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1. INTRODUCTION 
∗ 

The West Florida Shelf (WFS) is a broad, gently 
sloping continental margin that is influenced by the Gulf 
of Mexico Loop Current system located seaward of the 
shelf break (Molinari et al., 1977; Huh et al., 1981; 
Paluszkiewicz et al., 1983; He and Weisberg, 2003; 
Weisberg and He, 2003) and by local wind and 
buoyancy forcing, including the fresh water of the 
Mississippi River, generally found at mid-shelf  in spring 
and summer (Gilbes et al., 1996; He and Weisberg, 
2002). The shelf circulation is dynamically linked to its 
varying water properties, and particularly to temperature, 
which exerts a primary control on density. The close 
relationship between the shelf water temperature 
variability and the variability of net surface heat flux and 
ocean circulation are reported in recent studies (He and 
Weisberg, 2002&2003; Weisberg and He, 2003; Liu and 
Weisberg, 2004a). Thus, the description of 
characteristic patterns of the SST variability adds to our 
understanding of the shelf circulation and air-sea 
interactions (Weisberg et al., 2004).  
 
1.1  Self-Organizing Map and its Applications in 

Meteorology and Oceanography 
 

Techniques for pattern detection in large 
oceanographic data sets are becoming increasingly 
important as data sets grow in size and complexity. The 
Self-Organizing Map (SOM), an artificial neural network 
based on unsupervised learning, is an effective software 
tool of feature extraction (Kohonen 1982 & 2001). It 
provides a nonlinear cluster analysis, mapping high-
dimensional data onto a (usually) 2D output space while 
preserving the topological relationships between the 
input data. As a tool of pattern recognition and 
classification, the SOM analysis is in widespread use 
across a number of disciplines (Kaski et al., 1998; Oja et 
al., 2003). Since its first use in climate research by 
Hewitson and Crane (1994), extensive applications of 
the SOM technique have been found in meteorological 
community (Malmgren, 1999; Cavazos, 1999&2000; 
Ambroise et al., 2000; Cavazos et al., 2002; Hewitson 
and Crane, 2002). Recently, the SOM analysis has also 

                                                 
∗ Corresponding author address: Yonggang Liu, Univ. of 
South Florida, 140 7th Ave S, St. Petersburg, FL 33701, 
email: yliu@marine.usf.edu 

been applied in oceanography. For example, Ainsworth 
(1999) and Ainsworth and Jones (1999) used this 
method to improve chlorophyll estimates from satellite 
data. Silulwane et al. (2001) and Richardson et al. (2002) 
used it to identify characteristic chlorophyll profiles in the 
ocean, and Hardman-Mountford et al. (2003) applied 
this method to altimeter data. Ultsch and Röske (2002) 
used it to predict sea level. The SOM technique was 
also used to extract SST and wind patterns from 
satellite data (Richardson et al., 2003; Risien et al., 
2004), and to detect ocean current spatial patterns from 
moored velocity time series (Liu and Weisberg, 2004b). 
 
1.2  Growing Hierarchical Self-Organizing Map  
 
     Despite its wide applications, the SOM analysis has 
its inherent deficiencies. First, it uses a static network 
architecture w.r.t. the number and arrangement of 
neural nodes, that have to be defined prior to the start of 
training. Second, hierarchical relations between the 
input data are difficult to detect in the map display. To 
address both issues within one framework, a neural 
network model of the Growing Hierarchical Self-
Organizing Map (GHSOM) was recently introduced 
(Dittenbach et al., 2002; Rauber et al., 2002; Dittenbach, 
2003; Pampalk et al., 2004). The GHSOM is composed 
of independent SOMs, each of which is allowed to grow 
in size during the training process until a quality criterion 
regarding data representation is met. This growth 
process is further continued to form a layered 
architecture such that hierarchical relations between 
input data are further detailed at lower layers of the 
neural network. To our knowledge, the GHSOM method 
has not yet been applied to meteorological or 
oceanographic research. 
 
