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Tornado circulation attributes/variables derived largely 
from the National Severe Storms Laboratory 
Mesocyclone Detection Algorithm (MDA) have been 
investigated for their efficacy in distinguishing between 
mesocyclones that become tornadic from those which 
do not.  Using a subset of the MDA variables associated 
with velocity yields 23 potential predictors.  Previous 
research has shown that the discrimination ability of 
several of the predictors is not good and the predictor 
pool has strong associations among subsets of these 
variables.  Despite these drawbacks, applications of 
artificial neural networks (ANN) and support vector 
machines (SVM) to the MDA have met with success in 
predicting correctly pre-tornadic circulations.  One of the 
largest challenges in this regard is to maintain a high 
probability of detection (POD) while simultaneously 
minimizing the false alarm rate (FAR).   
 
Both ANN and SVM are non-linear classifiers and, 
accordingly, the use of linear statistics to screen the 
predictor pool a priori may not be logically consistent.  In 
this research, the impact of removing individual 
predictors is examined on the training and testing errors.  
Results were encouraging as exclusion of specific 
variables had a notable impact on the ability to 
distinguish accurately the tornadic from the non-tornadic 
circulations when viewed from misclassification rates, 
POD, FAR, and Heidke skill.  A key finding is that 
inclusion of the current month number (1= January, 2 = 
February, …, 12 = December) in addition to a subset of 
MDA variables used in SVM is the most accurate set of 
features tested.  This methodology of feature selection 
outperforms SVM based on the MDA alone, achieving a 
Heidke skill of 0.844 with a POD of 0.835 and a FAR of 
0.135 with more parsimonious models. 

1. INTRODUCTION 
Accurate detection of tornadoes with ample warning 
times has been a longstanding goal of severe weather 
forecasters.  With state-of-the-science weather radar, 
high speed computing and advanced signal processing 
algorithms, steady progress has been made on 
increasing the average lead-time of such warnings.  An 
extra minute of lead-time can translate into a number of 
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lives saved.  One of the severe weather detection 
algorithms, created by the National Severe Storms 
Laboratory (NSSL) and in use at the Weather 
Surveillance Radar 1998 Doppler (WSR-88D), is the 
Mesocyclone Detection Algorithm (MDA).  This 
algorithm uses the data stream outputs of the WSR-88D 
and is designed to detect storm–scale circulations 
associated with regions of rotation in thunderstorms.  
The MDA is used by meteorologists as one input in their 
decision to issue tornado warnings.  Marzban and 
Stumpf (1996) show that the performance of the MDA is 
improved by NN post-processing of the radar data.  Our 
work will attempt to simplify the redundancies in the 
MDA, helping to speed up the detection process so that 
the forecaster can assimilate information from the data 
set prior to new data streaming in.  By identifying 
patterns associated with tornadoes in a timely fashion, 
the forecaster can assess the evolution of such 
patterns. 

Kernel based methods, such as SVM, are applied to 
detect tornado circulations sensed by the WSR-88D 
radar.  These methods do not make any assumptions 
about the data distributions.  Application of the kernel 
methods is useful to address the problem of nonlinearity 
of the data in the input space since the data are mapped 
into a higher dimensional space where there is a high 
likelihood that the problem becomes linear separable 
(Vapnik, 1995).  By exploiting the kernel method, 
nonlinear classifiers are found that separate the data 
into tornado and no tornado cases. 

The current problem is a large scale one where a 
sizeable number of data are required for training.  For 
such problems, the method of decomposition is an 
important issue to consider for solution efficiency.  Hsu 
and Lin (2002) proposed a decomposition technique to 
solve the large-scale SVM training problems.  The basic 
algorithm is a simplification of both sequential minimal 
optimization by Platt (1999) and SVMLight by Joachims 
(1999).  The paper is organized as follows.  In section 2, 
the definition of the problem is provided.  In section 3, 
description of the data is given.  In section 4, the basics 
of the learning machines used and our methodology are 
discussed.  In section 5, the experimental setting is 
described.  Section 6 provides analysis of the results 
and, finally, section 7 concludes the study. 

