ESA 1999, Stoffelen et al. 
2005).  In particular the observation separations have 
been chosen to provide a high degree of independence 
between successive observations, assuming that 
systematic errors can also be kept small.  This 
independence is achieved by ensuring that the 
observation separations are greater than the 
decorrelation length scales of the background error 
structures adopted in data assimilation schemes (~200 
km, Hollingsworth and Lönnberg 1986, Xu and Wei 
2001).  More densely spaced observations are 
effectively filtered by data assimilation procedures 
(Rabier et al. 1998) and hence are less efficient (for the 
same number of laser shots) at providing information for 
atmospheric analysis.  

 
The characteristics of the transmitter and receivers 

have been chosen to obtain random errors below 2 m/s 
between 2 and 20 km altitude, and below 1 m/s between 
0 and 2 km.  The error realized will depend primarily on 
the intensity of the backscattered laser light, which in 
turn depends on the effects of cloud and aerosol on the 
propagation of the laser beam.  For example, the 
Rayleigh channel is designed to provide good data in 
cloud-free areas and above cloud tops, and in some 
partially cloudy areas, e.g. where transmission through 
thin cirrus is sufficiently strong, and in gaps between 
broken cloud.  These are to be complemented by Mie 
channel data, in regions where particulate backscatter is 
sufficiently strong. 

 
 
3. LIPAS SIMULATIONS OF AEOLUS DATA 

To date, preparations for Aeolus have made use of 
simulated data obtained from LIPAS (LIdar Performance 
Analysis Simulator, Marseille and Stoffelen 2003). 
Simulations have been conducted for a number of 
periods, with different input data to the simulator.  For 

example, Tan and Andersson (2005a) examine the 
period 9th to 18th September 1994, during which an 
observed cloud cover product derived from LITE data is 
available (Miller et al. 1999). Their study found that 
when the observed cloud cover is replaced by model 
fields, the sensitivity of the LIPAS simulations to the 
assumed cloud cover is small.  The simulations 
described here are for 10th January to 28th February 
2003, corresponding to the period chosen for the 
assimilation ensemble experiments described later.  
Wind profiles supplied as input to the simulator were 
taken from Met Office analyses.  Other meteorological 
inputs were taken from the ECMWF operational archive.  
Aerosol backscatter was taken from the median profile 
of a climatology derived from observational data 
obtained during airborne lidar campaigns (Vaughan et 
al. 1995).  These data include low-, mid- and high-
latitude observations taken over the Atlantic ocean 
during 1988—1990, and were adapted to the Aeolus 
wavelength within LIPAS. 

 
Figure 3 shows the geographical distribution of 

expected Aeolus yield for the altitude range 9--10 km.  
Simulated Aeolus data for 1 week have been grouped in 
5 by 5 degree bins.  Within each bin, the percentage of 
simulated data that meet the mission accuracy 
requirements is calculated (coloured markers).  To 
relate the performance of the Rayleigh and Mie 
channels to the cloud cover encountered, the figure also 
shows root-mean-square of high cloud cover (shaded).  
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Figure 3 Percentage of data at 9-10 km with random 
error < 2 m/s, Rayleigh and Mie channels (upper and 
lower panels).  Data simulated for 1 week and grouped 
in 5 by 5 degree bins.  Shading: ECMWF high cloud 
cover (root-mean-square) 

 
There is a close correspondence between good 

Rayleigh channel performance and low amounts of 
cloud cover.  LIPAS models the expected ability of the 



Rayleigh channel to probe in cloud gaps, resulting in 
reasonable performance in areas with moderate 
amounts of cloud cover.  Conversely, high amounts of 
cloud cover results in good data from the Mie channel, 
at least from the cloud tops. 

 

 

 

Figure 4 Error profiles including representativeness 
error for a 50 km grid box. 