1.3  SOM and GHSOM MATLAB Toolboxes 
 
     Most of the above referenced SOM applications in 
meteorology and oceanography are based on a 
software package SOM_PAK 3.1 or earlier versions 
(Kohonen et al., 1995), written in C language. However, 
the Mathwork Inc.’s MATLAB has been steadily gaining 
popularity as the “language of scientific computing”. 
Moreover, MATLAB is much better suited for fast 
prototyping and customizing than C language, as 
MATLAB employs a high-level programming language 
with strong support for graphics and visualization. The 
SOM Toolbox takes advantage of these strengths and 
provides an efficient, customizable SOM implementation 
(Vesanto et al., 2000). The SOM Toolbox utilizes 



MATLAB structures and the functions are constructed 
modularly, making it convenient to tailor the code for 
specific user needs. The SOM Toolbox version 2.0 can 
be downloaded at a website of the Helsinki University of 
Technology, Finland: 
http://www.cis.hut.fi/projects/somtoolbox/.  The GHSOM 
Toolbox, developed jointly by the University of Aberdeen 
and Vienna University of Technology, can be 
downloaded at http://www.oefai.at/~elias/ghsom/. 
 
1.4   Goal of This Paper 

 
     A five-year set of daily SST composite maps on the 
WFS are analyzed using the SOM and the GHSOM 
Toolboxes. The purposes are two fold: (1) to 
demonstrate the usefulness of the GHSOM in feature 
extraction, and (2) to describe the characteristic SST 
patterns on the WFS and their temporal variations.  
     Since the GHSOM method is relatively new to the 
oceanographic community, a brief discussion on the 
philosophy behind the SOM and GHSOM techniques is 
given in section 2. The SST data set is described in 
section 3. Applications of the linear, EOF and the 
nonlinear, GHSOM methods are described in sections 4 
and 5, respectively. The results are discussed in section 
6, and the paper is summarized in section 7. 
 
 
2. MORE ON THE SOM AND GHSOM 
 
     In this section, a brief introduction of the SOM and 
GHSOM methods is given based on work by Kohonen 
(1982 & 2001), Dittenbach et al. (2002), Dittenbach 
(2003) and Pampalk et al. (2004). The SOM is a 
nonlinear, ordered, smooth mapping of high-
dimensional input data onto the elements of a regular, 
low-dimensional (usually 2D) array (Kohonen 1982 & 
2001). Fig. 1 gives an illustration of how a SOM works. 
The SOM consists of a set of i units arranged in a 2D 
grid with a weight vector mi attached to each unit, which 
may be initialized randomly. Input vectors x are 
presented to the SOM and the activation of each unit for 
the presented input vector is calculated using an 
activation function. Commonly, it is the Euclidian 
distance between the weight vector of the unit and the 
input vector that serves as the activation function. In the 
next step the weight vector of the unit showing the 
highest activation (i.e. the smallest Euclidian distance) is 
selected as the “winner” ck where 

ikkc mx −= minarg                       (1) 
The weight vector of the winner is moved toward the 
presented input signal by a certain fraction of the 
Euclidean distance as indicated by a time-decreasing 
learning rate α. The learning rate α can be an inverse-
time, linear or power function. Thus, this unit’s activation 
will be even higher the next time the same input signal 
is presented. Moreover, the weight vectors of units in 
the neighborhood of the winner are also modified 
according to a spatial-temporal neighborhood function ε. 
Similar to the learning rate, the neighborhood function ε 

is time-decreasing.  Also, ε decreases spatially away 
from the winner. There are many types of neighborhood 
function, and the typical one is Gaussian. The learning 
rule may be expressed as  

)]()([)()()()1( tttttt iii mxmm −⋅⋅+=+ εα      (2) 
where t denotes the current learning iteration and x 
represents the currently presented input pattern. This 
learning procedure leads to a topologically ordered 
mapping of the presented input data. Similar patterns 
are mapped onto neighboring regions on the map, while 
dissimilar patterns further apart. 
     The GHSOM enhances the capabilities of the basic 
SOM in two ways. The first is to use an incrementally 
growing version of the SOM, which does not require the 
user to directly specify the size of the map beforehand; 
the second enhancement is the ability to adapt to 
hierarchical structures in the data (Dittenbach et al., 
2002; Rauber et al., 2002; Dittenbach, 2003; Pampalk et 
al., 2004). Fig. 2 gives a cartoon show of the GHSOM. 
Prior to the training process a “map” in layer 0 
consisting of only one unit is created. This unit’s weight 
vector is initialized as the mean of all input vectors and 
its mean quantization error (MQE) is computed. The 
MQE of unit i is computed as 
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Beneath the layer 0 map a new SOM is created with a 
size of initially 2×2 units. The intention is to increase the 
map size until all data items are represented well. A 
mean of all MQEi is obtained as <MQE>. The <MQE> is 
then compared to the MQE in the layer above, 
<MQE>above. If the following inequality is fulfilled a new 
row or column of map units are inserted in the SOM, 

