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1.  INTRODUCTION 
 
     Accurate, real-time upper level wind 
measurements can provide essential input 
into operational mesoscale models for their 
initialization and verification.  In artillery 
meteorology, measurements of upper level 
winds are important to the accuracy of 
calculated ballistic trajectories.  Although 
there are a number of ground based wind 
profilers available (wind tracer lidar, Doppler 
radar, and acoustical sounders), measuring 
upper level winds can be problematic and is 
highly dependent on favorable atmospheric 
conditions.  Other methods to obtain wind 
velocity profiles include satellite-based data, 
thermal wind approximations, cloud tracking 
(Nieman et al, 1997), and moisture field 
tracking (Velden et al, 1997).  Each of these 
methods can provide useful information for 
some synoptic scale applications but each 
one has certain limitations.   
    Pioneer neural network research was 
conducted at the former Atmospheric 
Sciences Laboratory in the early 1990's 
(Measure & Yee, 1992).  The research 
involved experimentation with neural 
network methods to retrieve temperature 
profiles from ground based microwave 
radiometers  (Yee & Measure, 1992) as well 
as from satellite radiance measurements 
(Bustamante, etal, 1994).  Neural networks 
were trained using simulated microwave 
radiometric measurements and archived  
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radiosonde measurements to produce 
vertical profiles of temperature from the 
surface to approximately 10 kilometers 
The success of these earlier studies 
prompted wind vector retrievals using 
satellite radiances (Cogan, etal, 1997).  
Those experiments have yielded errors 
comparable to those achieved by other 
sounder based methods.  Current studies 
involve the fusion of varied measurement 
sources to improve the upper level wind 
retrievals using neural network techniques.  
Neural networks are ideally suited for 
processing diverse data measurements and 
analyzing large data sets. 
     The ARL currently has three different 
wind profilers as part of the Atmospheric 
Boundary Layer Exploitation (ABLE) 
capabilities:  Doppler Wind Tracer Lidar, 
924MHz Radar Wind Profiler, and SODAR 
Profiler.  All the wind profilers have certain 
limitations and atmospheric conditions play 
a very important role in the retrieval of 
reliable wind vectors. In many cases, it is 
difficult to obtain consistent winds at the 
maximum detectable heights of these 
remote sensors. A neural network has been 
developed to estimate upper level winds 
from these ground based wind profilers to 
extend their capabilities at a particular 
locale. To demonstrate the feasibility of this 
method, a large training and testing set was 
extracted from the NCDC archived 
radiosonde data of North America (1957-
1994) for El Paso, Texas.  The 700mb level 
winds were used as input into the neural 
network to derive the 400mb level winds in 
the simulated test runs.  Preliminary results 
will be shown and future studies will be 
discussed. 
       



2. ATMOSPHERIC WIND PROFILERS 
 
      The ARL has several different wind 
profilers with various characteristics as 
shown in figure 1.  The three major systems 
are based on Doppler Lidar, radar, and 
acoustics.  One of the salient features of 
wind profilers, in general, is that they can 
provide continuous measurements without 
the extra expenditure of resources that a 
radiosonde would require.  Satellite 
measurements can collect wind information 
at higher atmospheric levels but the 
accuracy does not meet the requirements  
for precise artillery operations.  
 

 
 Figure1.  Summary of some characteristics 
of several different types of wind profilers 
acquired by the ARL. 
 
 
    Figure 2 is a photograph of the 924MHz 
wind profiling radar antenna built onto a 

High Mobility Trailer (Creegan & Guiterrez, 
2001).  The processing hardware and 
software is installed into a covered shelter 
on a High Mobility Multi-Wheeled Vehicle 
(HMMWV).  There are different radar signal 
processing methodologies to extract wind 
direction and speed.  One technique is the 
Advanced Signal Processing (ASP) method 
and another one is the more traditional 
consensus method.   

 
Figure 2.  Photograph of the ARL 924 MHz 
wind profiling radar antenna towed by 
HMMWV.  Processing hardware and 
software are housed inside the HMMWV's 
shelter. 
 
     The ARL CTI Doppler Lidar system 
consists of a scanning optics unit, laser 
source, receiver, data acquisition system, 
and signal processing software (Figure 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3.  Photograph of the ARL Doppler 
Wind Tracer Lidar system (left) and the ARL 
Microwave Radiometer (Measure, etal, 
1998) measuring moisture and temperature 
profiles (right) during the Joint Urban 2003 
experiment in Oklahoma City, 2003. 
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      Figures 4 and 5, wind speed and wind 
direction respectively, represent a sample 
derived wind profile from the wind radar 
using the consensus processing method.  
The data was taken at the White Sands 
Missile Range, New Mexico on August 10, 
1999.  The data was taken within several 
miles of a mountain range which may 
account for the variability in the vertical 
profile.  When comparing wind profiling 
measurements with rawinsonde measured 
winds, past field data show reasonable 
agreement even though the wind profiler is a 
volumetric measurement versus a point by 
point displacement measurement used by 
the rawinsonde.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 4.  Wind profiling radar sample 
measurement showing wind speed from the 
near surface to 5 kilometers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  Wind profiling radar sample 
measurement showing the corresponding 
wind direction of the wind profile in Figure 4. 
 
 
 

3.  NEURAL NETWORK ARCHITECTURE 
 
     An overview of the neural network 
procedure is shown in figure 6.  Training the 
neural network would involve the collection 
of coincident wind profiler data and 
rawinsonde data.  These data would be 
filtered via algorithms that screen the data 
for missing fields and defective data records.  
If data is missing in any of the training set's 
data fields, that individual test case, ie wind 
profile, will be rejected for the purpose of 
training or testing.  After extracting the wind 
direction and wind speed for selected height 
levels of interest, the wind parameters will 
be converted to U components (East-West) 
and corresponding V components (North-
South) of the wind. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
     
 
 
    Figure 6.  Flowchart of the neural network  
    procedure to retrieve upper level winds. 
 