After accounting for errors of representativeness, 
the error distribution of simulated Aeolus observations 
as a function of altitude is shown in Figure 4.  The thick 
solid curve connects the median error at each altitude 
and thus depicts a “typical” error profile.  Above 11 km, 
cloud effects are small and compact error distributions 
for the Rayleigh channel are evident.  The reduction in 
errors above 16 km is associated with the change in 
vertical resolution from 1 km to 2 km.  The Rayleigh 
channel distributions exhibit increasing skewness at 
lower altitudes, associated with poor data below thick 
cloud.  The poor data are easily identifiable by their low 
signal-to-noise ratio and can be removed from further 
processing by the users of future Aeolus data, via 
suitable (user-dependent) quality control procedures.  
The identification of poor data thus affects yield rather 
than accuracy of the final product.  It is interesting to 
note that the best 10% of Mie channel data have errors 
below 2 m/s up to 14 km.  The observation errors shown 
in Figure 4 are inversely proportional to the weight the 
data would receive in data assimilation schemes, 
subject to adjustment for specific background error 

covariance structures.   The ECMWF radiosonde 
observation errors are shown for reference as the thick 
dashed curve.  Aeolus data are thus expected to receive 
weight comparable to that given to each wind 
component of radiosonde and wind profiler 
observations. 
  
4. ASSIMILATION ENSEMBLES & DATA IMPACTS 

The expected impact of ADM-Aeolus data has been 
investigated through a series of assimilation ensemble 
experiments.  The original motivation for the assimilation 
ensemble method stems from the need to estimate 
background errors for use in the ECMWF assimilation 
system (Fisher 2003a, Žagar et al. 2005).  For this 
purpose the method consists of generating an ensemble 
of analyses and associated short-range forecasts.  Each 
ensemble member is an independent run of the 
ECMWF 4d-Var analysis/forecast system.  The 
observations supplied to the analysis system differ 
between ensemble members, through the addition of 
random perturbations consistent with the observation 
errors assumed in the analysis system.  That is, the 
observation perturbations are spatially uncorrelated and 
each is drawn from a Gaussian distribution with 
standard deviation specified by the observation error of 
the observation under consideration.  The underlying 
premise of the method is that differences in 
contemporaneous short-range forecasts, arising from 
different ensemble members, are a useful surrogate for 
background errors.  The method has been used to 
construct the background error statistics used in the 
ECMWF variational analysis since October 1999 (Fisher 
2003a), and to formulate a new humidity analysis (Hólm 
et al. 2002).  The ensemble data have also been used 
for Aeolus-related studies of wind errors in the ECMWF 
system (Tan and Andersson 2005a) and of wind-mass 
balance relationships in the tropics (Žagar et al. 2005). 

 
Here, the assimilation ensemble method is 

extended to assess the impact of different observations 
types (simulated Aeolus data and, for calibration 
purposes, radiosonde/wind profiler data).  This has 
required the generation of new  ensembles that differ in 
the observations made available to the ensemble 
method.  Four ensembles have been generated, and 
each ensemble consists of 4 independent members; 
each member is run for the period 10th January to 28th 
February 2003.  The four ensembles differ in the 
observations that are perturbed and assimilated as 
follows: 

• Control: All observational data used in the 
2004 ECMWF operational system, 

• DWL: Control with simulated Aeolus data 
added, 

• NoSondes: Control with radiosondes and 
wind-profilers removed, 

• DWL-NoSondes: NoSondes with simulated 
Aeolus data added. 

 
Statistics, such as the spread in a particular 

ensemble, are compiled for the period 16 Jan to 28 Feb 
2003 (to disregard common initial conditions).  A 



beneficial impact of observational data should 
correspond to a reduction in ensemble spread.  
Comparison of the Control and NoSondes ensembles 
permits essential calibration of the technique. 