above
MQEMQE ⋅> 1τ                       (4) 

where τ1 is a user defined parameter. Once the decision 
is made to insert new units the remaining question is 
where to do so. In the GHSOM array, the unit i with the 
largest MQEi is defined as the error unit. Then the most 
dissimilar adjacent neighbor, i.e., the unit with the 
largest distance in respect to the model vector, is 
selected and a new row or column is inserted between 
these. If the inequality (4) is not satisfied, the next 
decision to be made is whether some units should be 
expanded on the next hierarchical level or not. If the 
data mapped onto one single unit i still has a larger 
variation, i.e., 

abovei MQEMQE ⋅> 2τ                        (5)  
where τ2 is a user defined parameter, then a new map 
will be added at a subsequent layer. Generally, the 
values for τ1 and τ2 are chosen such that 

01 21 >>>> ττ . In the GHSOM Toolbox, τ1 and τ2 are 
called “breadth”- and “depth”-controlling parameters, 
respectively. Generally, the smaller the parameter τ1, 
the larger the SOM arrays will be. The smaller the 
parameter τ2, the more layers the GHSOM will have in 
the hierarchy. 



 
 
Fig. 1.   Illustration of how a SOM works. The data time series are rearranged to form a big 2D data array such that 
the data at each time step are reshaped to be a row vector. For each time step, the row vector is used to update the 
weight of the SOM via an unsupervised learning algorithm. This iteration process is called self-organizing. The 
outcome weight vectors of the SOM nodes are reshaped back to have characteristic data patterns. 
 
 
 
3. DATA 
 
     A time series of daily SST on the WFS were 
generated by merging the Advanced Very High 
Resolution Radiometer SST and the Tropical Rainfall 
Measuring Mission Microwave Imager SST data via an 
optimal interpolation scheme (He et al., 2003). We 
chose the initial five-year period spanning January 1998 
through December 2002 for an analysis here. The data 
domain is shown in Fig. 3, which is a little smaller than 
that of He et al. (2003), focusing more on the WFS. If 
the data set is arranged in an I×J matrix, where I and J 
are spatial and temporal dimensions, respectively, then 
a temporal mean SST pattern is expressed as 
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and shown in Fig. 3. The five-year mean pattern shows 
the warm Loop Current water seaward of the shelf break 
and the relatively cooler water along the coast near the 
Florida Big Bend region. The SST gradient points from 
the southwest to the northeast, with an approximate 
30~40º angle deviation from the mean along-isobath 
direction. This may reflect the combined effects of 
latitudinal differences in surface heating due to solar 
radiation and across-shelf differences in water column 
heating/cooling due to the depth gradient on the shelf.  

     Two types of SST anomalies are prepared. The first 

type, ),(ˆ txT , is obtained by subtracting the temporal 
mean map from the original data  

)(),(),(ˆ xTtxTtxT −=                         (7) 
 
By further subtracting a time series of spatial mean 
values, which is expressed as 

∑
=

=
I

i
i txTI

tT
1

),(ˆ1)( ,                         (8) 

the second type SST anomaly, ),(~ txT , is obtained as  

  )()(),(),(~ tTxTtxTtxT −−=                 (9) 
The spatial mean SST anomaly has higher values in 
summer and lower values in winter, and the temporal 
variation is close to a sine function (Fig. 4).  
     The monthly mean SST patterns, computed over the 
entire five-year analysis period, show a seasonal 
variation (Fig. 5). An across-shelf SST gradient is found 
in all the winter months, but not obvious in the summer 
months. A spring cold tongue structure that is prominent 
in April and May is consistent with previous literature 
(e.g., Weisberg et al., 1996; He and Weisberg, 2002). 
These SST features will be used to compare with those 
derived from the linear EOF and nonlinear GHSOM 
analyses. 