 To assemble the actual training and testing 
sets for the neural network, wind profiler 
data will be matched with the appropriate 
rawinsonde data.  Although the wind 
profilers may have selectable integration 
periods, the rawinsonde wind data can take 
over an hour to complete its profile.  Thus 
exact matching is not possible.   
     Previous work has shown that a back 
propagation, feed forward, neural network is 
appropriate for these types of physical 
measurements.  Using a commercially 
available neural network development 
package, the following parameters were 
defined for the neural network (Table 1). 
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 Table 1.  Neural Network Parameters 
 

Learning Rule Delta-Rule 

Transfer Function Sigmoid 
Summation Sum 

Noise Uniform 
 
 
4. DATA SETS FOR NN TRAINING 
 
     The first step in the neural network 
development was to obtain archived 
National Climatic Data Center (NCDC) 
meteorological data, "Rawinsonde Data of 
North America" (Vols 1-4, 1946-1994), with 
enough cases to adequately train the 
network.  El Paso, Texas (latitude 31.84N, 
longitude 1.06.40W) was chosen as the test 
site and it is approximately 60 miles from the 
White Sands Missile Range, New Mexico. 
Data for both the 0000 UTC and the 1200 
UTC cases were included in the assembled 
data sets.  There currently is only a small 
data set of coincident wind profiler 
measurements along with the rawinsonde 
wind profiles to train the neural network; 
therefore, the rawinsonde measurements in 
the lower atmosphere were used in lieu of 
actual wind profiler data for these 
simulations.  The number of cases, i.e. 
rawinsonde profiles, used for the training 
testing sets is shown in Table 2. 
 
  Table 2.  Training and Testing Sets  
                  (Simulations) 

 
 
5. PRELIMINARY SIMULATIONS 
 
In these simulations, the radiosonde winds 
that would correspond with winds taken by 
wind profilers were used as inputs to the 
neural network to retrieve upper winds. 
 
  

 
5.1  Results 
 
     To show the feasibility of the 
methodology, preliminary neural network 
runs were made to derive 400mb upper level 
winds from the corresponding 700mb winds.   
In the locale of interest (El Paso), 700mb is 
approximately 3100 to 3200 meters in height 
and the 400mb level is approximately 7400-
7500 meters in height above sea level.  
Figure 7 is a scatter diagram showing the 
results of the derived U component winds at 
400mb versus the corresponding "true" 
profile, i.e. rawinsonde, U component wind 
at the same height level.  Figure 8 is a 
scatter diagram showing the corresponding 
comparisons for the V component of the 
winds at 400mb level.  The RMS error for 
the U component of the wind in the testing 
set was 9.1 m/s and the RMS error for the V 
component of the wind was 8.3 m/s.  
Comparing the ground-based derived winds 
at 400mb with previous derived winds from 
satellite radiances at the same height level, 
the RMS errors are comparable for the U 
component but there appears to be better 
correlation for the ground-based derived V 
component winds over the satellite derived 
V components (Cogan, etal, 1998). 
 
 
 

 
 
     Figure 7.  Scatter plot of the neural et 
retrieved U component of the winds at                             
the 400mb height versus the radiosonde 
measured U component of the winds at 
400mb. 
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  Figure 8.  Scatter plot of the neural net 
retrieved V component of the winds at                            
the 400mb height versus the radiosonde 
measured V component of the winds at 
400mb. 
 
 
5.2  Recommendations 
 
     From these preliminary studies, future 
work will center on the following directions: 

• Collect more real measurements of 
coincident wind radar, sodar, lidar, 
and rawinsonde profiles to provide a 
large enough data set to train the 
neural network. 

• Incorporate multiple lower level 
winds as input into the neural 
network for upper level wind 
inference. 

• Combine multiple wind profiler 
measurements together in a training 
set to either decrease the RMS 
errors or increase the maximum 
retrieval height. 

• Investigate other sites 
• Train on data sets that covers a 

range of geographical locations to 
increase the robustness of the 
neural network 

 
 
6. CONCLUSIONS 
 
     Earlier studies using near surface winds 
as input to a neural network to derive upper 
level winds at 400mb showed poor 
correlation with the “true” winds, i.e. 
rawinsonde, at the same height level.  This 
suggests that one must measure winds 
above the lower boundary layer in order to 

retrieve reasonable upper level winds.  The 
ARL wind profilers are capable of measuring 
winds above the boundary layer where there 
is practical correlation to upper level winds. 
     Simulations were developed to derive 
upper level winds at 400mb using winds at 
700mb as input into the network. The results 
show U wind component RMS errors of 9.1 
m/s and V wind component RMS errors of 
8.3 m/s.  The next step will be to use real 
wind profiler measurements as input into the 
trained neural network and compare the 
predicted upper level winds with the actual 
rawinsonde measured winds.   Future work 
will be to develop neural networks that use 
information from both the satellite and 
ground-based wind profilers to produce 
optimal wind profiles.  The results are 
encouraging but much work needs to be 
done to provide the optimal wind profile from 
the near surface up to 30 kilometers as 
required by future forecast models.  As 
ground based profilers become more 
capable in terms of accuracy and range, 
neural networks can be expected to play a 
larger role in the retrieval of upper level 
atmospheric winds. 
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