 

2. PROBLEM STATEMENT 
There are two classes of problems addressed in this 

research. One is meteorological, relating to tornado 
warnings, and the other is methodological.  The two are 
intimately entwined for the prediction of tornadoes. 

There are several challenges involved in tornado 
warnings from the meteorological viewpoint.  The first 
one is tornado detection.  Of those tornadoes that do 
occur, the number of tornadoes detected is smaller.  
The second one is false alarms.  Algorithms detect 
tornado circulations more often than such circulations 
can be confirmed.  The latter is insidious because the 
warnings have the potential to go unheeded by the 
public after a series of false alarms.  Accordingly, it is 



desirable to develop a statistical learning algorithm that 
will maximize detection and minimize false alarms. 

Prediction of tornadoes is a difficult task owing to the 
small scale of their circulation and their rapid production 
in the atmosphere.  They can form within minutes and 
disappear just as quickly.  The dynamic nature of this 
problem requires addressing the time-dependence 
nature of this application.  It requires real time response 
to observations from radar data.  Once the data are 
collected, algorithms look for signatures of tornadoes in 
near-real time, since an extra minute of lead-time can 
translate into a number of lives saved.  The incoming 
radar data stream can be used for dynamic decision 
making to increase the lead-time in tornado forecasts.  
However, present day operational radar takes 
approximately 6 minutes to complete one volume scan.  
Furthermore, the spatial resolution averages close to ¼ 
km for Doppler radar velocity.  Many tornadoes are 
smaller than that.  Despite the challenges, lead times for 
tornadoes have increased from a few minutes (a decade 
ago) to approximately 11 minutes (with current radar), 
largely due to improvements in algorithms that use the 
radar data as inputs. 

The second research problem is to develop an 
intelligent system that one can deal with data that have 
a significant noise component.  ANN are considered 
robust classifiers in terms of input noise.  However, the 
resulting learning optimization problem is nonconvex.  
An alternative to ANN is SVM where the learning 
optimization problem is convex.  Vapnik (1995) shows, 
based on statistical learning theory, that SVM have 
better generalization properties than ANN.  SVM is also 
robust with bounded noise in the input data (Trafalis and 
Al-Wazzi, 2003). 

3. DATA AND ANALYSIS 
The MDA data set used for this research is based on 
the outputs from WSR-88D radar.  Any circulation 
detected on a particular volume scan of the radar can 
be associated with a report of a tornado.  In the severe 
weather database, supplied by NSSL, there is a label for 
tornado ground truth that is based on temporal and 
spatial proximity.  If there is a tornado reported between 
the beginning and ending of the volume scan, and the 
report is within a reasonable distance of a circulation 
detection (input manually), then the ground truth value is 
flagged.  If a circulation detection falls within the 
prediction "time window" of -20 to +6 minutes of the 
ground truth report duration, then the ground truth value 
is also flagged.  The key idea behind these timings is to 
determine whether a circulation will produce a tornado 
within the next 20 minutes, a suitable lead-time for 
advanced severe weather warnings by the National 
Weather Service.  Any data with the aforementioned 
flagged values are categorized as tornado cases, with 
the label set to 1.  All other circulations are labeled as 0, 
corresponding to a no tornado case. 

The predictor pool employed in this study consists of 
24 variables, of which 23 come from the MDA and are 
based on Doppler velocity data (Table 1).  These 
variables have been used successfully by Marzban and 
Stumpf (1996).  Additionally, a variable denoting what 

calendar month a circulation occurs, was added to 
account for the strong seasonality exhibited by each of 
the 23 velocity-based variables.  The database was 
stratified into seasons and data were sampled from 
every season for the training of the learning machines 
used. 

 

Table 1.  List of s, units and ranges used 
in the Mesocyclone Detection Algorithm. 