 
Fig. 2.   An example of the Hierarchical structure of the 
GHSOM. All of the 4 units in the first layer SOM are 
expanded in the second layer. Only two units in one of 
the second layer SOMs are further expanded in the third 
layer. 
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Fig. 3.   Record-length mean SST map over the five-
year period, 1998-2002, overlaid with 20, 50, 100, 200 
and 1000 m isobaths on the WFS. 
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Fig. 4.   Time series of the spatial mean SST anomaly on the WFS. 
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Fig. 5.   SST monthly means on the WFS obtained by forming an average for each month over the five-
year period, 1998-2002. 



4. EOF PATTERNS OF THE SST 
 
      Before performing the SOM and GHSOM analyses, 
we begin with the more established technique of time 
domain EOF that has wide oceanographic and 
meteorological applications (e.g., Weare et al., 1976; 
Richman, 1986; Lagerloef and Bernstein, 1988; Chu et 
al., 1997a&b; He et al., 2003; Espinosa-Carreon et al., 
2004). The EOF is the same as the Principal 
Component (PC) Analysis (Hotelling, 1933) used in the 
statistics community. In the combined parlance the PCs 
are the amplitudes, which are functions of time, of their 
corresponding spatial eigenfunctions, or EOFs, and the  
analysis separates the data sets into orthogonal modes. 
Generally speaking, each mode n has an associated 
variance, a dimensional spatial pattern Fn(x), and a 
nondimensional time series αn(t). Thus, the SST 
anomalies ),(ˆ txT  may be represented by the EOFs as: 

∑
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    He et al. (2003) reported EOF results for the first type 
of SST anomaly defined previously. The first three 
EOFs of that analysis account for 90.6%, 3.5% and 
0.9% of the SST variance, respectively. The dominating 
first mode represents the seasonal surface heat flux 
cycle. Note that the strong seasonal variation may 
hinder our view of other interesting processes. To 
reduce the impact of the seasonal cycle on the data 

analysis, the second type SST anomaly data ),(~ txT  is 
used, i.e., both the temporal mean map and the spatial 
mean SST time series are removed from the original 
SST. Some previous studies removed the seasonal 
cycle by fitting each time series to annual and 
semiannual harmonics and subtracting them from the 
original data (Espinosa-Carreon et al., 2004). In that 
way, the amplitude of the harmonics being removed 
may be different from one point to another on a map. 
We choose to subtract a time series of spatial mean 
SST simply because the main purpose of the study is to 
extract the spatial patterns and it is better not to change 
the relative values on a SST map. Our EOF results are 
shown in Fig. 6. The first mode, although accounting for 
a smaller percentage of SST variance (59.6%), has a 
spatial pattern and temporal variation essentially the 
same as those in He et al. (2003). It represents the 
seasonal surface heat flux cycle, i.e., the PC time series 
has an annual periodicity peaking in summer and winter, 
and the eigenfunction shows two different regimes, the 
wide WFS and the deep ocean. This is a consequence 
of water depth and the buffering effect on the 
temperature by the warm water advection of the Loop 
Current. Thus, the Loop Current presents the WFS with 
a cooling tendency in summer and a warming tendency 
in winter. The second mode, accounting for 10.8% of 
the SST variance, reveals a warm/cold tongue pattern 
on the WFS. The spring cold tongue on the mid WFS is 
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Fig. 6.   Eigenfunctions and the associated temporal evolution functions for the first four EOF modes of the SST data. 
The percent of variance accounted for by each mode is indicated at the upper-right corner of each eigenfunction plot. 
The tick labels J, M and S on the horizontal axis designate the first days of January, May and September, 
respectively; same for the following figures. 



due to the combined baroclinic and barotropic 
responses of the WFS circulation to the seasonal 
surface heat and momentum fluxes as described in 
previous studies (Weisberg et al., 1996; He and 
Weisberg, 2002; He et al., 2003). The third mode, 
accounting for 6.4% of the SST variance, reveals a 
pattern of the shelf break Loop Current eddy. The fourth 
mode reveals smaller spatial structures and its PC 
fluctuations, of higher frequency, are beginning to 
describe the synoptic scale variability.  
 
 
5. GHSOM MAPPING OF THE SST 
 
    In this section, the GHSOM is performed on the 
original SST data and the SST anomaly data ),(~ txT , 
respectively. 
 
