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1. INTRODUCTION 
 
In order to ultimately improve visibility in the 

southeastern US, the Visibility Improvement State 
and Tribal Association of the Southeast (VISTAS) 
(http://www.vistas-sesarm.org/) is in the midst of an 
extensive modeling effort. A 12-month modeling 
period is deemed necessary to cover an adequate 
range of visibility impairment. The meteorological 
component of the modeling is performed by Baron 
Advanced Meteorological Systems (BAMS) using 
the PSU/NCAR mesoscale model (MM5), 
(http://www.mmm.ucar.edu/mm5/mm5-home.html). 
This document evaluates and documents the results 
of that modeling.  

 
A great deal of effort was expended to 

determine the optimal MM5 configuration to be 
implemented for the annual run. The modeling 
protocol  (Olerud, 2003a), 
(http://www.baronams.com/projects/VISTAS/reports/
VISTAS_TASK3a_draft.pdf) examines these 
sensitivity tests in detail before offering the desired 
model configuration and evaluation/presentation 
methodologies. The reader is referred to that 
document for the details of model implementation  

 
 

2. DESCRIPTION OF THE METEOROLOGICAL 
MODELING APPROACH 
 
The meteorological model used in this study is 

the PSU/NCAR Mesoscale Model (MM5 version 
3.6.1+, Grell et al., 1994, MPP version), the same 
version of the code that was used in the sensitivity 
modeling. At the time the annual modeling began, 
the latest released version of the MM5 code was 
3.6.2. Most of the v3.6.2 changes are included in 
the v3.6.1+ version of the code. If NCAR 
documentation is complete, the only modification 
not included involves the treatment of sea ice, a 
change likely to have negligible effect over the 
southeastern US. The v3.6.1+ code also includes  
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an adapted version of EPA’s MPP P-X code, an 
essential feature that does not readily port into later 
MM5 versions. The latest v3.6.2 MM5 
preprocessors could readily be employed, so we did 
so. The modeling domains are shown in figure 1.  

 
Sensitivity testing showed that the configuration 

that produced the most desirable results was px-
acm8. This configuration is implemented for the 
annual run with the following physics options: 
 
Soil: Pleim-Xiu land surface model 
PBL: Asymmetric Convective Mixing 
Rad:  Rapid Radiative Transfer Model (RRTM) 
Cld:         Kain-Fritsch 2 cumulus parameterization 
Microphysics: Reisner 1 (mixed phase) 
Analysis nudging:  
Aloft:  

36km: t (2.5E-4/s), q (1.0E-5/s), u,v (2.5E-4/s) 
12km: t (1.0E-4/s), q (1.0E-5/s), u,v (1.0E-4/s) 

Surface: 
36km: u, v (2.5E-4/s), T and q not nudged 
12km: u, v (1.0E-4/s), T and q not nudged 

Observational nudging: Not used 
Snow effects: Turned on via IFSNOW = 1 
SST:      EDAS 24-hr averaged skin temperatures 
 

Note that the decision to use sea surface 
temperatures (SST’s) derived from the EDAS skin 
temperatures was not an arbitrary one. At the time 
this modeling effort began, most of the other RPO’s 
were planning to use NCEP SST’s to avoid 
problems that might arise from applying skin 
temperatures as SST’s. The 1996 annual modeling 
effort conducted by Olerud et al (2000) suffered 
from very high inland lake temperatures as the MM5 
system erroneously applied land skin temperatures 
to areas such as the Great Salt Lake. Fortunately 
the 3.6.2 version of the MM5 preprocessor 
INTERPF treats skin temperatures in a more 
appropriate manner, forcing a 24-hour average of 
skin temperatures if they are being used as a 
surrogate for SST’s. The downside of using the 
NCEP SST fields is that they have a very coarse 
resolution of 2.5x2.5 degrees (~270x270 km). 
Alternatively the EDAS fields are available at 40-km 
resolution. Figures 2 and 3 show the resultant 
ground temperatures (equivalent to SST’s over 
water) a few hours into test runs using the alternate 



SST initializations. The differences between the two 
approaches are clearly seen in the Gulf of Mexico. 
Note how appropriately warm the SST’s are along 
the Mexican coast in the EDAS run, while the NCEP 
run is markedly colder and more “blocky”. Similar 
improvements are seen in the Great Lakes and in 
the Gulf of California. Overall the EDAS approach 
seems to be the better approach. 