1. base (m) [0-12000] 13. low-level gate-to-
gate velocity difference 
(m/s) [0-130] 

2. depth (m) [0-13000] 14. maximum gate-to-
gate velocity difference 
(m/s) [0-130] 

3. strength rank [0-25] 15. height of maximum 
gate-to-gate velocity 
difference (m) [0-
12000] 

4. low-level diameter 
(m) [0-15000] 

16. core base (m) [0-
12000] 

5. maximum diameter 
(m) [0-15000] 

17. core depth (m) [0-
9000] 

6. height of maximum 
diameter (m) [0-12000] 

18. age (min) [0-200] 

7. low-level rotational 
velocity (m/s) [0-65] 

19. strength index 
(MSI) weighted by 
average density of 
integrated layer [0-
13000] 

8. maximum rotational 
velocity (m/s) [0-65] 

20. strength index 
(MSIr) "rank" [0-25] 

9. height of maximum 
rotational velocity (m) 
[0-12000] 

21. relative depth (%) 
[0-100] 

10. low-level shear 
(m/s/km) [0-175] 

22. low-level 
convergence (m/s) [0-
70] 

11. maximum shear 
(m/s/km) [0-175] 

23. mid-level 
convergence (m/s) [0-
70] 

12. height of maximum 
shear (m) [0-12000] 

 

4. METHODOLOGY 

4.1 Support Vector Machine (SVM) 
Given a set of data points 
{ } 1 and  with ,...,1  ),,( ±=ℜ∈= i

n
iii yxiyx l , SVM 

consider a problem where a classifier is sought to 
separate the two classes of points with maximum 



margin separation (Figure 1).  The SVM formulation can 
be written as follows (Haykin, 1999), 
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where C is a parameter to be chosen by the user, w is 
referring to the vector perpendicular to the separating 
hyperplane, ηι refers to the misclassification error 
variables and b is the bias of the separating hyperplane.  
A larger C corresponds to assigning a larger penalty to 
errors.  Introducing positive Lagrange multipliers αι, to 
the inequality constraints in model (1) we obtain the 
following dual formulation: 
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Figure 1.  The geometric illustrati
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kernel function, k(x,x’), can be used to substitute the dot 
product )'(),( xx ϕϕ .  The use of a kernel 

function allows the SVM to operate efficiently in 
nonlinear high-dimensional feature spaces without being 
adversely affected by the dimensionality of that space.  
Indeed, it is possible to work with feature spaces of 
infinite dimension (Schölkopf and Smola, 2002).  
Moreover, it is possible to learn in the feature space 
without knowing the mapping ϕ and the feature space F.  
The matrix 〉〈= )(),( jiij xxK ϕϕ is called the kernel 

matrix.  In general, the separating hyperplane 
corresponds to a nonlinear decision boundary in the 
input space.  It can be shown that for each continuous 
positive definite function , there exists a 
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There are three specific kernel functions usually 

used in the SVM literature:  polynomial, radial basis 
function, and tangent hyperbolic (Haykin, 1999).  In this 
research, only polynomial kernel 
functions , where p is the degree of 
the kernel) are investigated. 
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4.2 Forecast Evaluation Indices for Tornado 
Detection 
In the detection paradigm, the forecast results are 
assessed by using a suite of forecast evaluation indices 
based on a contingency table (otherwise also known as 
a "confusion matrix").  The confusion matrix is defined in 
Table 2. 

TABLE 2.  Confusion matrix.  

   Observed  

  Yes No Total 

Predicted Yes Hits (a) False alarm 
(b) 

Forecast 
Yes 

 No Misses (c) Correct Forecast 
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The cell counts (a, b, c, d) from the confusion matrix 
can be used to form forecast evaluation indices (Wilks, 
1995).  In this definition of the confusion matrix, one 
such index is the Probability of Detection, POD, which is 
defined as a/(a+c).  POD measures the fraction of 
observed events that were forecast correctly.  Its range 
is 0 to 1 and a perfect score is 1 (or 100%).  Note that 
POD is sensitive to hits, therefore, good for rare events.  
However, POD ignores false alarms and it can be 

x 



improved artificially by issuing more "yes" forecasts to 
increase the number of hits. 