5.1   GHSOM Analysis of the Original SST Data 
 
    The five-year-long daily SST data are used as input 
to the GHSOM without any preconditioning. In the 
application of the GHSOM Toolbox, all the parameters 
are set to the default values except τ1 and τ2, the 
breadth- and depth-controlling parameters. Different (τ1, 
τ2) values are used to test the GHSOM performance 
(see Table 1). Generally, when smaller (τ1, τ2) values 
are chosen there are more nodes, i.e., larger SOM 
arrays, in the output. A large SOM array identifies a 
large number of patterns and reveals more detailed 
structure within the data, whereas a small SOM array 
identifies fewer, more generalized patterns. We chose 
the case of (τ1=0.6, τ2=0.06) to analyze simply because 
the results have two layers and the SOM arrays are 
large enough to represent characteristic SST features 
and small enough to be visualized.  

 
Table 1.   Performance of the GHSOM with different 

values of controlling parameters. 
 

τ1 τ2 
Layer 1 
SOM # 

Layer 2  
SOM # 

0.8 0.08 4 4, 0, 0, 4 
0.7 0.07 4 6, 4, 0, 4 
0.6 0.06 4 12, 6, 0, 10 
0.5 0.05 4 30, 15, 18, 55 
0.4 0.04 4 64, 40, 48, 119 
0.3 0.03 6 132, 120, 96, 0, 144, 140 
0.2 0.02 24 0 
0.1 0.01 95 0 

 
    The layer 1 GHSOM enabled a nonlinear 
classification of the five-year-long daily SST on the WFS 
into 4 categories as shown in the 2×2 SOM array in Fig. 
7. Each unit explains a particular set of SST 
characteristics. Unit 1 reveals a typical cold SST pattern 
(16º < SST < 25ºC); the isotherms are approximately 
aligned with the isobaths, with the coldest water center 
around Florida Big Bend region and with the warmest 
water seaward of shelf break associated with the Loop 
Current. On the other end of the extremes, unit 4 

reveals a warm SST pattern (SST > 28ºC), with no 
obvious horizontal temperature gradient. Both units 2 
and 3 are transitional patterns between the two 
extremes.  
     For each of the five-year-long daily SST maps, a 
best-matching unit (BMU) can be found. The “best” 
matching is defined to have the smallest weighted 
distance from the input data. Time series of the BMU 
number show obvious seasonal fluctuations (Fig. 8). 
Unit 1 is best-matched in winter, while unit 4 is best-
matched in summer. Unit 2 is best-matched in spring 
and early winter, and unit 3 in early summer and autumn. 
The cycle of units 1 → 2 → 3 → 4 → 3 → 2 → 1 takes 
place in one year.  In order to quantify the 
representation of each unit, the frequency of occurrence 
is computed by summing the hits of that unit and 
dividing by the total record length. The relative 
frequency of occurrence of each unit is shown in the 
upper-right corner of each map in Fig. 7. Unit 1 
represents 26.3% of all the SST data, and unit 4 
represent 33.7%. Monthly climatology of the frequency 
of occurrence during the five years is further computed 
for each unit (Fig. 9). It can be seen that the first pattern 
mostly appears in January-March, the second pattern in 
April, November and December, the third pattern in May 
and October, and the fourth pattern in June-September.  
     Not all units in the first layer grow to the same depth 
in the GHSOM hierarchy. Only units 1, 2, and 4 are 
further expanded in a second layer map. The second 
layer GHSOM grown from the unit 1 is a category of 
winter SST patterns. Different features of the coastal 
cold water and the warm Loop Current water are 
classified into the 3×4 SOM array (not shown).  
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Fig. 7.   Layer 1 GHSOM (2×2) of five-year-long daily 
SST data on the WFS. The frequency of occurrence of 
each pattern is also shown on each map. 
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Fig. 8.   Temporal evolution of the BMUs. The labels of the vertical axis correspond to the layer 1 GHSOMs in Fig. 7.  
 
 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

2

4

6

8

10

F
re

qu
en

cy
 o

f O
cc

ur
en

ce
 (

%
)

pattern (1)
pattern (2)
pattern (3)
pattern (4)

 
 
Fig. 9.   Frequency of occurrence of the four characteristic patterns as a function of month. 
 