 
The time-varying preprocessing is performed in 

six-day chunks (starting at 00Z) using fields created 
by TERRAIN using the “BotSoil” option from the 
input ~4km terrain databases. The EDAS analyses 
files are processed through pregrid and mapped to 
the MM5 grids via regridder. The fields are 
“improved” in LITTLE_R by incorporating the 
surface, ship, and upper air observations that are 
available from NCAR. The LITTLE_R output fields 
are then interpolated to the MM5 sigma coordinates 
by INTERPF. MM5 itself is run in 5.5-day segments 
with a 12-hr overlap from segment to segment. In 
order to allow sufficient spin-up time for subsequent 
air quality runs, the modeling initiated at 00Z Dec 
17, 2001, continuing through 12Z Jan 1, 2003. With 
the exception of TERRAIN (which was executed on 
an SGI machine), MM5 and all its 
preprocessors/postprocessors were run on a 
2.8GHz Xeon Linux cluster, with the core model run 
on 32 processors via MPP. Complete details 
regarding model setup and implementation, 
including namelist examples, are available in the 
aforementioned modeling protocol.  

 
 

 
3. RESULTS 

3.1 Temperature 
 

Figure 4 shows the observing sites used in this 
model evaluation, color-coded by RPO region. 
Generally speaking, we use horizontal bilinear 
interpolation to estimate model values at the 
observing sites. Unlike many evaluation studies, we 
also address the elevation differences that often 
exist between the model terrain and the 
observational sites. If this difference exceeds 500 
m, we exclude the model/obs pair from the 
evaluation. Otherwise, we implement a standard 
atmospheric lapse rate to account for the pressure-
induced temperature variations that result from the 
elevation differences. In mountainous terrain this 
effect can be significant (figure 5), since 
observational sites are disproportionately placed in 
valleys.   

 
To begin our temperature evaluation, we focus 

on the VISTAS region, cleanly comparing results at 
the 36-km and 12-km resolutions. For a description 
of the statistical metrics shown below, the reader is 
referred to Olerud  (2003b), available at 

http://www.baronams.com/projects/VISTAS/reports/
VISTAS_TASK1.pdf. 

Figure 6 shows how monthly temperature 
biases vary throughout 2002. Note that biases are 
generally small, never exceeding +/- 0.8C. 
Nonetheless the model shows a clear predilection 
towards being too cold in the winter months, and the 
problem is exacerbated at 12-km. Presumably the 
increased temperature nudging strength aloft (2.5 E-
4/s vs. 1.0 E-4/s) enables the coarser grid to be 
slightly less biased. Model biases for the May-
August period are practically 0.0 at both resolutions. 
The seasonal aggregation of temperature biases 
quantifies the same result in a bar chart (figure 7). 

 
To examine the temperature biases in greater 

detail, consider the day (12Z-23Z) and night (00Z-
11Z) bias traces for the 12-km grid in figure 8. 
Clearly model performance for the daytime period is 
the primary reason for the wintertime cold bias. The 
daytime cold bias is persistent from month to month, 
but in the summer the model is only relatively 
weakly biased. The nighttime trace reveals that over 
the entire year the model is unbiased, being slightly 
low biased in the winter and slightly warm biased in 
the summer. There could be at least four physical 
mechanisms that could lead to a daytime cold bias: 
1) Too cold soil initial conditions, 2) Too moist soil 
initial conditions, 3) Too many daytime clouds, and 
4) Poor treatment of snow related processes. Once 
we examine the full suite of summary statistical 
products we will have a better idea of what is really 
going on. In the grand scheme of things the model 
temperature performance appears to be line with 
what we expect given the state of the art in MM5 
applications. Figure 9 indicates similar temperature 
biases for the VISTAS region at 36-km resolution, 
though the magnitude of the wintertime biases are 
damped.  

 
Spatial analysis (not shown) of the January 

2002 aggregate temperature biases within the 12-
km domain reveals that the cold bias is widespread. 
Most of the sites in the VISTAS states display the 
cold bias, but the biases are definitely larger for 
sites in the northern VISTAS states, especially so 
for sites in western NC and VA. Given the significant 
snowfall that fell in this area early in the month, it 
seems likely that less than optimum treatment of 
snow/snow melt might contribute to the cold biases.  