False Alarm Rate, FAR, is defined as b/(a+b).  FAR 
measures the fraction of "yes" forecasts in which the 
event did not occur.  Its range is 0 to 1, and 0 is a 
perfect rate.  FAR is sensitive to false alarms and it 
ignores misses.  It can be improved artificially by issuing 
more "no" forecasts to reduce the number of false 
alarms. 

The concept of skill is one where a forecast is 
superior to some known reference forecast (e.g., random 
chance).  Skill ranges from –1 (anti-skill) to 0 (no skill 
over the reference) to +1 (perfect skill).  Heidke’s skill is 
commonly utilized in meteorology since it uses all 
elements in the confusion matrix and works well for rare 
event forecasting (e.g. tornadoes) (Doswell et al., 1990).  
Heidke’s Skill is defined as 2(ad-
bc)/[(a+b)(b+d)+(a+c)(c+d)]. 

5. EXPERIMENTS 
The data were split into two sets: training and testing. 
The cases used for training are different from those used 
in the testing set.   

 
The SVM, experiments were performed in the 

MATLAB environment.  OSU SVM Classifier Matlab 
Toolbox by Ma et al. (2003) was used to run 
experiments of SVM for classification.  These codes are 
MATLAB versions of Chih-Chung Chang and Chih Jen 
Lin's LIBSVM algorithm (Chang and Lin, 2003).  

The data structure consists of an m by n matrix, 
where m refers to observations and n refers to variables 
as listed in Table 1.  For the training set, m is equal to 
749 and for the testing set m is equal to 18202, owing to 
the percentage of tornado events used herein (2%).  The 
data are preprocessed before each method is applied.  
For each column, each data point (observation) was 
divided by the norm of the column.   

Of the 24 candidate variables, reduction of this 
number was achieved by removing each variable.  The 
impact of the removal was noted in the testing data 
through the forecast evaluation indices.  Any variable 
resulting in an increase in skill or POD was noted and 
combinations of these variables were used to determine 
if further increases could be achieved.  Similarly, for 
those variables resulting in a lower FAR, removal was 
used one at a time and then in pairs, triplets, etc. until all 
possible subsets were examined.  Such a process has 
been used successfully in regression analysis (Draper 
and Smith 1998).  By testing on POD, FAR and Heidke 
skill, the SVM could be tailored to optimize a specific 
portion of the forecast. 

6. RESULTS 
Figures 3 through 5 depict different performance 

aspects of the aforementioned forecast evaluation 
indices for each index.   

Assessment of a successful forecast was made 
through examination of Heidke Skill.  The full variable 
SVM and with single variables removed in shown in Fig. 
3a.   The full model (with no variables removed) has a 
skill of 0.8355.  Removal of certain variables, such as 

month number, reduces skill substantially; therefore, 
calendar month would not be a candidate for discarding.  
Conversely, removal of variable 14 increases the skill 
and should be removed.  All variables that did not lead to 
a decrease in skill when removed were tested further.  
These included the following subset of MDA variables: 1 
(mesocyclone base height), 6 (height of maximum 
diameter), 9 (height of maximum rotational velocity), 14 
(maximum gate to gate velocity difference), and 15 
(height of maximum gate to gate velocity difference).  
For all of the single variables tested, removal of variable 
14 led to the best skill (0.841).  When all possible pairs 
of the subset were tested (Fig. 3b), the pair of 6 and 14 
led to the most improvement with a skill of 0.844.  When 
all possible triplets of the subset were tested (Fig. 3c), 
the highest skill remained at 0.844 for removal of 
variables 6, 9 and 14.  Such a model would be 
preferable as it is more parsimonious.  When all subsets 
of 4 variables were removed (Fig. 3d), the skill remained 
at 0.844 by omitting MDA variables 1, 6, 9 and 14.  The 
same result was found for removal of all five predictors 
(Fig 3d).  Therefore, this would seem to be the most 
desirable model as it was most compact.   
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Figure 3.  Skill for removal of no variables, month 
number and MDA variables 1 – 23. 