 
     The second layer GHSOM grown from the unit 2 of 
the first layer GHSOM (GHSOM 2-2) is shown in Fig. 10. 
This 2×3 array shows a category of spring and early 
winter SST patterns. Specifically, the upper three units 
(1, 3, and 5) represent spring patterns, while the lower 
units (2, 4, and 6) represent early winter patterns; this is 
distinct in the time series of the BMUs (Fig. 11). The 
general sequence of the SST variation is unit 1 → 3 → 5 
for the spring evolution and unit 6 → 4 → 2 for the early 
winter evolution. The spring cold tongue structure may 
be identified in units 3 and 5.  
     The second layer GHSOM grown from the unit 4 of 
the first layer GHSOM (GHSOM 2-4, a 2×5 array) shows 
a category of summer SST patterns (Fig. 12). The peak 
summer SST patterns are shown in the rhs of the SOM 
array (units 7~10), while the early and late summer SST 
patterns are arranged in the lhs (Units 1~6). The 
evolution of the summer SST patterns from early to late 
summer stages in each year is illustrated in Fig. 13. The 
general characteristics of the summer SST is uniformly 
high temperature. Thus, it is difficult to divide the coastal 
and the Loop Current waters based on the SST in 
summer. 
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Fig. 10.   GHSOM 2-2: Layer 2 SOM under the pattern 2 
of the first layer GHSOM. The relative frequency of 
occurrence of each pattern is shown in the upper-right 
corner of each map.  
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Fig. 11.   Temporal evolution of the BMUs for the GHSOM 2-2.  
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Fig. 12.   GHSOM 2-4: Layer 2 SOM under the pattern 4 of the first layer GHSOM. The relative frequency of 
occurrence of each pattern is shown in the upper-right corner of each map.  
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Fig. 13.   Temporal evolution of the BMU for the GHSOM 2-4.  
 
5.2  GHSOM Analysis of the SST Anomaly with Both the Temporal Mean Map and Spatial Mean Time Series 

Removed 
 
     The SST anomaly ),(~ txT  is used in the GHSOM model. By removing the time series of spatial mean SST, the 
strong seasonal variation is partially reduced, while the relative spatial structure is not altered, i.e., the horizontal SST 
gradient is not changed. Similar to that in section 5.1, a set of controlling parameters are used to run the GHSOM 
model. We choose the result of τ1=0.8 and τ2=0.08 to present for the same reason as in section 5.1. 
     The first layer GHSOM is still a 2×2 array representing four categories of the SST anomaly patterns on the WFS 
(Fig. 14). Unit 1 reveals a wide warm tongue structure on the shelf, mostly appearing in November as a fall transition 
(Fig. 15); in contrast, unit 4 reveals a spring cold tongue structure on the shelf (peaking in April). Unit 2 reveals a 
pattern of coast-ocean contrast in summer (from June through September); on the other hand, unit 3 shows a 
reversed pattern of the unit 2, prevailing in winter (from January to February). Units 1~4 represent 16.3%, 43.6%, 
24.4% and 15.7% of the SST anomaly maps, respectively. Generally, the SST anomaly patterns revealed by the 
GHSOM may be justified by the first two mode EOFs. Units 2 and 3 resemble the two extremes of the first mode 
eigenvector with positive and negative weights, respectively; and units 1 and 4 may be ascribed to the second mode 
E O F  w i t h  n e g a t i v e  a n d  p o s i t i v e  we i g h t s ,  r e s p e c t i v e l y .  H o we v e r ,  t h e  a m p l i t u d e s  o f  t h e  
winter SST anomalies (unit 3) are larger than those of the summer SST anomalies (unit 2); also, the shapes of the 
cold and warm tongues are different as shown in units 4 and 1, respectively. These asymmetric phenomena are not 
shown in the EOF results.  

All the four units are further expanded at a subsequent layer (not shown). The numbers of the GHSOM units in the 
second layer are 6, 12, 4 and 6, respectively, for units 1, 2, 3 and 4 in the first layer GHSOM.   
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Fig. 14.   Layer 1 GHSOM (2×2) of five-year-long daily SST anomalies (τ1=0.8, τ2=0.08). The input data is 
preprocessed by removing both the temporal mean map and a time series of spatial mean values. The relative 
frequency of occurrence of each pattern is shown in the upper-right corner of each map.  
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Fig. 15.   Frequency of occurrence of the four characteristic maps in Fig. 14 as a function of month. 
 