 
To complete our statistical analyses of 

temperature, we have included a series of 
“Bakergrams” in figures 10-11 for the 12-km 
VISTAS region. These images place daily statistics 
into a tile plot in a calendar-like layout. In this way 
we can effectively summarize performance for the 
entire year in one plot. Figure 10 shows the 
temperature bias Bakergram. Note how small the 
biases are in the summer, while the wintertime cold 
biases are easily seen. The temperature errors 



(figure 11) are also greatest in the winter. An index 
of agreement Bakergram (not shown) indicates that 
the model skill in predicting temperature is fairly 
high every day of the year. 

 
3.2 Mixing Ratio 
 

Figure 12 shows the mixing ratio bias trace 
over for 2002 for both model resolutions for the 
VISTAS region. The model exhibits a slight positive 
bias in January, especially at 36-km resolution. 
Considering that the average observed mixing ratio 
in January is on the order of 4 g/kg, this bias is more 
significant that an equivalent bias in July, when 
average observed mixing ratios are on the order of 
15 g/kg. Might this positive moisture bias be the root 
cause of the temperature cold bias? Probably not, 
since the cold bias was larger in the 12-km grid, not 
the 36-km grid where the moisture bias is more 
significant.  

Another striking observation about the mixing 
ratio bias traces is the low biases noted in the fall 
months, shown well in figure 13. These values 
easily fall within the benchmark expectation of +- 
1.0 g/kg, but it is curious that the model shows that 
signature. Figures 14-15 show that the model is 
systemically dry-biased during the afternoon for 
non-winter months. Usually one associates such a 
feature with too much mixing (or too efficient mixing) 
in the model, thus bringing dry air from aloft to the 
surface. For most of the year the model is slightly 
moist biased at night, but in the fall the night shows 
a slight dry bias. The combination leads to the 
overall dry bias noted for that season. Site-specific 
moisture biases (not shown) for September over the 
12-km grid were created. They indicate that the 
sites in Virginia and western North Carolina show 
the largest dry bias, while many areas (eastern NC, 
northern FL, MI) show a moist bias. Such spatial 
discrepancies in model performance over small 
areas suggest that either the model is failing to 
capture smaller-scale variations properly, or that the 
model is introducing smaller-scale variations where 
none exist. One of the striking differences between 
eastern North Carolina (moist bias) and western 
North Carolina (dry bias) is the soil types prevalent 
in those areas. Perhaps there are issues with the 
soil moisture/temperature initializations that lead to 
the performance differences over small areas? 
Figure 16 shows the September “Bakergram” for 
moisture bias over the 12-km VISTAS region. These 
plots display hourly biases in a tile plot format, with 
the day of the month increasing from left to right, 
and the UTC hour of the day increasing from top to 
bottom. Recall that the model is run in 5-day 
segments such that every fifth day at 13Z results 
from a new segment are introduced. The first new 
segment in September starts on the 3rd. Moisture 
biases tend to significantly worse at the beginning of 
a segment than they are at the end of a segment, 
indicating that there does indeed seem to be soil 
initialization issues that are affecting the model.  

 
The annual Bakergrams for mixing ratio (figures 

17-18) clearly indicate the autumn dry bias. 
Because mixing ratio nonlinearly increases with 
temperature, larger errors are found in the summer. 
The most disconcerting mixing ratio statistic is the 
fall dry bias, even though the absolute errors are 
lower in the fall than in the summer.  

 
3.3 Relative Humidity 

 
With the January cold/dry bias, we would 

expect that relative humidity would be high biased. 
Figure 19 indicates that is indeed the case. 
Generally, however, relative humidity is unbiased. 
The fall dry bias noted above does result in a low 
RH bias (figure 20) that is especially noticeable in 
November. The model tends to be positively biased 
during the daytime and negatively biased at night 
(figure 21). Spatially (not shown) the model is 
actually slightly high biased just north of the VISTAS 
states, but the heart of the region from Virginia to 
Mississippi is biased low. The November relative 
humidity bias Bakergram (figure 22) shows some 
segment initialization signatures, but not as 
decisively as was seen in the mixing ratio 
September Bakergram (figure 16). Completing our 
suite of relative humidity plots are the annual 
Bakergrams (figures 23-24).  