 

Next, the removal of these variables was examined 
in more detail for their impact on POD and FAR.  Results 
on POD for removing single variables can be seen in 
Fig. 4a.  Note that removal of MDA variable 11 or 14 
increased POD over the full model.  In these 
experiments, the same subset of five variables was 
removed in pairs, triplets, etc. in an all-subsets 
approach.  The results of removing the various pairs 
(Fig. 4b) indicate variables 6 and 9 or 6 and 14 
increased the POD from 0.818 to 0.835.  When triplets 
were removed (Fig 4c), variables 1, 6 or 9 or 6, 9 and 14 
resulted in the same increase in POD and for the 
doubles.  However, the removal of triplets results in a 
more parsimonious model.  For the set of four variables 
removed (Fig. 4d), either variables 1, 6, 9 and 15 or 6, 9, 
14 and 15 yielded the same high POD.  Note that when 
all five variables were removed, the POD decreased 
slightly.   
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Figure 4.  POD for removal of no variables, month 

number and MDA variables 1 – 23. 

 

The FAR was examined as another arbiter of 
success.  Results for removing single variables (Fig. 5a) 
had different results from either those for either skill or 
POD.  Excluding the month number lowered the FAR.  
Therefore, the month number resulted in an 
overforecasting bias. However, when all pairs of 
variables identified previously were tested (Fig. 5b), 
results indicated that, in all but one case, the FAR 
increased.  However, when triplet subsets were removed 
(Fig. 5c), the FAR decreased for sets 1, 9 and 14 or 1, 
14 and 15.  Finally, when subsets of four variables were 
removed (Fig. 5d), the FAR decreased to the same 
(lower) value for variables 1,9, 14 and 15 or 1, 6, 14 and 
15.   
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Figure 5.  FAR for removal of no variables, month 
number and MDA variables 1 – 23. 

 

 

Taken collectively, the skill and POD results are similar 
and suggest that at least 4 of the 23 MDA variables can 
be discarded safely.  However, if the goal is to minimize 



FAR (at the expense of lower detection and skill), then 
the subsets of variables to be removed do not overlap 
completely with those that increase skill and POD. 

In order to determine if selected removal of 
variables let to statistically significant increases in skill, 
the testing data set was bootstrap resampled 30 times. 
Selected results of the experiments are shown in Figure 
6. Boxplots suggest that the gain in skill through 
removal of variables 6 and 14 yielded skill that 
overlapped the interquartile range (IQR) of the solution 
for no variables removed. However, removal of 
variables 6 and 14 solution was significantly more skillful 
than removal of variables 1,6,9,and 14 or 1,6,9,14, and 
15 as the IQR did not overlap. 
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Figure 6.  Boxplots of Heidke Skill for removal of 

selected variables. 

 

7. CONCLUSIONS 
 

As with any ranking scheme, the process of 
examining all possible subsets of skill-related variables 
for model improvement has positive and negative 
aspects.  This is a form of data mining and it is possible 
in the process to lose sight of the goal to find a model 
that has physically meaning variables and is 
parsimonious.  When the variables to be removed are 
examined, one discovers that the majority of those are 
related to height of the base or of the height of rotation.  
It is noteworthy that four of the five variables are height 
related.  Such height variables do not add information 
that the SVM can process into more skillful forecasts of 
those mesocyclone circulations that remain nontornadic 
compared to those that become tornadic.  It is equally 
significant that the SVM model can forecast those 

circulations that become tornadic from those that do not 
with the high amount of skill and low FAR found, 
particularly given the realistically low percentage of 
tornadoes (2 percent) in these experiments. 
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