 
6. DISCUSSION 
 
     As a standard method in data analysis, the EOF can 
be used conveniently to characterize the dominant 
spatial patterns of variability as long as the PC time 
series explains the greatest amount of variance. 
However, as a linear method it is suboptimal if the 
system is nonlinear. The SOM can be considered as a 
nonlinear generalization of the EOF, best preserving the 
topology rather than the variance of the data. A major 
strength of the SOM is that the underlying patterns in a 
data set can be visualized in the same form as the 
original data. Thus, if input data is SST images, then the 
outputs are SST patterns, not SST anomaly patterns. 
This is an advantage over the EOF, in which the 
temporal mean field has to be removed prior to the 
analysis. As the SOM output patterns resemble the 
input format, they are more easily interpreted than 
output from the EOF. Also, the SOM overcomes the 
bias of the linear methods, and the SOM patterns may 
be more realistic than the EOF patterns. As shown in 
section 5.2, the asymmetric SST anomaly patterns of 
winter/summer and cold/warm tongues revealed by the 

SOM array cannot be identified in the EOF patterns. 
Another advantage of the SOM analysis is that the 
algorithm is robust in handling missing data, without a 
priori estimation. Thus, the SOM method can be used to 
explore incomplete data sets. Moreover, the SOM can 
be used as data interpolation techniques, estimating 
missing data from input data that are similar (Hewitson 
and Crane, 2002). 
     The major advantages of the GHSOM model over 
the standard SOM are the following. First, the overall 
training time is largely reduced since only the necessary 
number of units are developed to organize the data at a 
certain degree of detail. Second, the GHSOM uncovers 
the hierarchical structure of the data, allowing the user 
to understand and analyze large amount of data in an 
explorative way. Third, the size of the SOM array does 
not have to be specified subjectively before hand.  

 
 

7. SUMMARY 
 
     As an extended neural network based on the SOMs, 
the GHSOMs grow automatically in map size during an 



unsupervised training process. Also, the GHSOMs 
expand in a three-dimensional tree-structure, and 
represent the inherent hierarchical structure in the data. 
Each SOM array in the hierarchy explains a particular 
set of characteristics of the data. This makes the 
GHSOM analysis an excellent tool for feature extraction 
and classification. 
     The GHSOM method is used to extract the 
characteristic patterns of the SST on the WFS from a 
time series of daily SST maps that span the five-year 
interval 1998~2002. Four characteristic SST patterns 
are extracted in the first layer GHSOM array: 
characteristic winter and summer SST patterns, and two 
transitional patterns. Three of them are further 
expanded in the second layer, yielding more details in 
the SST pattern evolutions. The results show that a 
seasonal cycle dominates the SST variability on the 
shelf. Winter SST pattern is characterized by cold water 
temperature (16º < SST < 25ºC) with the isotherms 
approximately aligned with the isobaths and with the 
coldest water center around Florida Big Bend region 
and with the warmest water located seaward of shelf 
break associated with the Loop Current. In contrast, 
summer SST pattern is characterized by the horizontally 
uniform, warm water temperature (SST > 28ºC). The 
spring transition includes a mid shelf cold tongue. 
     When the GHSOM analysis is performed on the SST 
anomaly data (with both the temporal mean map and 
the time series of spatial mean values removed), four 
characteristic SST anomaly patterns are also obtained 
in the first layer GHSOM array, representing the SST 
anomaly patterns in the four seasons. The winter SST 
anomaly pattern shows the cooling effect of the shelf 
and warming effect of the Loop Current, while the 
summer pattern reveals the warming tendency of the 
shelf and cooling tendency of the Loop Current. The 
spring pattern shows a mid shelf cold tongue, while the 
fall pattern shows a warm tongue on the shelf. 
     It is demonstrated that the GHSOM analysis is more 
effective in extracting the inherent SST patterns than the 
widely-used EOF method. The SOM analysis can be 
considered as a nonlinear generalization of the EOF 
method, best preserving the topology rather than the 
variance in the data. The underlying patterns in a data 
set can be visualized in the SOM array in the same form 
as the original data, while they can only be expressed in 
anomaly form in the EOF analysis. Some important 
features, such as asymmetric SST anomaly patterns of 
winter/summer and cold/warm tongues, can be revealed 
by the SOM array but cannot be identified in the EOF 
patterns. Also, the hierarchical structure in the input 
data can be extracted by the GHSOM analysis but can 
not be realized in the EOF technique. 
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