 
3.4 Wind Speed 

 
Let us now focus on wind speed performance, 

starting with the standard include-all-calms-as-zero 
approach. Figure 25 shows that the model is 
positively biased with regard to wind speed for all 
months and for both grids. The bias is especially 
acute at 12-km resolution, presumably due to the 
weaker nudging applied to the winds at that scale. 
The greatest bias occurs in November, while the 
smallest bias occurs in March. Both are surprising 
results. The seasonal bar chart (figure 26) shows a 
general increase in speed bias from spring to 
autumn. Figures 27-28 reveal that the bulk of the 
speed bias occurs at night, quite likely in part to the 
presence of numerous calm observations. The site-
specific spatial bias plot for this month (not shown) 
reveals that the northern third of the region is 
generally unbiased with regard to wind speed, while 
most of the VISTAS states exhibit a weak to 
moderate positive bias, peaking in North Carolina. 
Figure 29 shows that the speed biases are indeed 
primarily nighttime phenomena, and demonstrate 
that weak wind speeds lasting almost the entire day 
is not uncommon in the southeast. The annual wind 
speed Bakergrams are shown in figures 30-31. 

 
So what happens statistically if we consider 

only non-zero wind speed observations? Figure 32 
shows that the resultant biases are practically non-
existent at 12-km, while a slight low bias is 
evidenced at 36-km. Figure 33 consolidates the 



data into seasonal bins. So clearly the majority of 
the wind speed (regular) high biases stem from 
comparing model winds, which have no threshold 
issues, with observations, which obviously do.  
Figures 34-35 break the data into day/night periods. 

  
We have already discussed how not including 

calm reports probably introduces a low bias into the 
wind speed calculations. Figures 36-38 show the 
results we obtain by substituting a value of 1.5 knots 
(mid-point between 0.0 and lowest observed report 
of 3 knots) for each of the calm reports. A general 
positive bias is noted, especially at night and at 12-
km resolution, but the magnitude of the biases are 
reduced by ~0.2 m/s.  

 
 

3.5 Wind Direction 
 
Let us now consider wind direction 

performance. Figure 39 shows the monthly wind 
direction errors over the VISTAS region for both 
model domains. The performance of the two grids is 
very similar, and surprisingly enough the 12-km grid 
has a slightly lower error. The increased nudging 
strength at 36-km might have been expected to 
yield a lower direction error. We know that all wind 
direction errors do not have the same effect of air 
quality modeling. A 90 degree direction error at light 
winds speeds might have a less deleterious effect 
than a 40 degree error at moderate wind speeds. A 
better way of treating wind direction discrepancies 
between the model and the observations is to 
calculate the magnitude of the error wind vector. 
This approach properly treats winds as vectors and 
allows us to quantify the combined effect of speed 
and direction errors. Figure 40 shows the resultant 
plot. As a rule the two grids track very similarly, with 
the 36-km domain yielding slightly superior results, 
undoubtedly due to the presence of stronger 
nudging. Also note how the result for November 
does not stick out as an outlier, even though wind 
speed performance exhibited its highest bias during 
that month. The wind direction bias and error annual 
Bakergram plots are displayed in figures 41-42, 
followed by the annual Bakergram for the magnitude 
of the error wind vector in figure 43. 

 
3.6 Clouds 

 
Since the alternative cloud fraction variable 

“CLD2” is deemed more meteorologically consistent 
with the cloud observations than is the MCIP-
derived variable “CLD”, we will focus our attention 
there. Figures 44-45 show a strong seasonal 
variation to cloud bias. For most of the year clouds 
are relatively unbiased. However, through the 
summer months a noticeable positive bias appears, 
especially at 12-km. Figures 46-47 show that most 
of the bias occurs at night. It is difficult to know if 
this nighttime bias is indeed real, since cloud 
observations at night might not be as accurate as 