 
The approach of removing real observation types 

(or adding simulated ones) in the assimilation ensemble 
method resembles the approach taken in traditional 
Observing System (Simulation) Experiments 
(OSEs/OSSEs).  There are two perceived advantages 
of the assimilation ensemble method over OSSEs for 
data impact studies.  The first is that, for existing 
observation types, the ensemble method perturbs real 
observations and thus eliminates the need to simulate 
such observations from a common nature run; a 
reference run is required only for simulating new 
observation types such as Aeolus HLOS wind data.  
The second is that the data impact measures in the 
ensemble method are based on relative differences 
such as ensemble spread, and are thus thought to be 
less sensitive than OSSE impact measures to the 
uncertainties surrounding the treatment of 
observation/simulation bias and verification against a 
nature run.  This paper acknowledges however that the 
assimilation ensemble method for data impact 
assessment is entirely new and that many aspects of its 
performance remain un-explored. 
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Figure 5 Spread in zonal wind (m/s) from the 12-hour 
forecasts from 3 assimilation ensembles.  Solid: 2004 
observing system, dotted: radiosondes and wind 
profilers removed, dashed: simulated Aeolus data 
added.  A scaling factor of order 2 is required to obtain 
values commensurate with background errors in NWP 
models 

Figure 5 shows the ensemble spread between 12-
hour forecasts, averaged over the Tropics, for the 
Control, DWL and NoSondes ensembles.  A calibration 
factor of order 2 is required to obtain values 
commensurate with actual wind errors in NWP models.  
It is evident nonetheless that the impact of simulated 
Aeolus data compares favourably with radiosonde/wind-
profiler data.  The largest spreads are found near, or 
just below, the tropopause.  Apart from the small 
differences between the DWL and Control profiles 

between 1000 and 850 hPa, all other differences are 
found to be significant according to Student’s T-test 
(p<0.001). 

 
The examples just presented suggest that the 

impact of simulated Aeolus data are comparable to the 
impact of radiosondes/wind-profilers in terms of 
assimilation ensemble spread.  This comparability has 
been found to extend to two global diagnostics of 
information content for the two data types.  The two 
measures examined are the entropy reduction, as 
measured by information bits contributed to the 
analysis, and the degrees of freedom for signal (DfS) in 
the data (Rodgers 2000).  Fisher (2003b) describes the 
computational scheme to estimate these quantities 
within the ECMWF system.  The calculations are based 
on current background error statistics and current used 
observations (January 2003) with the addition of AIRS 
data (which in operations were being passively 
monitored at the time).  The results (Table 1) are in 
keeping with the quantity, accuracy and coverage of the 
simulated Aeolus data.  Radiosondes and wind profilers 
provide more information in absolute terms, but require 
proportionately more observations to achieve this.  
Aeolus observations are more “efficient” at providing 
information per datum because they are able to 
contribute information in regions that are currently 
poorly observed, i.e. over ocean regions in both 
hemispheres and throughout the tropics. 

 
 Sondes & 

wind profilers 
ADM-Aeolus 

Doppler wind lidar 
Data u,v to 55 hPa HLOS (simulated) 
   
Information bits 4203 2787 
DFS 3153 2454 
Number of data 74682 28979 
   
Information bits 
per datum 

0.056 0.096 

Data per DFS 23.7 11.8 

Table 1: Information content by data type (12-hour 
observation window) 

 
5. ON-GOING PREPARATIONS 

ADM-Aeolus is now in Phase C. Activities to realize 
the space and ground segments currently include 
production and testing of the DWL components, as well 
as development of the ground-processing algorithms.  
Ground-based and airborne campaigns are planned for 
the purposes of testing algorithms.  Provision has been 
made for detailed planning of the calibration and 
validation activities that will be required during the in-
orbit commissioning phase.  A number of scientific 
studies are in progress, ranging from investigations into 
physical processes (scattering and line shapes) 
affecting the wind retrieval algorithms, to climate- and 
dynamics-related applications of the HLOS wind profile 
data (building on, e.g., Žagar et al. 2004). 

 



At the request of ESA, development studies for the 
wind-retrieval algorithms are being conducted under the 
lead of Météo-France, assisted by other institutions 
including ECMWF.  It is intended to make a portable 
version of the software widely available to the 
scientific/meteorological community.  A major design 
consideration has been to cater for operational centres 
with (near-) real-time requirements.  The automated 
detection and classification of clouds within the DWL 
field-of-view, and consequent decisions about selective 
averaging of the lidar signals, are expected to feature 
prominently in the retrieval algorithms. 

 
Work funded by ESA Study Contract No 15342/01/NL/MM.  DT is 
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