they are during the daytime. A spatial statistical plot 
(not shown) indicates that the bias for July is 
widespread with little spatial variation. The 
Bakergram (figure 48) reveals that the nighttime 
bias is more or less a constant feature. If the 
observations are accurate, it appears that MM5 is 
lacking a key cloud disintegration process that 
occurs in the real world. Figures 49-50 show the 
average observed and modeled cloud coverage in a 
Bakergram format. Note that the observations show 
a distinct diurnal variation in that cloud coverage is 
greatest in the afternoon and smallest in the late 
overnight periods. Another evident cycle occurs at 
the synoptic scale and can be seen on an 
approximately 10-day time scale. The model does a 
nice job replicating the synoptic scale variations, but 
the diurnal variations are completely out of phase. 
Since the nocturnal bias is more significant at 12-km 
than it is at 36-km, one must consider the possibility 
that the internal cloud parameterizations need to be 
adjusted to run as successfully at finer scale 
resolutions. The annual bias and error Bakergram 
products for clouds are shown in figures 51-52.  

 
3.7 Precipitation 

 
To begin our precipitation analysis, consider the 

monthly obs/model accumulated precipitation plot 
for the 12-km grid for January (figures 53). Note the 
nice job the does in replicating the observed 
precipitation field. However, the model appears to 
noticeably overestimate the amount of precipitation 
in the summer months, especially in July (figure 54). 
Interestingly enough in the fall the model 
underestimates precipitation amounts (not shown), 
coinciding with the dry bias noted in the mixing ratio 
statistics (figure 13).  

 
The summertime accumulation bias could result 

from at least two model inadequacies. One is that 
the model could fire off convection (or just regular 
rain for that matter) too often, possibly most every 
afternoon. The second possibility is that the model 
triggers rainfall at approximately the correct 
frequency, but the model could overestimate the 
intensity of the rainfall. The first possibility is the 
more serious model flaw from an air quality 
perspective, since the presence/absence of rain 
affects pollution concentrations more than predicting 
2 inches of rain when only 1 inch actually occurred. 
To address this issue, consider the statistical time 
series plots for precipitation shown in figures 55-60. 
Figure 55 shows the precipitation statistics for the 
0.01-inch threshold level at 12-km resolution, and 
reveals that the model is slightly biased high for the 
first third of the year. During the summer the model 
is slightly low biased, reaching a yearlong minimum 
in September. By December the model has 
essentially become unbiased. When examining 
these statistical plots, remember that the process of 
gridding observed precipitation could cause the 
spatial extent of precipitation coverage – especially 



at lower thresholds - to be slightly larger than what it 
really is. This would introduce an artificial negative 
precipitation bias. At the same time, we are 
assuming that any precipitation that falls in a cell 
covers the entire cell, which may or may not be true. 
This effect could cause an artificial high precipitation 
bias. With those caveats out of the way, it is 
interesting that the precipitation bias trace is similar 
to the mixing ratio bias trace (figure 12). The threat 
score indicates that the model shows considerable 
skill in predicting measurable precipitation year-
round, with the expected slight decline in skill over 
the summer months. The 36-km results (figure 56) 
show unbiased statistics for the first half of the year, 
followed by a slight negative bias that maintains 
itself the entire second half of the year.  

 
Figure 57 shows the 12-km precipitation 

statistics at the 0.05-inch threshold. The results are 
not all that different from the 0.01-inch threshold 
results, though the summertime threat scores are 
slightly lower. Figure 58 reveals that the 36-km 
precipitation (0.05-inch) is slightly biased high for 
the first eight months of the year, after which it 
becomes essentially unbiased. At the higher 
threshold level of 0.25-inch, figures 59-60 show that 
the model exhibits a significant summer increase in 
precipitation bias.  

 
These statistics indicate that the model suffers 

from the more benign weakness mentioned above, 
namely overestimating the predicted amount of 
precipitation when it actually occurs. Perhaps the 
model precipitation efficiency is too great? More 
research needs to be made on this topic.   

 
 

 
4. Summary and Conclusions 

 
 

Ø Generally speaking, MM5 performed quite well 
at both 36-km and 12-km resolutions. Synoptic 
features were routinely accurately predicted, 
and the model showed considerable skill in 
replicating the state variables. Most of the time 
the model statistics easily fell within the 
expected “benchmarks”.  

 

Ø The model shows evidence of being adversely 
affected by poor soil initialization at times. This 
is particularly evident for September and 
November, and it might cause the autumnal dry 
bias evidenced both in the mixing ratio statistics 
and also in the precipitation statistics. At the 
time of our modeling, the P-X LSM only allowed 
three soil initialization options: 1) Table look-up, 
2) EDAS, and 3) interppx. Sensitivity testing 
showed that interppx can produce more severe 
cold biases, so we chose the EDAS option. 
Unfortunately that option initializes soil moisture 

from a layer 100-200 cm deep, whereas the P-
X LSM extends downward only 100 cm. In the 
future improved model performance might be 
attained by more wisely initializing soil 
moisture. 

 

Ø The model is noticeably cold biased in the 
winter months. This was expected based on our 
sensitivity modeling, and it appears to be 
related to the manner in which soil 
temperatures are initialized.  

 

Ø The summertime diurnal cloud cycle appears to 
be out of phase with the observed cycle. The 
model maximizes cloud coverage at night and 
minimizes cloud coverage in the afternoon, 
while the observations indicate that the exact 
opposite should occur.  

Ø The model noticeably overestimates the 
amount of summertime precipitation, but not the 
spatial coverage of measurable precipitation.  

 

Ø While no modeling is perfect, the results of this 
effort should produce credible inputs for 
subsequent air quality modeling. 
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Figure 1. VISTAS 36-km/12-km MM5 modeling domain  
 
 
 

 
Figure 2. Ground (sea surface) temperatures resulting from an EDAS skin temperature MM5 initialization. 

 



 
Figure 3. Ground (sea surface) temperatures resulting from an NCEP SST MM5 initialization. 

 
 

 
Figure 4. Surface observing network color-coded to represent Regional Planning Organization areas.  

 
 



 
 
 
 
 
 

 
Figure 5. Model/obs elevation differences are converted to temperatures and plotted for the US portion of 
the 36-km grid. The temperatures are calculated assuming a standard atmosphere lapse rate of 6.5C/km, 
and practically indicate the temperature biases that might result solely by ignoring elevation-induced 
temperature effects. All of the observing sites are shown, including those sites that we ignore when 
calculating statistics due to their elevations being more than 500m different than the corresponding model 
elevations. 
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Figure 6. VISTAS region monthly temperature biases are plotted for both 12-km and 36-km resolutions. 
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Figure 7. Seasonally aggregated VISTAS region temperature biases are shown for both the 36-km and 12-
km grids. 
*All months are in 2002, so the winter (djf) bar graph represents a discontinuous time period.  
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Figure 8. Monthly temperature biases for the 12-km VISTAS region are plotted. The “day” period is defined 
to be 12Z-23Z, while “night” is defined to be 00Z-11Z.  
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Figure 9. Monthly temperature biases for the 36-km VISTAS region are plotted. The “day” period is defined 
to be 12Z-23Z, while “night” is defined to be 00Z-11Z.  

 
 

  
 



 
Figure 10. The 2002 12-km VISTAS “Bakergram” for temperature biases are plotted. The data are shown in 
a calendar-like layout so that the upper left cell represents the bias on the first day of January.  

 
 

 
Figure 11. The 2002 12-km VISTAS “Bakergram” for temperature errors are plotted. The data are shown in 
a calendar-like layout so that the upper left cell represents the bias on the first day of January.  
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Figure 12. VISTAS region monthly mixing ratio biases are plotted for both 12-km and 36-km resolutions. 

 
 
 
 
 
 

Qv (g/kg) Bias)

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

djf* mam jja son

B
ia

s 12 km

36 km

 
Figure 13. Seasonally aggregated VISTAS region mixing ratio biases are shown for both the 36-km and 12-
km grids. 
*All months are in 2002, so the winter (djf) bar graph represents a discontinuous time period.  
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Figure 14. Monthly mixing ratio biases for the 12-km VISTAS region are plotted. The “day” period is defined 
to be 12Z-23Z, while “night” is defined to be 00Z-11Z.  
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Figure 15. Monthly mixing ratio biases for the 36-km VISTAS region are plotted. The “day” period is defined 
to be 12Z-23Z, while “night” is defined to be 00Z-11Z.  

 
 

 



 

 
Figure 16. The September 2002 12-km VISTAS “Bakergram” for mixing ratio biases (g/kg) is plotted. The 
hourly biases are shown in a calendar-like layout so that the upper left cell represents the 00Z bias on the 
first day of the month.  
 
 
 
 
 

 
Figure 17. The 2002 12-km VISTAS “Bakergram” for mixing ratio bias is plotted. The data are shown in a 
calendar-like layout so that the upper left cell represents the bias on the first day of January.  

 



 

 
Figure 18. The 2002 12-km VISTAS “Bakergram” for mixing ratio error is plotted. The data are shown in a 
calendar-like layout so that the upper left cell represents the bias on the first day of January.  
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Figure 19. VISTAS region relative humidity biases (%) are plotted for both 12-km and 36-km resolutions. 
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Figure 20. Seasonally aggregated VISTAS region relative humidity biases are shown. All months are in 
2002, so the winter (djf) bar graph represents a discontinuous time period.  
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Figure 21. Monthly RH biases for the 12-km VISTAS region are plotted. The “day” period is defined to be 
12Z-23Z, while “night” is defined to be 00Z-11Z.  

 
 

  
  
 
 

 



 
 
 
 

 
 

Figure 22. The November 2002 12-km VISTAS “Bakergram” for relative humidity biases (%) is plotted. The 
hourly biases are shown in a calendar-like layout so that the upper left cell represents the 00Z bias on the 
first day of the month.  

 
 

 



 
Figure 23. The 2002 12-km VISTAS “Bakergram” for relative humidity bias is plotted. The data are shown in 
a calendar-like layout so that the upper left cell represents the bias on the first day of January.  

 
 

 

 
Figure 24. The 2002 12-km VISTAS “Bakergram” for relative humidity error is plotted. The data are shown in 
a calendar-like layout so that the upper left cell represents the bias on the first day of January.  
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Figure 25. VISTAS region wind speed (regular) biases (m/s) are plotted for both 12-km and 36-km 
resolutions. 
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Figure 26. Seasonally aggregated VISTAS region wind speed (regular) biases are shown for both the 36-km 
and 12-km grids. 
*All months are in 2002, so the winter (djf) bar graph represents a discontinuous time period.   
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Figure 27. Monthly wind speed (regular) biases for the 12-km VISTAS region are plotted. The “day” period is 
defined to be 12Z-23Z, while “night” is defined to be 00Z-11Z.  
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Figure 28. Monthly wind speed (regular) biases for the 36-km VISTAS region are plotted. The “day” period is 
defined to be 12Z-23Z, while “night” is defined to be 00Z-11Z.  

 
 
 

 
 

 

 
Figure 29. The November 2002 12-km VISTAS “Bakergram” for wind speed (regular) biases (%) is plotted. 
The hourly biases are shown in a calendar-like layout so that the upper left cell represents the 00Z bias on 
the first day of the month.  



 
Figure 30. The 2002 12-km VISTAS “Bakergram” for wind speed (regular) bias is plotted. The data are 
shown in a calendar-like layout so that the upper left cell represents the bias on the first day of January.  

 
 

 
Figure 31. The 2002 12-km VISTAS “Bakergram” for wind speed (regular) error is plotted. The data are 
shown in a calendar-like layout so that the upper left cell represents the bias on the first day of January.  
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 Figure 32. VISTAS region wind speed (no calms) biases (m/s) are plotted for both 12-km and 36-km 
resolutions. 
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Figure 33. Seasonally aggregated VISTAS region wind speed (no calms) biases are shown for both the 36-
km and 12-km grids. 
*All months are in 2002, so the winter (djf) bar graph represents a discontinuous time period.  
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Figure 34. Monthly wind speed (no calms) biases for the 12-km VISTAS region are plotted. The “day” period 
is defined to be 12Z-23Z, while “night” is defined to be 00Z-11Z.  
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Figure 35. Monthly wind speed (no calms) biases for the 36-km VISTAS region are plotted. The “day” period 
is defined to be 12Z-23Z, while “night” is defined to be 00Z-11Z.  
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Figure 36. VISTAS region wind speed (minimum calms) biases (m/s) are plotted for both 12-km and 36-km 
resolutions. 
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Figure 37. Seasonally aggregated VISTAS region wind speed (minimum calms) biases are shown for both 
the 36-km and 12-km grids. 
*All months are in 2002, so the winter (djf) bar graph represents a discontinuous time period.  
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Figure 38. Monthly wind speed (minimum calms) biases for the 12-km VISTAS region are plotted. The “day” 
period is defined to be 12Z-23Z, while “night” is defined to be 00Z-11Z.  
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Figure 39. VISTAS region wind direction errors are plotted for both 12-km and 36-km resolutions. 
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Figure 40. The magnitude of the error wind vector for the VISTAS region is plotted for both 12-km and 36-km 
resolutions. 

 
 
 



 
Figure 41. The 2002 12-km VISTAS “Bakergram” for wind direction bias is plotted. The data are shown in a 
calendar-like layout so that the upper left cell represents the bias on the first day of January.  
 
 

 
Figure 42. The 2002 12-km VISTAS “Bakergram” for wind direction error is plotted. The data are shown in a 
calendar-like layout so that the upper left cell represents the bias on the first day of January.  



 
 

 
Figure 43. The 2002 12-km VISTAS “Bakergram” for magnitude of the error wind vector is plotted. The data 
are shown in a calendar-like layout so that the upper left cell represents the bias on the first day of January.  
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Figure 44. VISTAS region alternative cloud biases are plotted for both 12-km and 36-km resolutions. 
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Figure 45. Seasonally aggregated VISTAS region alternative cloud biases are shown for both the 36-km and 
12-km grids. 

*All months are in 2002, so the winter (djf) bar graph represents a discontinuous time period.   
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Figure 46. Monthly alternative cloud biases for the 12-km VISTAS region are plotted. The “day” period is 
defined to be 12Z-23Z, while “night” is defined to be 00Z-11Z.  
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Figure 47. Monthly alternative cloud biases for the 36-km VISTAS region are plotted. The “day” period is 
defined to be 12Z-23Z, while “night” is defined to be 00Z-11Z.  
 



  
 

 
Figure 48. The July 2002 12-km VISTAS “Bakergram” for cloud (alternative) biases (%) is plotted. The 
hourly biases are shown in a calendar-like layout so that the upper left cell represents the 00Z bias on the 
first day of the month.  

 
 
 
 



 
Figure 49. The July 2002 12-km VISTAS “Bakergram” for observed cloud coverage (%) is plotted. The 
hourly values are shown in a calendar-like layout so that the upper left cell represents the 00Z bias on the 
first day.  

 
 

 
Figure 50. The July 2002 12-km VISTAS “Bakergram” for modeled cloud coverage (%) is plotted. The hourly 
values are shown in a calendar-like layout so that the upper left cell represents the 00Z bias on the first day.  

 



 

 
Figure 51. The 2002 12-km VISTAS “Bakergram” for cloud coverage (alternative) bias is plotted. The data 
are shown in a calendar-like layout so that the upper left cell represents the bias on the first day of January.  

 
 

 
Figure 52. The 2002 12-km VISTAS “Bakergram” for cloud coverage (alternative) error is plotted. The data 
are shown in a calendar-like layout so that the upper left cell represents the bias on the first day of January.  



 

 
 
Figure 53. The January 2002 12-km accumulated precipitation from the Climate Prediction Center is 
juxtaposed with the MM5 accumulated precipitation.   

 
 

 

 
 
Figure 54. The July 2002 12-km accumulated precipitation from the Climate Prediction Center is juxtaposed 
with the MM5 accumulated precipitation. 
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Figure 55. The 0.01 in threshold precipitation bias and threat score for the 12-km domain is shown for 
modeling year 2002. 
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Figure 56. The 0.01 in threshold precipitation bias and threat score for the 36-km US region is shown for 
modeling year 2002. 
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Figure 57. The 0.05 in threshold precipitation bias and threat score for the 12-km domain is shown for 
modeling year 2002. 
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Figure 58. The 0.05 in threshold precipitation bias and threat score for the 36-km US region is shown for 
modeling year 2002. 
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Figure 59. The 0.25 in threshold precipitation bias and threat score for the 12-km domain is shown for 
modeling year 2002. 
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Figure 60. The 0.25 in threshold precipitation bias and threat score for the 36-km US region is shown for 
modeling year 2002. 
 


